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ABSTRACT

Within the past two years, experiments on high-lying doubly-excited states in
He and H™ have shown spectra at energies near excited hydrogenic thresholds hav-
ing principal quantum numbers in the range N = 5 —9. While they display some
nontrivial complexities, the spectra are tremendously simpler than might be an-
ticipated on the basis of independent electron models, in that only a small fraction
of the total number of anticipated resonances are observed experimentally. More-
over, for principal quantum numbers N that are not too high, specifically N < 5
in He and N < 10 in H™, the resonance positions are described accurately by
adiabatic calculations using hyperspherical coordinates and can be parametrized
by a remarkably simple two-electron Rydberg formula. The observed propensity
for excitation of only a small subset of the possible resonance states has been cod-
ified by several groups into approximate selection rules based on alternative (but
apparently equivalent) classification schemes. Comparatively few attempts have
been made at quantitative tests of the validity of these rules. The present review
describes recent efforts to quantify their accuracy and limitations using R-matrix
and quantum defect techniques, and Smith’s delay-time matrix. Propensity rules
for exciting different degrees of freedom are found to differ greatly in their degree
of validity.

INTRODUCTION

In just the last few years our understanding of the most fundamental and most
common Coulombic three-body systems He and H~ has taken rapid strides for-
ward, driven particularly by rapid experimental progress.? In the case of H™, the
LAMPF experiment of Harris et al.? showed that in one-photon absorption by the
ground state (which reaches final states of ' P° symmetry), resonance states are
observed only within the lowest + channel approaching each hydrogenic thresh-
old. These are the + states in the lowest quantum of bending vibration of the two
electrons. This interpretation emerged by comparing the experimental resonance
positions with theoretical positions calculated in the adiabatic hyperspherical po-
tential curves®® shown in Fig. 1(a). A great deal of complexity is apparent in
these calculated potential curves. For ! P° symmetry, there are 2N — 1 potential
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Fig. 1. Adiabatic hyperspherical potential curves for ! P° symmetry of H~, shown
as an effective quantum number versus the square root of the hyper-radius R
in atomic units. The complete set of potential curves converging to all N > 1 is
shown in (a), while in (b) only the propensity-favored excitation channels are indi-
cated along with the resonance energies calculated in an adiabatic hyperspherical
approximation. From Ref. 3.
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Fig. 2. Same as Fig. 1(a), except for doubly-excited ' P° channels of He. The
hyperradius R has been rescaled by the nuclear charge z = 2.

curves converging at £ — oo to each degenerate hydrogenic threshold N. Of these
numerous curves, the one that connects asymptotically to the second-most attrac-
tive potential curve is the first + state in the N-manifold, owing to a ubiquitous
+/— crossing for ! P° symmetry identified first by Macek.® Only states supported
by these potential curves are seen experimentally, whereby the full complexity of
Fig. 1(a) can be replaced for practical purposes by the tremendously simpler Fig.
1(b). A somewhat surprising result is the fact that for N -manifolds having more
than one + state, only the lowest is excited, i.e. the one that is nodeless in the
bending vibrational quantum number v of the electron pair. Higher + states in
an excited bending state are simply not observed, a difficult fact to interpret from
the potential curves alone since all of the + potential curves look very similar.
The molecular model of Rost, Feagin, and Briggs® interprets this propensity as a
conservation of the number of angular nodal lines in spheroidal coordinates, which
amounts to the same qualitative interpretation given in Refs. 3 and 4 in terms of
the bending vibrational quanta.

These basic conclusions were verified and extended by the measurements of
Domke et al.,! using synchrotron radiation to photoionize the helium ground state
in the energy range near the higher thresholds of Het(N), with N = 2 — 6. The
relevant helium ! P° potential curves calculated by Sadeghpour? are shown in Fig.
2. They demonstrate the same qualitative trend seen in H~, in that the lowest
+ potential curve within each N-manifold is the dominant one observed in the
resonance spectrum. Unlike H™, a small number of states with excited bending
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quanta (v = 1) were observed in helium, possibly indicating that the propensity
rule for exciting only v = 0 states is weaker in He than in H™, or else reflecting
the higher spatial overlap between the ground state and the lowest v = 1 channels
in He.

One new result of the combined theoretical and experimental study of Ref. 1
was the realization that the spectrum showed a new type of interference between
resonances belonging to different N-manifolds. This sort of interference or “per-
turbation” is very familiar in multichannel Rydberg spectra of the alkaline earth
atoms,” and it is seen very clearly in the data of Domke et al.! shown in Fig.
3. The spectrum in Fig. 3(c) covers the energy range between the N = 4 and
N =5 thresholds, where the lowest state in the N = 6 manifold (often called the
“Wannier ridge state”) is embedded in the middle of the Rydberg series members
converging to the N = 5 ionization threshold. Figure 3(a,b) shows the more typ-
ical unperturbed spectrum below the N = 3,4 thresholds consisting of regularly
spaced Rydberg lines having comparable peak intensity but whose widths decrease
as v3, where v is the effective quantum number of the outermost Rydberg elec-
tron. (When the width becomes smaller than the experimental energy resolution,
the peak heights are seen to gradually fall off.)

The perturbation of the N = 5 Rydberg series members by the Wannier ridge
state of the N = 6 manifold was anticipated in Ref. 3 by making use of the
fact that the observed two-electron resonance states fit a remarkably regular two-
electron Rydberg formula with only two adjustable parameters. The formula takes
a very different form for He and H~. For He, it is derived by starting from the
formula of Read® and of Rau® for the Wannier ridge states alone (i.e., those hav-
ing comparable radial excitations of both electrons). This formula was introduced
phenomenologically in Refs. 8,9 with two empirical constants to be fitted to ex-
perimental energies. (A deeper understanding of the origin of this energy level
formula was subsequently derived by Lin and Watanabe.'® The most satisfactory
explanation came out of a semiclassical first-principles derivation by Wintgen ef
al.,'! in which no undetermined empirical constants remain to be fitted to exper-
iment.}) The ridge state of principal quantum number N is now assumed to be
the lowest member of a one-electron Rydberg series converging to the threshold
Het(N) with a constant quantum defect. This gives a Rydberg formula which de-
scribes all of the propensity-favored two-electron resonance states. [For ! P°, these
are the ones having 7' =1, K = N — 2, and A = +, in the (K,T)* classifica-
tion scheme of Herrick!? as extended and reinterpreted by Lin.!* We advocate®*
replacing the K quantum number by the number of bending vibrational nodes
v = YN — K — T — 1) because the corresponding propensity rule can then be
stateé as Av = 0 for nonadiabatic transitions between potential curves of the
type shown in Figs. 1 and 2.] The resulting two-electron Rydberg formula for He
1po pA = 0% state energies has the form (in a.u., relative to the double-escape

threshold):
2 1

Sl S 1
N2 2(n —pun)?’ ()
wheren = N, N+1,..., etc. The quantum number n is better regarded as a hyper-

radial quantum number, rather than as an “outer electron principal quantum
number” as in Herrick’s work. In Eq. (1) the n-independent quantum defect ux

E(N,n) =~
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Fig. 3. Photoionization spectra of the helium atom as measured by Domke et
al.! are shown as a relative cross section versus photon energy in eV. (a) below
the N = 3 threshold IP3; (b) below the N = 4 threshold IP4; (c) below the
N =35 and N = 6 thresholds IPs, IPs. The high-n regions are shown magnified

on the right-hand sides of (a) and (b). In (c) the different N-manifolds overlap
and perturb each other.
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is defined by
1
=N —_—— 2
KN TR (2)
o —

with o the same screening parameter used by Rau® and Read.® Similarly y is the
same constant (two-electron) quantum defect used in Refs. 8 and 9. These two
parameters are adjusted to fit the sequence of Wannier ridge states only, namely
those having comparable radial excitation of both electrons n = N. Fitted values
of the parameters are o = 0.1587 and p = —0.1815.! Figure 4(a) shows how this
formula accurately describes the lower observed resonances in helium, and Fig.
4(b) shows how its modified version for H- is comparably successful.

For H~, the outermost electron is not Rydberg-like, because it experiences
no net Coulombic charge as it roams far from the hydrogen residue in state N.
But because of the accidental degeneracy of different partial waves ¢ in hydrogen,
the outermost electron experiences a permanent dipole potential caused by the
degenerate Stark-type mixing of those states. As is well known from the work
of Gailitis and Damburg!® and others, such a permanent dipole potential —a/2r?
can support an infinite series of levels when the dipole moment is sufficiently
attractive @ > 1. For the 0% 1P° levels of H™, degenerate perturbation theory
can be used to 51’10W that the relevant dipole moments for this propensity-favored
channel attached to the N-th hydrogen threshold are given to about 1% accuracy
b

d 23N 2

The energies of an infinite number of dipole states are characterized most simply
in terms of the related parameter ay = \/ay — +. Following logic similar to

that used above for helium then leads to the following form of the two-electron
Rydberg-dipole resonances expected for H~:

E(N,n):-L—exp(_27r(n*N)>((1_o.)2 1 ) (4)

ay (N et /1)2 2N?
In Eqs. (1) and (4), the convention has been used that the integer quantum
number n obeys n > N. Fitted values for the two empirical parameters are
o =0.1629 and g = —0.3423 for H- 3

Reference 3 pointed out that an immediate prediction of this two-electron res-
onance position formula is that for sufficiently high N, the lowest (Wannier ridge-)
state in the N-manifold having n = N will fall below the N — I threshold. When
this happens, this level will be quasi-degenerate with the entire series of high-lying
one-electron Rydberg levels converging to the N —1 ionization threshold, or in the
case of H™ it will be quasi-degenerate with the series of high-lying dipole levels
attached to the threshold N — 1. In the adiabatic hyperspherical approximation,
the n = N level would not interact with the high-lying levels attached to the N —1
threshold, but in the actual He or H™ this interaction will be present and it will
be important. The result of the interaction is that the n = N level will become
distributed among all of the N — 1,n’ levels, causing their quantum defects to
increase by unity as the width of the perturber is crossed.
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Fig. 4. Comparison of observed energies of ' P° resonances in (a) He, and (b)
H~, on an effective quantum number scale, with the prediction of two-electron
Rydberg formulas given in the text. These are shown as solid curves for the
propensity-favored v = 0 states, and as a short-dashed curve for v = 1 states
of He in (a) only. The abscissa m of (a) and (b) is the number of nodes of the
wavefunction in the hyper-radius R added to the hydrogenic manifold quantum
number N, which was denoted n in Eqs. 1 and 4 and in the rest of this paper.
From Refs. 3 and 4.
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The basic physics of a perturber embedded in a Rydberg series, which is in
turn embedded in an autojonization continuum, is efficiently described by three-
channel quantum defect theory. The short-range parameters of MQDT were fitted
in Ref. 2 to the experimental cross section, and are shown as a solid line along with
the data in Fig. 3(a). The agreement suggests that this interpretation is correct:
namely that the experiment is observing a perturbation of the N = 5 0+ Rydberg
series by the N = 6 Wannier ridge state of 0% character. Apparently, despite the
greater complexity of the spectrum in the presence of such perturbations, the basic
propensity rule for exciting predominantly the v4 = 0+ channel remains valid. It
will be highly desirable to develop theoretical methods to the point where they
can calculate the spectrum of Fig. 3 ab initio, in order to test this interpretation
more stringently. Detailed studies of these double excitations in He and H- are

discussed in the next section, from the perspective of quantum defect theory and
the eigenchannel R-matrix method. '

QUANTITATIVE CALCULATIONS OF THE
PHOTOABSORPTION SPECTRUM

The great majority of studies of two-electron systems in recent years have been
of the qualitative or semiquantitative variety. The aim has been to find a theoret-
ical formulation that explains the striking simplicity of the observed propensity
rules. Some success has been achieved using hyperspherical methods, molecu-
lar models, group theoretical schemes, and even classical (Newtonian) analyses.
While much has been accomplished using these methods, all of them are ultimately
disappointing at some level. For instance, the adiabatic hyperspherical interpre-
tations neglect certain nonadiabatic coupling terms, without giving a detailed
Justification. Indeed, one of the puzzles of the hyperspherical interpretation all
along has been the fact that calculations of these nonadiabatic coupling terms show
them to be nonnegligible. A similar puzzle arises in the molecular mode] of Feagin,
Briggs, and Rost,® who treat the motion of the electron pair as being “adiabatic”
relative to the motion of the nucleus in a two-electron atom. This viewpoint,
while seemingly counterintuitive, provides a good description of the qualitative
nodal structure of these resonances. However, it has poorer quantitative accuracy
than the adiabatic hyperspherical treatment when it comes to actually calculat-
ing energy levels. In similar fashion, the group theoretical work of Herrick and
coworkers'? assumes that the two-electron wave functions can be sorted out as
eigenfunctions of the Casimir operators of the group SO(4) x SO(4). While some
sensible interpretations result from this assumption, including the K, T quantum

-numbers, its physical basis, its range of validity, and its quantitative justification
still remain unknown.

To address these limitations of the adiabatic and group theoretical schemes,
we have initiated a quantitative description of these two-electron atoms, making
use of multichannel quantum defect theory (MQDT)' and the eigenchannel R-
matrix approach.”'” In recent years this approach has been highly successful in
calculating and interpreting spectra of the doubly-excited alkaline earth atoms. A
detailed description of this variational description of a correlated atomic system
can be found in Refs. 7 and 17. Here we only summarize the main ideas.

The portion of configuration space over which two electrons can interact is
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limited in its radial extent. We use independent-electron coordinates to describe
the distance r; of the i-th electron from the nucleus and its orientation 8;, ¢;
relative to some fixed axis in space. For a two-electron system at energies below
the double-escape (or Wannier) threshold, the two electrons can exchange energy,
spin, and angular momentum only over a finite region. The shape of this region
is somewhat ambiguous and in any case not very important. The main point is
that a reaction volume radius r¢ can be identified at any energy such that when
either electron moves beyond rg it no longer exchanges energy with the residual
electron. The order of magnitude of ry is 5N?/Z, for treating two electrons in
the field of an ion of charge Z, up to energies near —Z?/2N? a.u. Within this
finite volume of configuration space the eigenchannel R-matrix method amounts
to diagonalizing the Hamiltonian (plus the Bloch reaction surface operator) in a
fairly large basis (typically a few hundred basis functions). The eigenvalues and
eigenvectors are used to construct a variational approximation to the logarithmic
derivative matrix (or R-matrix) on the surface of this reaction volume. In such
calculations, at most one electron is assumed to escape from the reaction volume
at any given time, an approximation that cannot treat double-escape processes.
This is the major limitation of this approach at present.

It is crucial to account for the accidental degeneracy of the hydrogenic one-
electron level left behind by an escaping electron. In physical terms, this degener-
acy of different orbital momenta ¢ permits the two electrons to exchange angular
momenta even when the outermost electron roams to very large distances. This
is efficiently done using the dipole representation of Gailitis and Damburg,'® in
conjunction with generalized quantum defect theory.!® The basic idea of quantum
defect theory in this context is to use the fact that solutions in the long-range
dipole potential experienced by the outermost electron in H~ are known to be-
long to the Bessel class (with real or imaginary order, depending on whether the
effective dipole moment in a given channel is repulsive or attractive). For He, the
electron moves in a combined Coulombic and dipolar potential, and the solutions
are somewhat more complicated but still are the comparatively simple confluent
hypergeometric functions. In any case, the basic concepts developed in Seaton’s
MQDT!® carry over to any long-range potential, although the detailed formulae
are somewhat different depending on the particular long-range potential in any
given channel.!®

Evidence that this procedure is capable of describing the H™ resonance physics
to spectroscopic accuracy is shown in the comparison of theory and experiment
in Fig. 5, in several different energy ranges. The ab initio theoretical spectra
are from the combined eigenchannel R-matrix and MQDT calculation of Sadegh-
pour et al.'”® The experimental spectra in Fig. 5 were obtained from the LAMPF
experiments of Hamm et al.?® and of Halka et al.?* Our primary interest is in test-
ing various propensity rules than in reproducing such spectra, but the agreement
between theory and experiment in Fig. 5 gives us some confidence that our con-
clusions about the propensity rules can be trusted. This can be done using some
of the intermediate quantities that occur in the calculation of the photoionization
cross section, such as the ' P° portion of the physical scattering matrix Si;(E) at
the final state energy E. The qualitative picture of the photoexcitation of these
high-lying doubly-excited states that emerged from Refs. 1-4 and other studies
is that the photoabsorption initially excites the lowest few channels only at com-
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paratively small distances. As a result, only channels with v = 0 are appreciably
excited at small distances. Immediately thereafter, the two electrons move out-
ward as a consequence of their large kinetic energy. In the hyperspherical picture
they make a sequence of nonadiabatic transitions to successively higher potential
curves. If no such transitions are made, only the hydrogenic 1s-state is excited
and the high-lying doubly-excited resonances will not be reached at all. It is these
nonadiabatic transitions which appear to have a strong propensity to conserve the
quantum numbers v, A, and T'. A prediction suggested by this qualitative picture
is that the “time reversed process” of autoionization of a doubly-excited state
will similarly conserve those same quantum numbers approximately. Moreover,
because the nonadiabatic (Landau-Zener-type) transitions tend to occur mostly
between adjacent potential curves, the autoionization decay occurs primarily into
the closest continuum in energy having the propensity-favored quantum numbers.
For example, the lowest H~ N = n = 4 Wannier ridge state of v4 = 0% character
should mostly decay into the N = 3 continuum of 0% character.

One way to test such propensity rules is to examine the partial photoioniza-
tion cross sections into all the available escape channels. This can be somewhat
difficult to interpret, as stressed in Ref. 19, because the partial cross sections
can be reached via a complicated mixture of direct-photoionization pathways and
pathways through the autoionizing levels. Moreover, the partial cross sections can
depend strongly on the initial state being photoionized, whereas the propensity
rules are more a statement about channel interactions in the final state alore,
which should be independent of the initial state. In fact, Smith?? developed a
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Fig. 5. Comparison of relative H~ photodetachment cross sections measured at
LAMPF with the theoretical spectra obtained from the eigenchannel R-matrix
and quantum defect calculation of Ref. 19. (a) Total photodetachment cross
section below the N = 3 threshold; (b) Partial photodetachment cross section for
production of hydrogenic N = 2 states, in the same energy range below H(N =3)
as in (a); (c) Partial cross section for production of H(N = 2), except at higher
energies below the N = 4 detachment threshold. From Refs. 19-21. :
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useful analysis of just this problem when he introduced the delay-time matrix,

ds
Q = —~ihS Tk (5)

Near an isolated resonance energy Ey, the delay time matrix Q can be shown
to be a separable matrix, with a single dominant ecigenvalue g, displaying a
Lorentzian peak of the form

r

qmar(E) = (E — E0)2 n (F/Q)Z, (6)

where I' is the full width at half maximum. The squared components of the
dominant eigenvector give the relative probabilities p; for decay of the resonance
state into the various allowed continuum channels ¢. The so-called “partial decay
widths” into the various channels i are then given by p;T'. (This should not be
interpreted as implying that the resonance width appears to be different when
viewed in different observable channels, as in fact the width in energy of the
resonance for every partial cross section is equal to the total I'.)

Some examples of the results of this delay-time analysis for specific resonances
of H™ follow. We use the following notation for these ! P° channels involved,
labeling each by yv®. Individual resonances will be classified by a channel label
and by a “hyper-radial quantum number n” ie. as yv?. More precisely, the
quantum number n indicates that the number of nodes in the hyperspherical
radius Ris n— N +T —1 (for these ' P° + channels). The famous shape resonance
20F, lying just above the N = 2 threshold, is found to decay 89% of the time into
its own continuum ,0%, as expected for a shape resonance whose decay width is
primarily a result of intrachannel tunneling. This agrees with the hyperspherical
interpretation given by Lin.?® The remaining resonances analyzed are all Feshbach
resonances, such as the lowest resonance shown in Fig. 5(a), namely the 503
resonance. This state is found to decay 89% of the time into the next lowest
+ continuum channel, ,0%, and less than 5% into the three remaining accessible
continua. The first Wannier ridge state below the N = 4 threshold is 40}, and it
decays 73% of the time into the adjacent propensity-favored continuum 30F, but
a non-negligible 18% of the time it decays into the ,0* continuum. Finally, the
— state 405 which is very hard to excite from the ground state is found to decay
96% of the time into the expected channel ;0.

From such studies of these and other resonances in H~ and He, we have been
able to piece together a semi-quantitative hierarchy of the validity of different
propensity rules for nonadiabatic transitions. This tentative hierarchy reads as
follows:

(¢) The strongest propensity rule is for the A quantum number. Scattering pro-
cesses which change A, e.g. from + to —, occur only with probability in the range
0.005-0.05. For 'P° symmetry, a change in A is equivalent to a change in T, so
we have no separate information about AT # 0 propensity-unfavored processes.
(¢2) The next-strongest propensity rule is for the v quantum number. We have
comparatively few examples of Av % 0 transitions, but their probability appears
to be in the range 0.05 — 0.1 compared to propensity-favored transitions.

(217) Finally, the weakest of the propensity rules seen so far is the one indicating
that processes having AN = +1 tend to dominate. Violations of this propensity
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rule seem to occur with probability in the vicinity of 0.25. It should be pointed
out that higher energy autoionizing resonances, such as the ¢0¢f Wannier ridge
state of helium which falls below the N = 5 ionization threshold, AN = —1
transitions are forbidden energetically to lead to autoionization. This propensity
rule then reflects the dominant interactions among closed channels, rather than
relative autoionization probability.

The large (25%) departure from the AN = +1 propensity rule is somewhat
surprising. A possible explanation, accounting for up to half of these processes
resulting in AN = —2, is that in decay to the propensity-favored AN = —1 contin-
uum, the system has a 50% chance to be moving inward in R after the transition.
If s0, it may undergo a second propensity-favored nonadiabatic transition into the
AN = -2 continuum. Since inelastic scattering at a single propensity-favored
avoided crossing typically occurs with probability of about 20 — 30%, one expects
such a two-step sequential process to cause AN = —2 autoionizing transitions
with probability 10 — 15%. This does not explain the full 25% decay probability
of the N = 4 Wannier ridge resonance into the N = 2 continuum, but perhaps
accounts for half of this surprisingly large propensity-unfavored decay probability.

In summary, quantitative studies of the channel-interaction propensities along
the lines discussed above promise to give a deeper understanding of the approx-
imate selection rules operating in two-electron systems. Important directions to
pursue include the extension of these methods to account for the more compli-
cated perturbed Rydberg spectra characteristic of He and H™ at higher energies,
as shown in Fig. 3. Explorations for the alkaline earth atoms and the isoelectronic
alkali negative ions will be useful to further delineate the general validity (or lack
thereof) of these approximate propensity rules.
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