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Semianalytic methods are developed to predict the alignment and orientation of excited helium
ions produced in the photoionization of neutral helium in the low-energy limit. The ionic electron
probability distribution is shown to align itself orthogonal to the direction of the incident light po-
larization axis in the same manner as the photoelectron angular distribution [C.H. Greene, Phys.
Rev. Lett. 44, 869 (1980)]. In certain instances, propensity rules for the alignment and orientation
of the ionic electron are violated. Coherent contributions from different degenerate orbital angular
momenta are seen to be partially responsible for these “unfavored” trends. Explicit predictions of
the time-unresolved fluorescence polarization are presented, including the effects of fine-structure

depolarization.

I. INTRODUCTION

Theoretical investigation of photofragmentation an-
isotropy has mainly focused on the angular distribution
of photofragments’ and on the first and second rank mul-
tipole moments of the total “collision-fragment” angular
momentum tensor. Fano and Macek?® demonstrated that
these two multipole moments, termed orientation and
alignment, respectively, can be extracted by measuring
the intensity of polarized fluorescence from a specific
fragment state. Greene and Zare® adapted the angular
momentum transfer formulation of Dill and Fano"* to
cast the orientation and alignment parameters in the
same form as the photofragment asymmetry parameter 3,
as incoherent sums over angular momentum transfer
channels.

The analysis of Ref. 1 showed that for the parity-
unfavored class of electric dipole transitions, the value
Bur=—1 automatically results, corresponding to emis-
sion of the photofragment orthogonal to the incident
light polarization axis. Parity-favored transitions, on the
other hand, were shown to “normally” have a positive
asymmetry parameter, implying ejection of the pho-
tofragment predominantly in the direction of the polar-
ization vector of the incident light. In the first applica-
tion of the formalism of Ref. 1 to two-electron systems,
H™ or He, Greene® demonstrated nevertheless that for
certain parity-favored processes, the photoelectron is
ejected from H™ (or He) in a sideways fashion (3— —1)
leaving behind an unobserved hydrogenic fragment in
one of its degenerate excited states. The crosswise ejec-
tion of photoelectrons was qualitatively associated with
the action of Herrick’s® SO(4) Casimir operator
T?=(L-%, )% where L is the total angular momentum of
the two-electron system and T, is the unit vector along
the photoelectron escape axis. Nonzero values of T, the
projection of the inner electron angular momentum /;
onto the photoelectron escape axis, reflect some type of
torque action on the photoelectron by the unobserved
electron’s angular momentum. In this paper we extend
the treatment of Ref. 5 to describe properties of the resid-
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ual ionic fragment, He™ (n = 2), by casting the electronic
probability density into the same form as the photoelec-
tron angular distribution.

The typical photofragmentation experiment involves
photoionization of a neutral atom, accompanied by exci-
tation of the residual ion into a specific angular momen-
tum state /;. Photoexcitation of two-electron systems
such as He or H™ into residual hydrogenic states of high
quantum numbers, on the other hand, presents additional
complications. The “accidental” degeneracy, in /;, of the
nonrelativistic one-electron energy spectrum ensures that
the parity allowed quantum pathways for the transitions
of these collision-excited orbital momentum states inter-
fere coherently. The effect of this coherence, hereafter
called I; coherence, on the Fano-Macek? analysis of
fluorescence polarization has recently been investigat-
ed.”8 -Burgddrfer’s® group-theoretical reformulation of
the hydrogenic density matrix gives these parameters in
terms of expectation values of spherical tensor operators
constructed by coupling the hydrogenic constants of
motion operators, the angular momentum L, and the
Runge-Lenz vector A. The calculation of these pseudos-
pin multipoles and their eventual inverse transformation,
recoupling into multipoles of L and A, becomes increas-
ingly complicated for high-lying states as pointed out by
Burgdorfer. In this paper we investigate the effects of /;
coherence on the alignment and circulation (orientation)
of the ionic electron probability distribution from a more
pedestrian perspective which allows, in principle, for the
calculation of these parameters for very high principal
quantum numbers. The derivation follows that of Fano
and Macek, in spirit, but with substantial differences as-
sociated with the coherence in /;.

The use of a simple asymptotic final-state wave func-
tion® which incorporates the correlation between the ion-
ic electron and the ejected photoelectron in terms of a
Gailitis-Damburg-type® eigenvector allows us to study
the behavior of the anisotropy parameters for states of
He*(nl;) with n>2. This analysis offers a quantitative
method for making predictions about the anisotropy pa-
rameters without requiring elaborate variational calcula-
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tions of the type conducted recently by Hayes and
Scott.!”® Empirical evidence for the validity of such a
simplification will be provided below in Sec. II A.

II. THEORY AND DISCUSSION
A. Final-state wave function

Upon photoionization of the He ground state, the re-
sidual ion He ™ is left in an excited state, n >2. These ex-
cited nl; states of the hydrogenic ion He*(n) with
different /; can be regarded as degenerate. LEffects of the
very small splitting of these levels are discussed in Sec.
IID. This “accidential” degeneracy is responsible for
the formation of a permanent electric dipole moment in
the ionic residue. The Gailitis-Damburg analysis deter-
mines this dipole moment using first-order degenerate
perturbation theory,”!! keeping terms in the large-r,

Hamiltonian of order 1/r2. This operator is represented

as e e e e el .
- -“where 6,—e is the interelectronic angular separation,
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which for the L=1 odd parity final state has 2n —1

eigenvectors related to Stark-type eigenstates of the resid-

ual hydrogenic ion Het(#n). The five-dimensional dpeya-
tor A can be diagonalized in the representation consisting

of radial hydrogenic wave functions R, (7;) multiplied by

~ standard coupled spherical harmonics,

ynleli(re’ri)=Rnli(ri)chliLM(re’ri) ’ )
where
Ylel,.LM Ae)Az) 2 YI,mi(?i )Yleme(?e)

X{l,m,,l;m|LM) . 3)

The term in Eq. (1) which represents the photoelectron
centrifugal barrier potential is diagonal in the representa-
tion of Eq. (2). The dipole-interaction term is off-
diagonal,

(1 I’LMIr JLLLM )

=R,fl;' (I2I;LM |cos(6,)|1,LLM ) ,  (4a)

n, —-(nl Ir;lnl;}=—(3/2Z)n(n?—13% )12

is the hydrogenlc radlal matrix element of 7;, Z is the nu-
clear charge, and [, is the larger of /; and I,~'.12 The ma-
trix element of cos(8,,) in the coupled scheme is then [see
equations (7.1.6) and (5.4.6) of Edmonds'? with k =1]

(L,I{LM|cos(0;,)|1,;, LM ) =( _1)1,.+1,+L

The final-state wave function in the asymptotic region for
the channels associated with He+(n) can in general be
written as
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sion from H™ or He occurs predominantly in the so-
called “+” channel, the curve most attractive near the
nucleus. For 'P° symmetry this corresponds approxi-
‘mately to the T=1, K =n—1—T channels of Herrick.®
Since this truncation to a single dominant channe! rests
on an adiabatic approximation,'*!¢ it is only expected to

" be valid at low photoelectron energies, in particular for
_ final-state energies lying just above the He ™ (n) threshold.

- 'The final-state wave function can therefore be approxi-

the ath elgenvalue of the operator A4 in Eq (1) with the

sum occurring over all (2n —1) dipole channels a. Ex-
change is irrelevant in the asymptotic region »,— c and
will be ignored, though its short-range effects are impli-
citly incorporated.

Equation (5) describes the escape of an electron from a
hydrogenic ion as a superposition of all the physically al-
lowed ,dipole channel functions with expansion
coefficients F(r,) which could in principle be numerical-
ly evaluated (see, e.g., Ref. 14). The major simplifying as-
sumption here, as in Ref. 5, is that in two-electron pho-
toabsorption processes only a single dipole channel a is
dominantly excited out of of the (2n —1) available chan-
nels. This conclusion is supported by the hyperspherical
potential curves!'>!®

of H™ which reveal that photoemis-

__mated with minimal error (see also Ref. 17) as the wave

function of the single predominantly excited dipole chan-
nel,

Vgr—Fgr(r,) 3 Ry (r; )YIILM T,,T
I

)Cz IKT

asr,—o , (6)

where (KT)=a with K =n —1—T for the most attractive
channel. This wave function was used in Ref. 5 to pro-
vide a simple derivation of a surprising result: photoion-
ization via the 'P° final-state symmetry results in the
ejection of photoelectrons normal to the direction of the

~ external force, the photon polarization axis. This screw-

type behavior was related to nonzero values of Herrick’s
SO(4) symmetry operator T2, Heimann e al.'® and Lin-



dle et al.'® have since verified this prediction of orthogo-
nal photoejection in helium, confirming the essential
correctness of the approximations leading to Eq. (6).
The elaborate variational calculation of Hayes and
Scott'® gives better quantitative agreement with experi-
ment (at low n) than the analysis of Ref. 5, but its main
conclusions are still valid.

B. Probability density

The alignment of the residual ion following a photon-
atom “collision” is a particular type of collision-produced
anisotropy. A simple measure of this anisotropy is ob-
tained by calculating the ionic probability density. As
with the photoelectron asymmetry parameter which com-
pletely describes the photoelectron angular distribution
in the electric dipole approximation, the probability dis-
tribution of the ionic electron can also be characterized
by a quadrupole asymmetry parameter.
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where P, (x) is the kth order Legendre polynomial of ar-
gument x.

It is readily seen that the integration of the k=0 term
over the ionic electron coordinates is normalized to unity
provided the Gailitis-Damburg eigenvectors are them-
selves normalized. Equation (8) can be cast into a more
transparent form after dividing by the k=0 component
giving the 6; dependence of the density in the form

PRi(r;) o 1+B(r;)Py(cosh;) , ©

where B(r;) contains a coherent summation over [; and
an incoherent sum over /,.

A good measure of the ionic electron anisotropy is pro-
vided by the following *“‘weighted” asymmetry parameter
By, defined by

J r8rpotr ),
f ripolr;)dr;

where py(r;) is the k =0 term in Eq. (8). This ionic elec-
tron asymmetry parameter characterizes the radially in-
tegrated probability density according to

P(6;)=1+Byr(n)Py(cosh;) ,

Byr(n)= y o (10)

(1D

where 0; represents the angle between the ionic electron
radial axis and the photon polarization vector € The
ionic electron probability distribution thus exhibits the
same quadrupole structure as the photoelectron angular
distribution. In fact, one can anticipate the ionic electron

probability cloud just below the Wannier threshold

T2, + 1L+ D] Ry ()R o rJCPE P

I

9 _ ANISOTROPY OF EXCITED He* FORMED INTHE ... 117

_The aforementioned asymptotic wave function Wy is
used here to find the charge-cloud density after integrat-
ing over the ejected electron angular coordinates T,,

pirp) < [ [Werl’d,
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Equation (7) involves a coherent summation over the ion-
ic electron orbital momenta and a sum over the photo-
electron angular momenta which becomes incoherent ow-
ing to orthogonality of the spherical harmonics. The
summation over magnetic quanta is carried out in terms
of Wigner 3j and 6/ coefficients, using Eq. (12) of Fano
and Dill* or Eq. (2.20) of Rotenberg et al.? giving

LI,KT

1 1 k
] P, (cosb;) , : (8)

i e

I

(n— co) to align itself in the same manner as the photo-
electron angular distribution, i.e.,

-1, T=1(PY% ,
Brrm=1y 1=0 (3p) (12)
at threshold.

This is confirmed for He in Fig. 1, which compares the
photoelectron asymmetry parameter (from Ref. 5) to the
ionic electron symmetry parameter as calculated using
Egs. (8) and (10) above. Figure 1 clearly demonstrates the
one-to-one correspondence between the anisotropy in the
photoelectron angular distribution and the hydrogenic
electron probability distribution. This nearly identical
behavior for the two asymmetry parameters becomes ex-
act near the Wannier threshold, n — o, where the two
electrons have a tendency to stay on the opposite sides of
the nucleus.?! Photoionization of the 'S° ground state
leading to a PP final-state energy just above a hydrogenic
He*(n) threshold results in the alignment of the hydro-
genic charge cloud orthogonal to the incident light polar-
ization axis, while photoionization of the 3S¢ metastable
state of He aligns the charge cloud along the field axis.

The opposite behavior of the two final-state symmetries
can be partially interpreted on the basis of the two-
electron angular separation 0,,. Figure 2 gives an illus-
tration of the dependence of the two-electron 'P° and 3P°
wave functions on 8;,.>>* The most important region of
the configuration space for double-escape processes is the

Wannier “saddle” region 6,, =#. Around 8, = the two
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FIG. 1. Asymmetry parameters for the lowest energy photo-
electrons {(open circles, from Ref. 5) and the ionic electrons
{closed circles) following photoionization of He are shown as a
function of n, the principal quantum number of the residual
He* ion. Shown are the asymmetry parameters for the two
most dominant dipole channels T=1 (*P°) and T=0 (*P°). The
final-state energy is assumed to lie just above the corresponding
He*(n) threshold.

types of symmetry exhibit markedly different characteris-
tics. The 'P° wave function almost vanishes at 8;, =7
while the *P° wave function has a maximum at 6,, =.
The near vanishing of the !P° (T'=1) final state around
the Wannier saddle effectively eliminates the main contri-
bution from this particular final state to the ionization
process, thus allowing for “unfavored” contributions to
become dominant and the “unfavored” asymmetry pa-
rameter B r=1)— —1 to appear.?*

12

F(Bie)

aie

FIG. 2. Ionic electron probability density, averaged over the
radial coordinate, is shown as a function of the interelectronic
angular separation. The near, but incomplete, vanishing of the

PO curves as 8,,— 7 is due to our assumption that the two elec-

trons are at disparate radii, and hence not on the Wannier ridge.

180°

Also interesting is the strong dependence of the ionic
asymmetry parameter on the /; coherence. If only the di-
agonal elements of the excited-state density matrix (i.e.,
I;=1) are considered, Bxy obeys the expected “propensi-
ty rule” and remains positive for both types of final-state
symmetry studied here. Propensity rules are approxi-
mate, even crude, “selection rules” which are usually
based on classical arguments.?* Accordingly, the expec-
tation would be for the electrons to be distributed pri-
marily along the direction of the incident electric dipole
field. The coherence in /; is quite essential for the align-
ment of the ionic electron orthogonal to the axis of
quantization, i.e., Bgr=y——1, as in fact it can be
shown that By >0 in the absence of this coherence for
the parity-favored processes considered here.

C. Fluorescence intensity

Fano and Macek? showed that the alignment and
orientation of collision fragments can be extracted by
measuring the intensity and polarization of the fluores-
cence emitted by a fragment state. They expressed the
intensity of the emitted light in terms of simple geometri-
cal factors and a few dynamical parameters. These pa-
rameters are themselves related to the mean values of ir-
reducible angular momentum operators. For the cylin-
drically symmetric configuration considered here, in
which the collision frame has one axis of symmetry, the
g =0 components of the orientation O," and the align-
ment A 52) are the only nonzero parameters,

. (L,)
00 (li)="-—_____—_t
VI +1)
and (13)
(3LZ—-L})
(2107 Y= iz i
Ag';) ST

where the orientation parameter is normalized according
to Ref. 3. Fano and Macek consider the alignment and
orientation of a definite ionic angular momentum state /;.
As stressed in the Introduction, the angular momentum
degeneracy of the hydrogenic levels, however, produces
an interference effect for the different excitation ampli-
tudes contributing to the alignment and/or circulation of
the residual state in exactly the same way indistinguish-
able quantum-mechanical pathways leading to the same
final-state interfere.

Since the photoelectron is assumed to remain unob-
served, the total intensity of ionic fluorescence must be
integrated over its angular coordinates. The resulting ex-
pression is

T< [ 3 Wl@nly, )|z, , (14)
f

where the incoherent summation occurs over the final
states (f =I,m,) which are, in principle, distinguishable.
The polarization vector in the detector frame £ is con-
veniently parametrized as € =(cosy,i siny,0), where ¥ re-
places 3 of Ref. 2 to avoid confusion with the asymmetry
parameters.

" “Substitution of the asymptotic wave function from Eq.

(6) into Eq. (14) results in
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where the integral over the photoelectron coordinates
gives states of definite angular momenta /, and their pro-
jections onto the quantization axis m,. In Eq. (15) |i)
and |f) represent hydrogenic excited and final states of
the Het. A recoupling transformation®® brings the con-
stant geometrical factors €’s together to form a net kth
rank multipole of the detected photon, giving as in Ref.
2,

(il(@r)@*r)P iy =3 (—1)~ 4[6(1)XE*(1)](k)

k,q

X[ DX ] p i)
(16)

where Py = Ef[f>(f|

To describe the angular distribution of the excited-
state fluorescence, the polarization tensors [e'!) X e* “)](k)
must be transformed into the collision frame whose z axis
coincides with the collision symmetry axis. This trans-
formation through a set of Euler angles (¢,0,y) is pet-
formed using the relation®®

T{(col) =1 T (de)[DWg,0, )17, - (1)
q .

The relevant polarization tensors in the collision frame
are

9

all I's

with

XM g, Ly 0 1, ) =(= DML+ D121+ DRE A D]2CP (o C

where the constant of proportionality S in Eq. (19a) con-
tains the dependence on the photoelectron radial wave
function and the radiative transition frequency o},

Equations (19) show that the coherence in /, makes it
impossible to extract the final-state contribution to the
anisotropic light emission in the form of Fano-Macek-
type geometrical factors k'*(1,,I ), which are indepen-
dent of the fragmentation dynamics. [The sums in Egs.
(19) can be evaluated analytically for a special case when

O’ Y Lmy, [im;[LM )Y LM|l,m,,l/m| )C,, e O

- L k(|1 1 k||L L
I=—S X LM(nf,le,l,,z,,lfz(zk+11/2[e“>><e*“)]gk>l_M ” ” kJ,

IIKT’

|
[eVXe*V©O=—3-172
[‘6(1)Xe*m]g”=2—l/zsin(2y)cos9 , (18)
[V X er DR

=—6"12[P,(cosh)— 2cos(2y )sin’*fcos(2y)] ,

whereas the nonvanishing elements of the polarization
tensors in the detector frame are given in Ref. 27. In the
preceding equations, circularly polarized light with a pos-
itive helicity has y=w/4 and linear polarization
translates into ¥ =0. In Eq. (18), the angle of the detec-
tor position relative to the collision symmetry axis is 0,
and the orientation of a linear polarizer relative to the
plane of the detector and the symmetry axis is y.2>

A common experimental setup for detecting linearly
polarized fluorescence is to place the light detector at
0=m/2 normal to the collision axis. Linear polarization
is then defined as P, =(I, —1,)/(I;+1,), where I; and
I, represent the detected light intensities at the linear po-
larizer settings Y=0 and y=w/2, respectively. Detec-
tion of circularly polarized fluorescence can be performed
at the magic angle 6=>54.7°. Circular polarization is now
defined as Po=(I —TI_)/(I +1I_), where I, and I_
are the transmitted intensities of the detected photons
through the polarizers with positive and negative helicity,
respectively.

The final expression for the intensity of the emitted
light in the collision frame is obtained following the sum-
mation over the magnetic quanta in the usual form (e.g.,
see Eq. 2.20 of Rotenberg et al.?0),

A (192)
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000
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the Gailitis-Damburg eigenvectors C/'t ., are replaced
e’i?

with the Herrick SO@) eigenvectors® which are pure
geometrical vector coupling factors Galilitis-Damburg
eigenvectors have been shown,”!” however, to better
represent the long-range effects of the short-range corre-
lations between the photoelectron and the residual ion.]
Note also that the only multipole moment in Egs. (19)
which depends on coherence in /; is the “effective align-

ment” (A.q), defined as the ratio of the coeflicient in
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fI:OIlt of the polarjzation tensor in the k =2 multipole
term to the isotropic intensity (i.e., kK =0 term). (Recall
that, for a given [, and ] £ l; and I/ are either both even or

both odd.) This mformatlon enables us to calculate the

orientation parameter O((l;) from the k=1 term in
Egs. (19) for a specific ionic angular momentum state.
(The rank of the orientation and alignment parameters
will subsequently be dropped for simplicity.)
Consequently, we show in Fig. 3 the alignment and
orientation of He™(np) excited in He photoionization.
Note that since the decay of an np excited state to the
He™ ground state displays no coherence in /;, the polar-
ized fluorescence is characterized by the Fano-Macek

o -
(a)
-0.2 *__._‘,_..__._.-—o-—o—‘-—o
-~
//" T=1
a -0.4
£
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< -0.6
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0 4 8 12 16 20
n
1
(b)
0.5
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0_,.‘;
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0 4 8 12 16 20

FIG. 3. Anisotropy parameters for the excited He™(np)
states decaying to the He* ground state. The measured values
of Ay(2p) and Oy(2p) deduced after correcting the experiment
of Ref. 27 for depolarization effects are shown as closed squares
in (a) and (b), respectively. Negative values of Oy(np) charac-
teizing the He™-ion anisotropy following ionization by left-
circularly polarized photons imply emission of opposite helicity
fluorescence upon the radiative decay of a He'(np) excited
state.

. _{see Sec. IIC).

alignment Ay(np) and orientation Oy(np), parameters.
Figure 3(b) reveals that for photoionization into the 'P?
(T =1) final state, the Oy(np) parameter is negative as
the double- ionization limit is reached much the same way
the electron asymmetry parameter B r=1)(n) was nega-
tive for 'P%. It is mildly surprising that circular polariza-
tion of the detected fluorescence is predicted to have a
sign opposite to that of the incident photon helicity.

Despite the apparent violation of angular momentum
conservation, this is possible if the photon angular
momentum is primarily carried away by the photoelec-
tron. The *P° (T =0) symmetry, however, shows the ex-
pected behavior in agreement with the propensity rule**
The emitted fluorescence therefore
possesses a helicity in the same direction as the incident
photon helicity for T'=0. The same propensity argument
likewise suggests that the ionic electron density should
“normally” align itself along the direction of the incident
force field. In fact, we observe that the alignment param-
eter Ay(np) obeys this rule for both final-state sym-
metries, i.e., P and 3P°. This agreement appears to be
associated with the absence of coherence in /; for the de-
cay to the ground state. Recall that this /; coherence was
partly responsible for the observed trend toward f— —1
shown in Fig. 1. It should be pointed out that the Her-
rick SO(4) eigenvectors do not give the n— o limiting
values of Ay(np) and Oy(np) in Figs. 3(a) and 3(b),
whereas they do correctly describe the limiting values of
the photoelectron asymmetry parameter in Ref. 5.

Also shown in Fig. 3 are the measured values of
Ao(2p) and Oy(2p) deduced from the experiment of
Jimenez-Mier et al.,?® after correcting for depolarization
effects. Since no orientation measurements were made,

_we deduced the experimental value for Oy(2p) from the

branching ratio o(2pes)/o(2ped ) presented by Table I of
Ref. 28. Our calculated results agree with these “mea-
sured” values reasonably well. The close-coupling
analysis of Ojha,?’ however, gives this ratio to within the
experimental uncertainty.

The dependence of Oy(n/;) on the orbital momentum
is given in Fig. 4, showing two noticeable patterns. First,
the P (T =1) final-state-symmetry curves increase quite
regularly with [; for increasing principal quantum num-
ber n. The orientation parameter is negative for this par-
ticular symmetry class for /; less than some /_,,. Rau®
demonstrated that the probability for the excitation of /;
states 1n high doubly excited systems peaks at some
Lnax=3n /2 The fact that the orientation is negative for
l; =1, requires (by angular momentum conservation)
that the angular momentum of the incident photon is car-
ried away by the unobserved photoelectron, e.g., the
[,=I;+1 channels are predominantly excited. The orien-
tation curves for *P° symmetry, on the other hand, obey
the propensity rule Oy(n/;)>0 in the same region,
I; <lpy-2* The second result is that in the region where
the probability for the excitation of /; states is exponen-
tially low, the orientation parameter for both classes of
symmetry converges to a limiting value of 1. The
“universal orientation” parameters of Ref. 3 give
Oq(l;,1,) 11 as I;— w for the parity favored branches’
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FIG. 4. “Partial” orientation parameters Oy(nl;) are given
for the different excited nl; states, displaying the anisotropy of
individual orbital states.

I,=I;F1. This realization and the prediction that
Oy(nl;)—1+ as [;— o indicate that for large /; there is
substantial probability for the population of [,=/;—1
channels in contrast to the excitation of /,=/;+1 chan-
nels where [; <l ,,,.

States of high /; are most efficiently populated close to
the Wannier threshold.’® This implies that near the
double-escape threshold the admixture of these high nl;
states is expected, from preceding arguments, to cause
the orientation parameter to exhibit a similar trend for
both final-state symmetries. In fact, a ‘“‘net orientation
parameter” Oy(n), defined by '

> o(nl;)0y(nl;)
!

Sonl)
Ii

Oy(n)= (20)

where o(nl;) is the partial excitation cross section, shows
that both symmetries 'P® and 3P° follow the same trend
and are always positive throughout (see Fig. 5).

It is also evident from Egs. (19) that the “effective
alignment” A 4 plotted against n for decays of n—n—1
in Fig. 6, depends on the coherent contributions of
different I;’s. Even though both the dynamical and
geometrical information stored in this term are in-
tertwined by the coherence in /;, some interesting obser-
vations can still be offered. The same general trend is
also observed for small An decays (An ~1-5). The 'P°
(T =1) final-state curves become positive as n— o0, im-
plying an alignment of the ionic electron orthogonal to
the direction of the oscillating electric field of the in-
cident light. Ay(np) in Fig. 3(a) on the other hand
remains negative for all a.

Note as well that this “effective quadrupole alignment”
term remains negative for both classes of symmetry for

those transitions having An=n—n, large. The impor-
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FIG. 5. “Weighted” orientation parameter from Eq. (20)
shows the admixture of high nl; levels producing a similar trend
for T=0 and 1 final-state symmetries.

tance of /; coherence in producing these effects will be
elaborated on more in the context of “depolarization” in
the following section (Sec. II D).

D. Quantum beats and depolarization effects

Quantum beats are oscillatory time dependences which
result from the coherent decay of nondegenerate excited
fragment states j; to different final states. The frequen-
cies of these quantum beats for the problem at hand are
o, ~=(E ..—E, ;) which for He™ derive from fine
Jidi il i :
structure and the Lamb shift, are roughly 10'!' Hz for
n ~2, i.e., much faster than the typical experimental time
resolution. For time-unresolved measurements the oscil-
latory time dependence exp(i coj‘j,t) is replaced by

1

0.5-
o ——n —o—— = S
-~ T=1

= o-+4—-- - .’z'/_,"..‘*
1
c
T
£
5
< .0.5-

-1 T T T T g

0 4 8 12 16 20

n

FIG. 6. “Effective alignment” parameter defined in Eqs. (19)
showing small alignment orthogonal to the direction of the in-

cident oscillating dipole field for 7'=1 symmetry.
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totic wave functlon used in Sec. IIC, e.g., Eq. (6), with

hydrogemc I, state. 2 This factor has a depolarizing
effect on the total anisotropy in much the same way
At ¢) is a measure of information lost when the final
states are not observed. It affects the anisotropic intensi-
ty of the emitted fluorescence as follows: (1) if
@, T >>1, then there is a large depolarlzatlon of the to-

tigd

tal anisotropy and all off-diagonal terms with j/sj; are
negligible, and (2) if w, I <<1, then the “depolariza-

tion” factor reduces to unity and there will be little depo-
larization.?

The inclusion of fine-structure modulations in the total
fluorescence intensity parallels the derivation of Sec.
IIC. The starting point is the frame-transformed asymp-

I=4i 3 S (DS, LI, (M7 (4

all I'sall j’s
QnLM(nf’le’lnlz11f:]e:.]u]u]f)
X 3, (—DH2k+ D2l e
" k=0

where

the oscillatory time dependence exp(iE,; i t). Recoupling

transformations of the kinds performed in Sec. II C,-are
also useful here. The matrix elements of the dipole ten-
sors between jj-coupled initial and final states, e.g.,

{n(sl;)j;m |r ’Inf sl;)j fm Y,

are reduced to products of standard coupling coefficients
and reduced-dipole matrix elements [see equation (7.1.8)
of Edmonds'®).

The final expression for the total intensity including
both the fine structure and /; coherences in the colhsmn
frame is

RYMETATHIESSORIA I SR
[1 Uok|fr 1 k)11 k) e on
M =M O] \j j; j.|li Ji ir ¢ ’

QM L 11 L s i B d )= (— U e g )2, 41 (2J,+1)]”z BEMn 1,000

L1,

I

11
LS TR y
T Ji Jrjlz Ui

with S and X25M( ) defined in Egs. (19). If the oscilla-
tions cannot be resolved in time, each exponential factor
must be replaced by the time-averaged ‘“‘depolarization”
factor. In Eq. (21) the fine-structure frequency is approx-
imately proportlonal to Z*n 731,72, where Z is the ionic
charge The radiative lifetime 7;, which is assumed the
same for both values of j;=I;+1, is proportional to
n3Z %12 Using the additional fact that r; is approxi-
mately proportional to I?, this produces a product

(wj.j_ﬂ,.) roughly independent of Z, n, and /;.

excited states of He™ (nl;) have decay lifetimes of aboutr
10 ns, this product is usually much larger than unity re-
ducing the “depolarization” factor to zero and effectively
eliminating the fine-structure coherence which produced
the quantum oscillations.

Polarization data calculated using Eq. (21) in Fig. 7
lend support these arguments. Polarization of the
fluorescence detected following the decay of an excited
state to n,=3 is shown. The transition frequencies are so
chosen as to be experimentally accessible (1.5X10*
—4.5X10* cm ™) in the visible and uv range. Figures 7(a)
and 7(b) which give the linear polarization
[P =—3A4,/(2— A)] for the T=0 and 1 final-state
symmetries demonstrate that the precession of /; and j; is

Smce the

ll

i}
ir]’

[

so rapid as to destroy the J; coherence in addition to the
~ fine-structure coherence. The depolarization effect is
_different for the two different symmetries. This can be

partlally traced to the Gailitis-Damburg eigenvectors
C, I,KT which give the probability amplitude for the exci-

tation of an (nl;,el, ) state. The quantum-mechanical pro-
cesses leading to a final state (n,/;) from these collision-
excited states interfere differently for the T=0 and 1 final
states. In fact, we see that the coherent product

- nL nL
Crrxr=0C1 gr=1)

is positive producing an enhancement of the “unfavored”
behavior which also materialized in By y—;,(n), see Fig.
1. The [; coherence causes an orbital angular momentum
“depolarization” in this case which tends to “pull” the
polarization curve down. By including the fine-structure
depolarlzatlon factor and @, T >>1 the I; coherence is

“washed out” and the polarization curve for this class of
symmetry is raised. For purposes of illustration the
linear polarization calculated from Eq. (19) with ;=1 is
shown also in Figs. 7(a) and 7(b).

The circular polarization curves of Fig. 7(c) show the
expected trend. In contrast to Fig. 3(b), the circular po-
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larization is positive for all n for decays of n —3. This is
to be expected since the polarization data in Fig. 8(c)is a
weighted sum of all excited angular momentum states de-
caying to the n;=3 final state. The admixture of these
nl; states produces a similar trend for both final-state
symmetries 'P% and 3P? (see also Fig. 5).

The interplay of the coherence effects is also evident in
the calculated linear polarization of the fluorescence
detected following decays to ny=n—1 states shown in
Fig. 8 (see also Fig. 6). Again, the “enhancement” effect
caused by the /; coherence is evident here as T'=1 the po-
larization curve becomes progressively negative as highly
excited states n decay radiatively in the infrared. This
apparently suggests an ‘“unfavored” behavior as seen

‘above in connection with the ionic asymmetry parameter

" of Fig. 1. The effect of fine-structure depolarization on

both T=0 and 1 final states is seen here to bring the two
depolarized curves together. With the elimination of
strong [; coherence, which produced a ‘“‘cancellation”
effect for the T=0 case and an “enhancement” effect for
the T=1 final state, the two symmetries are seen to have
nearly the same polarized fluorescence, when not resolved
in time.

III. SUMMARY

In this paper we examine the anisotropy of excited
states of He' ions following photoionization of He.
(Similar predictions can be readily made for H™ as well.)

‘ .
0.75 0.75
(a) (b)
c c T=1
2 °
S 0.50] » ®© 0.50-
N N
N =
[3) <)
o o S~
— — e
g 0.25 .\-.M g 0.25 4 — T —o
c £ e ——— a
| 3
T=0 — T T
0.00 r T T 0.00 ; - T
3 5 7 9 11 3 5 7 9 11
n n
0.50
(c)
[ =4
o
=
«©
N
E T=0
o) ]
S o.2s ?\
.~ AN
o
3
(&)
=
O
\l: 1
\\.
0.00 l . T :
3 5 7 9 11
n

FIG. 7. Predicted (dimensionless) polarization of the fluorescence emitted upon n—n,=3 level transitions is shown as a function
of n. (a) and (b) give the linear polarization for T=0 and 1, respectively. Results shown with closed circles include the /;-coherence
effects; open circles are given for illustrative purposes with this coherence aritifically taken out; and closed squares include the full
effect of fine-structure depolarization. Note the large effect of depolarization on these time-unresolved anisotropies. (c) shows the
circular polarization of the detected fluorescence for. the same transitions as in (a) and (b) with the open (closed) circles characterizing

the anisotropy with (without) the inclusion of fine-structure depolarization.
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FIG. 8. Dimensionless linear polarization of the fluorescence
for n—n—1 decay transitions is predicted as a function of .
The effect of I; coherence, included in the results shown with
closed circles, on the alignment of the ionic electron is strongly
evident here. This coherence is eventually destroyed by includ-
ing the fine-structure depolarization, represented by open cir-
cles, as would be observed in a typical time-unresolved experi-
ment.

The effect of the orbital momentum coherence of degen-
erate hydrogenic states on the anisotropy parameters is
quantitatively studied. In the first part of this article, the
Ref. 5 treatment of single photoelectron angular distribu-

tion for two-electron systems is extended to describe the

properties of the residual ionic electron. By casting the
expression for the charge density in the same form as the
photoelectron  differential cross section do/dQ
« 14 B(n)P,(cosh), we are able to define an asymmetry
parameter Bgr(n) for the electronic charge distribution.
For two classes of final-state symmetry, 'P® and 3P°,
Bxr(n) mimics the behavior of the photoelectron asym-
metry parameter as a function of n. This one-to-one
correspondence results because the asymptotic “dipole”
channels reflect the short-range pattern of electron corre-
lations even at very large photoelectron distances,
re—>oo_ ) o

The Fano-Macek-type anisotropy parameters, the
alignment and orientation of the excited ionic state, are
calculated with the intention of studying the effect of /;
coherence on these parameters. The orientation parame-
ter is automatically independent of the coherence in /;
owing to parity and angular momentum conservation.
The calculation of Ay(np) and Oy(np) produces some
surprising results. The detected circular polarization fol-
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-

.

Nlo;ii'nvgﬁt’ﬂé aec;y of an (ﬁp) level is seen to have the oppo-

site sign of the incident light circular polarization, for
high-lying states of the He* ion. The alignment parame-
ter for the same final-state symmetry, namely, 1p0
(T =1), does not exhibit the same behavior. This is rath-
er interesting in the sense that Bxr(n), also a second rank
multipole, shows opposite trends for the two final state
classifications 'P, and 3P°. This disparity between the
two quadrupole anisotropy parameters is associated with
the absence of /; coherence in A,(np), since this coher-
ence is strongly influential in producing the observed
effects in the ionic asymmetry parameter. Agreement be-
tween theory and the only experimental data points for
the 2p level is better than that between the theoretical
value for B(n =2) from the analysis of Ref. 5 and the ex-
periment of Heimann et al.'®

The dependence of the orientation parameter on indivi-
dual orbital momentum state /; is studied. Note that tH
orientation parameter Oy(nl;) is independent of the
coherence in /; allowing for its study (theoretically if not
experimentally) as a function of orbital angular momen-
tum. For the experimentally relevant case of the T=1
1P final state the orientation is negative for
I; <10, =3n1/2 where the probability o(nl;) peaks. For
I;> 1., instead, the orientation parameter is positive as
typically expected.

“Since the alignment parameter depends on coherence
in ;, an “effective alignment” parameter is introduced
which includes both dynamical and geometrical informa-
tion intertwined by the coherence. For the emission of

-low-frequency photons . following the decay of excited

states of He™ this effective alignment parameter exhibits
the same general trend as that for Bgr(n) thereby
confirming that the coherence in /; is partly responsible
for these unexpected observations.

- Finally, the effect of the fine-structure depolarization
on the anisotropy parameters is investigated. It is shown
that the /; coherence, which plays a strong role in pre-
dicting the linear polarization of the emitted light,
influences the T=0 and 1 final-state symmetries quite
differently but this difference is eventually “washed out”
in any realistic time-unresolved measurements by fine-
structure depolarization. Alternatively, effects of the /;

—coherence could be observed in a time-resolved experi-

ment with or without electric field present, as in the
electron-hydrogen scattering experiments of Heck and
Williams.* :
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