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Electron correlations in H-

are represented with a model interaction potential 1/(ry+r,y).

Hyperspherlcal-coordmate wave functions describing strong electron correlations near the origin
are matched onto dipole field quantum-defect functions far from the nucleus. The results of this cal-
culation complement and in some respects differ from those of Altick [Phys. Rev. A 38, 33 (1988)].

In a recent paper, Altlck1 examined the scattering of
electrons from the hydrogen atom by modeling the
radial-electron correlations present in H™ with an in-
teraction potential 1/(r1 +7r,;). Our interest in studying
this potential has been motivated by (1) the fact that the
Wannier threshold law for the escape of electrons from a
positive ion has been shown to emerge when the electron
interaction is modeled by this potential,® and (2) the reali-
zation that it embodies many other features of the real
two-electron interaction potential 1/r,,. [One such
feature common to both electron-electron interactions in
H™ 'is that their adiabatic hyperspherical potential form
at large R =(r?+r2)172 evolves to a “dipole” potential.]
In this Comment we present some preliminary calcula-
tions in the same energy range treated in Ref. 1 demon-
strating the validity of a combined hyperspherical and
quantum-defect-type description and clarifying some
points not addressed in detail in Ref. 1.

The present numerical technique combines a nonadia-
batic hyperspherical calculation with multichannel
quantum-defect theory3 5 (MQDT). The -coupled
differential equations in the hyperspherical radius can be
given in a compact form®

2.
-4 PR) | +2[IE —U(R)]

dR F(R)=0, (1)

where I stands for the identity matrix. The coupii}lés be-
tween different adiabatic channels U, (R) are represented
by the antisymmetric matrix

P, (RY={,l(d/dR)¢, ) ,

where {¢,} includes the infinite set of complete orthogo-

nal adiabatic eigenfunctions.® The components of the

solution matrix F,5(R) in each channel are propagated
outward from the origin to matching radius R;. A fairly

well-known stabilization procedure ensures linear in-
dependence of the solution vectors.”

The slow convergence at large R of the channel cou-
plings, P,,(R) xR ~!, represents a drawback of the adia-
betic hyperspherical description. Attempts at remedying
the problem have included matching the hyperspherical
solutions at some intermediate R to close-coupling wave
functions in independent-electron coordinates.® We will
demonstrate here that a combined hyperspherical and
quantum-defect method can adequately describe the
long-range phenomena in terms of a few parameters
weakly dependent on the energy. To this end we use the
fact that the adlabatlc potentials tend asymptotlcally to
dipole potentlals of the form —a,/(2R?), where
a,=3n? gives the dipole moment in the nth channel. [At
RO——14 a.u., U(R,) is different from a dipole potential
by less than 2%. We nevertheless caution that the forma-
tion of a dipole moment in the lowest channel is an un-
realistic property of this interaction potential.] It should
also be noted that we include in the potential matrix
U(R) in Eq. (1) a diagonal correction term
—~HQu(R)+3X_ |P,,.[*).1" The corrective term is
added to the diagonal potentlal matrix to compensate for
the truncation of the adiabatic basis set. We have found
that otherwise the truncated sum suffers from an in-
correct convergence at large hyper-radii.

The analytical framework then connects naturally to a

quantum-defect analysis,

No

2 F,4Rq )Cev =f.(Ry)U,, cos(mu,)

—g,(Ry)U,, sin(wy,) ,
o )

where v=1,...,N,. Here F,g are the elements of the
solution matrlx in the open or weakly closed 'S channels
(a similar equation holds for the derivatives as well), y,
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are the well-known short-range quantum defects (or
phase shifts wu,) in each channel n, U,, are the
orthogonal-frame transformation-matrix elements con-
necting the detachment channels # and the eigenchannels
v [not to be confused with the potential-matrix elements
of Eq. (1)], >12 f. and g, are, respectively the energy-
normalized regular- and irregular-type dipole functions!®
at the matching radius R, and N is the number of open
or weakly closed channels. A similar linear superposition
in the strongly closed channels must of course decay ex-
ponentially outside this prescribed ‘“one-dimensional
box” enclosed within R =R,. Short-range knowledge of
the strong-electron correlations is obtained by solving Eq.
(2) for mu, and U,,. The contributions from the long-
range field to the scattering process are included in the
scattering matrix through the long-range phase shift
n(k,,a,)=¢(k,,a,)—m/4 pertaining to each open chan-
nel n,'? with i

_ tan[e, In(k, /2)+x,]
tanh(ma, /2)

#(k,,a,)=tan™! (3)

Here x,= arg[T(1—ia,)], @, =(a,—1)'/% and 1k2=¢,
represents the incident energy relative to the nth thresh-
0ld.!'® We give here only the expression for the elastic
scattering cross section o ;; just above the lowest detach-
ment threshold (g,~0) to emphasize the presence of
low-energy oscillations in ¢y, and also the infinite num-
ber of bound levels, which are guaranteed by the dipole
field alone,

o, =(2/¢)sinXmu+n) ‘ @

in units of 7a$, where a is the Bohr radius.

The oscillatory logarithmic dependence of the elastic
cross section on the energy is depicted graphically in Fig.
1 (inset). The smooth oscillations of the cross section just
above the threshold are manifestations of the exponential
convergence, as £™=¢'% exp( —2mw/a), of the discrete
states in the dipole field just below the threshold.!®1415
(Note that a generalized form of the MQDT applicable to
the dipolc field is needed here to arrive at this exponential
form.”®) This simple analytical argument shows that
Altick’s assertion that this model Hamiltonian for the
negative ion supports only two bound states is incorrect.
(See also the erratum in Ref. 16.) Table I gives the posi-
tions of the first three discrete levels in the # =1 channel.
For comparison, the 1s? energy is calculated three
different ways. The first entry in Table I is obtained from
a direct numerical integration of Eq. (1) and forcing all
the components of the solution vectors to vanish on a
large-R boundary (strongly closed channels). The second
entry is found by following the prescription of Eq. (2) and
allowing the numerically integrated solutions to match at
a smaller radius R,= 14 onto the long-range dipole func-
tions for the lowest channel. The third entry is an “ex-
act” calculation obtained by diagonalizing the model
two-electron Hamiltonian in a large independent-electron
basis confined to a finite volume.

We also show in Fig. 1 the resonances converging to
the n =2 and n =3 thresholds. A three-channel hyper-
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FIG. 1. The elastic cross section o, (in units of 7a3) as a .
function of the energy above the n =1 threshold ¢, (a.u.). The
data points, rescaled by a factor of 4, are taken from Table I of
Ref. 1. The inset figure shows the same cross section, rescaled
by €, to compensate for the divergent amplitude of o as €;—0,
on a logarithmic energy scale. This demonstrates how the first
zero of o, near g;~0 is another manifestiation of the long-
range dipole field.

spherical MQDT calculation below the » =2 threshold
with the ‘“box” boundary at Ry=14 a.u. produces the

_structures shown in Fig. 1. In the energy range below the

n =3 threshold, four channels are included in the
analysis and the boundary is moved out to Ry=30. The
highest channel is treated here as strongly closed. Our
results compare well with Altick’s variational calculation
using 55 two-electron functions to form the inner solu-
tions which vanish on a boundary at r =40. (In Fig. 1
the data of Ref. 1 are multiplied by a factor of 4. This
factor is associated with the spin averaging.!’) But a
minor discrepancy concerns the position of the lowest
resonance in the n =3 channel. This resonance shows up
in o, in Fig. 1 at 0.426 6 a.u. above the first-ionization
threshold, the “blip” reported in Ref. 1 as the lowest res-

TABLE I. Bound-state 'S energy levels (in a.u) for H™ with
the electron interaction modeled by the 1/(r +r;) potential.

Energy level

No. of adiabatic relative to n =1

Designation channels (a.u.)
1s? 3 —0.14652
152 3b —0.146 53
152 “Exact” —0.14648
1s2s o3 —2.6640X 1073
1s3s 3v —6.0325X107°
*Without MQDT.
*With MQDT.

“Diagonalization of the full Hamiltonian with 120 symmetrized
products of 15 “closed-type” one-electron functions confined to
a volume of radius r;=13.
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onance occurs at 0.3980 a, u A s1mple search for the adi-
abatic 3s? discrete state finds the energy level at 0.4215
au. This resonance has a width (in au) of
I'/=~1.4X1073, as compared to I'=1.5X10"> for the
lowest 'S resonance of the real H™ ion below the H(n =3)
threshold at 0.4310 a.u.’*!% The second-lowest resonance
below the n =3 threshold at 0.4398 a.u. has a width of
I',~6.5X10"% Note also in Fig. 1 that the low-energy
zero of the elastic cross section near g, ~0.05 a.u. is the
result of the long-range phase-shift oscillations discussed
above [see also Fig. 1 (inset)]. The next- highest zero
would occur about 4 a.u. above the n =1 threshold

In concluding we remark that the combined hyper-
spherical and quantum-defect treatment lends itself readi-
ly to the description of both the short- and long-range
effects of the potential field in terms of a few smooth pa-
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rameters regardless of inaccuracies in the short- -range cal-
culation. The behavior dictated by the long-range dipole
field just below and immediately above the ionization
threshold is correctly accounted for with these parame-
ters. The low-energy oscillations of the elastic cross sec-
tion and the infinite number of bound states below an ion-
ization threshold are shown to be direct consequences of
this asymptotic dipole field.
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his invaluable suggestions during the completion of this
work and for a critical reading of the manuscript. The
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fessor A. R. P. Rau and Professor P. L. Altick. This
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