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ABSTRACT: Photodissociation of alkali–halides is studied using a hybrid
close-coupling and multichannel quantum defect theory approach. A novel class of
interferometry that arises from the coherent interference of alternative pathways to bond
breaking is identified. Interferometric resonances that live for hundreds of picoseconds are
analyzed in the spirit of channel interaction. Interfering patterns that form in the
interaction zone due to collision of nuclear wavepackets are revealed. c© 2000 John Wiley
& Sons, Inc. Int J Quantum Chem 80: 958–965, 2000
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Introductory Remarks

A lkali–halides are the prototypical systems for
study and control of chemical reactions on

a femtosecond time scale [1, 2]. There has been a
preponderance of studies that have explored nu-
clear motion in alkali–halides [3 – 5]. There are sev-
eral traits that distinguish alkali–halide molecules.
In their normal configurations, alkali–halides have
ionic characteristics, i.e., the electrons have a ten-
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dency to leave the alkali–metal atom and attach to
the halogen atom. Because of an energy gap be-
tween the ionization potential of the alkali–metal
and the electron affinity of the halogen atom, the
ion pair dissociation threshold lies above the neu-
tral fragmentation limit. The first excited electronic
curve in alkali–halides has a covalent character
that manifests in repulsive interaction between the
atoms at short distances. When the electronic curves
have similar molecular symmetry, such as in the
case to be considered here, 16+, they interact and
nearly cross. In alkali–haldies, the typical avoided
crossing region lies around 6.5 Å. Second, because
the molecules interact via an attractive Coulomb po-
tential in the ground state, the rovibrational levels
follow a Rydberg progression, with energies propor-

International Journal of Quantum Chemistry, Vol. 80, 958–965 (2000)
c© 2000 John Wiley & Sons, Inc.



ALKALI–HALIDE PHOTODISSOCIATION

tional to (µ/n∗2), where n∗ is a principal quantum
number and µ is the reduced mass. It also means
that the density of rovibrational levels is infinite. In-
deed, the J = 0 vibrational series in LiF follows the
form,

Ev′′ = −µ
2(v′′ + 1− δ/π)

where δ = −126π , δ/π is the quantum defect for
the J = 0 series, and n∗ = v′′ + 1 − δ/π . Third,
the large permanent electric dipole produces a ripe
environment for photoexcitation of the molecule.

In this study, a method for calculating the pre-
dissociating resonant profiles and energies is de-
scribed. The feature-rich photodissociation spec-
trum is calculated with a multichannel quantum
defect technique. The temporal evolution of the
vibrational motion is depicted with an ab initio
wavepacket calculation. Lithium fluoride is used as
a specific example.

Predissociation

The energy gap between the two dissociation
thresholds supports a large number of vibrational
levels that owing to nonadiabatic interaction be-
tween the ionic and covalent electronic channels
are no longer true bound states. These quasibound
rovibrational levels provide the environment for
temporary entrapment of the molecule in a transient
state with a finite lifetime, subject to the uncer-
tainty principle. These so-called predissociating res-
onances are therefore a stark realization of nonadia-
baticity and multichannel phenomena. Because they
occur near a dissociation threshold, these weakly
bound molecules live for most of their life, like
their free brethren, just above the dissociation limit.
The delicate channel interaction between bound and
continuum series can significantly alter the photo-
chemistry in alkali–halides.

It is therefore plausible to treat the physics of
interaction near a threshold, just below and just
above, on equal footing. Such a mathematical con-
struct exists and goes by the name of multichannel
quantum defect theory (MQDT) [6 – 8]. MQDT has
been used extensively to formulate photoabsorption
and scattering reactions in atomic systems and has
met remarkable success. (The reader is referred to
a comprehensive review of the subject with exam-
ples in atomic physics by Aymar et al. [8].) Here,
MQDT is tailored to describe predissociation in
alkali–halides.

Channel Interaction and
Dynamic Switching

The interaction between the 16+ electronic states
in alkali–halides is regulated by the radial nonadi-
abatic coupling matrix elements. Because the elec-
tronic wave functions change abruptly near an
avoided crossing between two potential energy
curves, the associated radial coupling matrix ele-
ment peaks to compensate for the sudden change in
the electronic property and is typically Lorentzian
in shape. If the avoided crossing region is narrow
and the separation between the adiabatic potential
curves is small, the nonadiabatic matrix element be-
comes sharply peaked.

DIABATIC DEFINITION

For computational efficiency and at times for
physical reasons, it is best to work in a diabatic repre-
sentation. The similarity transformation that brings
an adiabatic representation to a diabatic one is,
of course, unitary. In a diabatic representation, the
electronic wave functions vary smoothly at cross-
ings between potential curves, and the coupling
matrix elements also smoothly vary with distance.
Whereas in the adiabatic representation, the po-
tential energy matrix is diagonal, it contains off-
diagonal elements in the diabatic representation.

A rigorous transformation between the adiabatic
and diabatic sets can be defined from [9]

dC
dR
+AC = 0, (1)

where C is a unitary matrix that transforms the adi-
abatic wave function ψa(r; R) into the diabatic wave
function ψd(r; R), i.e., ψd(r; R) = CTψa(r; R), and
A is the non-Hermitian first-derivative radial cou-
pling matrix, i.e., Aij = 〈ψa

i |∂/∂R|ψa
j 〉. The above

expression ensures that the nonadiabatic matrix A
is removed from the nuclear motion. However, nu-
merical implementation of the above transforma-
tion becomes exceedingly difficult if and when the
number of coupled channels is large and the in-
teraction between these channels becomes sharply
peaked. Furthermore, ab initio calculation of the ra-
dial coupling matrix elements is not a trivial task
with quantum chemistry codes.
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The coupled equations in the adiabatic represen-
tation is then[

I∇2
R + 2µ

(
IE−Vd(R)

)+ CT
(

B− dA
dR
− |A|2

)
C
]

× Fd(R) = 0, (2)

where Fd(R) are the expansion coefficients of the di-
abatic wave function, ψd

i (r; R) = ∑
i φ

d(r; R)Fd
i (R).

For the last term in the above equation to be zero
requires that the adiabatic electronic basis forms a
complete set, or equivalently,

B = dA
dR
+ |A|2, (3)

where Bij = 〈ψa
i |∂2/∂R2|ψa

j 〉 are the second-order
coupling matrix elements. In alkali–halides, and
specifically in LiF, the other 16+ electronic states
lie far away in energy such that by invoking the
Hellmann–Feynman theorem, their contributions
to B are negligible and the preceding assumption
holds valid.

An alternative method that circumvents the en-
tire issue of calculating A in the first place is to
define a unitary transformation that diagonalizes an
R-dependent electronic operator, such as the transi-
tion dipole operator:

Vd = CTVaC, (4)

where C is now the matrix of the eigenvectors of
the dipole operator and Vd and Va are, respec-
tively, the adiabatic and diabatic potential energy
matrices [10]. It should be emphasized that this
transformation is not unique. The resultant diabatic-
dipole potential energies are smooth as a function of
R and the offdiagonal energies are also smooth. Fig-
ure 1 displays the diabatic potential energy curves
and the coupling matrix element. The initial vibra-
tional wave function is also shown.

Interestingly, the same argument that leads to the
definition of the adiabatic transformation in Eqs. (1)
and (3) also prevails here. In other words, the er-
ror in truncating the adiabatic basis set leads to the
same error in the new diabatic-dipole transforma-
tion when the number of adiabatic dipole moments
is restricted to a finite set [11].

The coupled diabatic set of equations now reads[
I∇2

R + 2µ
(
IE−Vd(R)

)]
Fd(R) = 0, (5)

where Fd(R) are the nuclear wave functions subject
to the boundary conditions at the origin and at in-
finity. In what follows, regular boundary conditions
at origin are enforced.

FIGURE 1. LiF 16+ diabatic potentila energy curves
and the coupling between them. The initial vibrational
wave function is also shown; from Ref. [22].

MQDT TREATMENT

MQDT has been a widely successful theory of
atomic and molecular processes [7, 8]. MQDT differs
from the usual scattering formalism in how the en-
ergy is partitioned. Whereas the space partitioning
allows for a proper treatment of the full interaction
in a close-coupling formalism for R < Rm, followed
by matching to uncoupled solutions for R ≥ Rm, the
energy partitioning in MQDT is accomplished so as
to reveal the interaction energy at short ranges. In
alkali–halides this energy scale is determined by the
diabatic coupling. It is therefore required to relax the
physical boundary conditions on Fd(R). To be pre-
cise, at energies in the predissociation gap in LiF,
the covalent channel is open at large R, but the ionic
channel is energetically inaccessible, i.e., the ionic
wave function decays exponentially as Fd

2(R) ∼ e−κR,
where κ is the wave vector in the closed ionic chan-
nel, κ = √

2µ(V22(∞)− E). This is, of course, the
condition necessary for obtaining discrete levels in
the gap. By not immediately enforcing this bound-
ary condition in the physically closed channels,
while treating them as if they were open (weakly
closed) channels, MQDT provides a prescription
for studying short-range strong interactions without
contamination from long-range effects.

The short-range MQDT reaction and scattering
matrices are smooth functions of energy and do not
exhibit resonant behavior. The solutions in the in-
teraction region are superimposed and matched to
a linear combination of asymptotic functions in the
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outer region,∑
i

φi(r; R)Fij(R) =
∑

i

φi(r; R)
[
fi(R)δij − Ks

ijgi(R)
]
,

for R ≥ Rm, (6)

at each energy E [12]. The N ( j = 1, 2, . . . , N, where
N is the number of coupled channels) independent
solutions, Fj(R) are propagated from the origin at
R ∼ 0, subject to regular boundary conditions, to the
matching radius R = Rm, with the aid of the renor-
malized Numerov method [13]. The above equation
looks deceptively similar to any scattering equation,
but note that the reaction matrix Ks

ij, is only the
short-range reaction matrix. The size of Ks

ij is the
number of open and weakly closed channels, and
hence does not correspond to the number of physi-
cal channels. Here, Ks

ij is a 2× 2 matrix, even though
there is only one physically open channel, and fi(R)
and gi(R) in each channel i are calculated relative to
the long-range form of the adiabatic (or diabatic) po-
tentials. The base pair ( f1, g1) are the Riccati–Bessel
functions of order j at energy ε1 = E − V11(∞)
and ( f2, g2) are the Coulomb functions at energy
ε2 = E − V22(∞). Both base pairs are normalized
with respect to energy and the regular and irregular
Coulomb functions, f2 and g2, contain exponential
divergence.

The short-range reaction matrix is given by
its eigenvalues and eigenvectors, Ks

ij =
∑

α UT
iα

tanπµαUjα. The physical phase shift in the covalent
channel is determined as:

tan δ = Ks
11 − Ks

12

1
tanπν + Ks

22

Ks
21, (7)

where ν = (−2ε2/µ)−1/2. The procedure by which
δ is obtained is known as the “closed-channel elim-
ination” in MQDT and amounts to the application
of physical boundary conditions. The phase shift(s)
are common to all α eigenchannels, and eigenquan-
tum defects, µα . The eigenquantum defects (µ1, µ2)
vary smoothly with energy, whereas δ varies con-
siderably and widely with energy, as resonances ap-
pear in the closed channel. The smooth short-range
scattering probability, Ss

12, which can be obtained
from Ks, can be written down for the 2× 2 case as:∣∣Ss

12

∣∣2 = sin2 2θ sin2 π(µ1 − µ2), (8)

where θ is the angle that defines the mixing between
the eigenchannels and the fragmentation channels
and is defined as θ = cos−1 U11. When θ = 0 or
π/2, the transition probability vanishes and when
θ = π/4, strong coupling of the ionic and covalent
channels results.

FIGURE 2. (a) The short-range scattering probability;
the solid line is the MQDT calculation, and the symbols
are the semiclassical results; (b) the eigenquantum
defects. (The discontinuities simply reflect quadrant
changes in the eigenvalues of Ks.); from Ref. [14]
.

The short-range transition probability |Ss
12|2 is

shown in Figure 2(a) with the eigenquantum de-
fects in Figure 2(b). Notice the regular modulations
in |Ss

12|2. The dots and the dashed line are from
a semiclassical calculation in which the probabil-
ity for transition between two levels is given as the
Landau–Zener probability:

P12 = 4p(1− p) sin21φ, (9)

where 1φ is the difference in the accumulated
phases along adiabatic and diabatic paths and
where p = e−2πγLZ is the single-pass Landau–Zener
diabatic transition probability at the crossing, Rc =
13.3 a.u., and γLZ = |Vc|2/|1F|vc [15]. All the pa-
rameters are defined at the crossing radius, with
Vc = Vd

12(Rc), vc =
√

2(E− Vavg)/µ the radial ve-
locity at the crossing, and 1F is the difference in
slopes of the potential curves. The relative velocity
is defined with respect to an average value of the
potentials at the crossing. An immediate observa-
tion, based on a comparison of the semiclassical and
MQDT results, is that the modulation of the proba-
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bility is caused by a coherent phase interference of
nuclear wave functions. It can be expected that at
or near θ = 0 or π/2, where there is destructive
interference, the interaction between the channels
disappears and the predissociating resonances that
form at these energies become stable against bond
breaking. Those resonances that form at energies
where |Ss

12|2 reaches its maximum, i.e., constructive
interference, are expected to be highly unstable.

In order to obtain the photoabsorption cross sec-
tion, the dipole matrix elements must first be calcu-
lated. A set of eigensolutions Fiα(R) is constructed
as:

Fiα(R) =
∑

j

Fij(R)Ujα. (10)

Recall that the eigenchannel solutions Fiα(R) share
the same phase shifts in all α channels. We can now
define the dipole matrix elements Djα = 〈Fjα|Dd

jj|F00〉
for each eigenchannel. These dipole matrix elements
are smoothly varying with energy. Since the ini-
tial vibrational wave function F00(R) is calculated in
the uncoupled representation, i.e., in the ionic chan-
nel, the only allowed dipole excitations are within
the ionic channel—in the diabatic representation,
the dipole moment matrix is diagonal. Hence, the
only dipole moment that contributes to the pho-
toexcitation of the initial state is Dd

22(R). If, however,
the initial wave function is obtained in a coupled-
channel representation, electric dipole coupling to
both ionic and covalent channels are allowed.

Finally, the cross section can be defined as:

σtot(ω) = 4π2

3(137)
ω|D2αAα|2, (11)

where the coefficients Aα are obtained such that∑
α

Uiα

(
cosπµα
sinπµα

)
Aα =

(
cos δ
sin δ

)
i open
i closed

(12)

Figure 3(a) gives the calculated photodissocia-
tion cross section of LiF in the energy region in
the predissociation gap. Three prominent features
are evident: the broad envelope peaking around
57,000 cm−1, a single series of Rydberg resonances,
and a systematic variation of widths and profiles
of the resonances that result in a periodic modula-
tion of the intensity. Figure 3(b) shows an expanded
photoabsorption window revealing the complexity
of the lineshapes.

The configuration interaction formulation of
Fano [16] describes the behavior of cross section as:

σ (ε) ∝ (q+ ε)2

1+ ε2 , (13)

where ε is a scaled dimensionless energy parame-
ter that vanishes at the center of the resonance and
the parameter q defines the profile of a resonance.
A large q means a symmetric Lorentzian profile,
while a q = 0 resonance appears as a symmetric
dip. The sign of q also determines the asymmetry
of the resonant profile. A positive (negative) value
of q means that the intensity of the line rises (falls)
as the energy is swept away from ε = 0.

It is evident from Figure 3 that both the magni-
tude and the sign of q change as a function of en-
ergy. Furthermore, the sign of q varies periodically
throughout the spectrum—q changes sign twice per
cycle. It is well known that two-channel atomic
spectra in which a bound series interacts with a sin-
gle continuum are characterized by Eq. (13) with
a single slowly varying q parameter that retains
the same sign. Although reversal in the sign of q
are common in atomic physics, where they indicate

FIGURE 3. Photopredissociation spectrum from the
ground rovibrational level of LiF; (b) shows an expanded
view of a typical energy region demonstrating the q
reversal of the lineshapes; from Ref. [14].
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the presence of interloping states within a Rydberg
series [8, 17 – 19], no such perturbers are present
in LiF. It is therefore concluded that alkali–halides
photoabsorption is a novel process in which the re-
versal of q occurs periodically as a consequence of
interference between alternating pathways to bond
breaking.

The extremely long-lived predissociating reso-
nances in Figure 3 appear at energies very near the
zeros of |Ss

12|2 in Figure 2—the zeros of |Ss
12|2 do not

occur precisely on resonance; such an accidental de-
generacy would result in a true bound state in the
continuum with infinite value of the Fano parame-
ter (and corresponding infinite cross section). The
symmetric window resonances in Figure 3(b) ap-
pear at energies very near the peaks of |Ss

12|2 and
signal a rapid dissociation process.

The lifetimes (widths) of the resonances is ob-
tained from the largest eigenvalue of the delay-time
matrix, Q = −iSs†(dSs/dE) [20]; for a single open
channel, Qmax = 2(dδ/dE) or 0 = 4/Qmax. It was
found that the longest-lived resonances have life-
times of the order of hundreds of picoseconds [21].

That these extremely stable resonances appear
near the zeros of the transition probability suggests
that the ionic and covalent channels become ef-
fectively decoupled at these energies. Such dynamic
switching of the interaction between electronic chan-
nels with laser frequency is significant as it allows
a degree of control over the rate of reaction—in
this case the dissociation yield. This is a remark-
able manifestation of coherent interference effect in
molecules.

TEMPORAL ANALYSIS

To better understand the underlying time scales
that conspire to produce such rich and complex
interferometric features in alkali–halide spectra,
a long-time nuclear wavepacket propagation was
carried out [22, 26]. The recurring tendency for the
vibrational motion to be stable at well-defined ener-
gies in the predissociation gap suggests that the vi-
brational wavepackets must coherently act to set up
interfering waves in the interaction region between
the inner turning point and the crossing point. Pi-
oneering work by Zewail and co-workers [1, 2]
on sodium iodide with femtosecond laser pulses
significantly advanced the understanding of mole-
cular phenomena on vibrational time scale. By ar-
resting and imaging the vibrational motion, they
detected NaI molecules in transition states and at
moments right after bond breaking. Later, time de-

lay pulse measurements observed wavepacket re-
currences (phasing and dephasing) that persisted
for tens of vibrational periods. Such long-time sur-
vival of vibrational wavepackets is perhaps an in-
direct signature of the interferometric resonances in
alkali–halides.

The two-channel Schrödinger equation i ∂9/
∂t = H9 , where the Hamiltonian is comprised of
the kinetic energy and the diabatic potential en-
ergy operators, is solved using the split-operator
method [22, 23], which employs a symmetric split-
ting of the kinetic and potential energy operators:

9(t+1t) = e−i1tV/2e−i1tT/2e−i1tV/29(t)+O
(
1t3).

(14)
The residual error results from the temporal non-
commutivity of the kinetic and potential energy
operators. At each step in time, the kinetic energy
operator acts in the momentum space, where it is
diagonal, and the potential energy operator acts in
the coordinate space. Different schemes for the cal-
culation of the exponential of the potential energy
matrix are employed [22, 26], but the one used here
involves Pauli spinors [24]. The photoabsorption
cross section is obtained from the time-dependent
wave function using the Heller [25] formulation:

σ (ω) ∝ ω
∫ T

−T
dt w(t)C(t)eiEt, (15)

where the energy E = Ev′′j′′ + ω, with Ev′′j′′ the
rovibrational energy of the initial state. The win-
dow function w(t) is included in the Fourier trans-
form because the autocorrelation function, C(t) =
〈9(R, t = 0)|9(R, t)〉, is calculated only in a finite
time interval [0:T]. The use of the filter w(t) prevents
sidebands from appearing in the Fourier transform.
The initial wavepacket is defined as:

9(t = 0) =
(

0
F00(R)D22(R)

)
.

Figure 4 shows the absorption spectrum at dif-
ferent times by truncating the upper limit in the
integral in Eq. (15) to the time indicated in each
panel in Figure 4. The broad frequency scale appears
in a short time (10–20 fs), but it is shown here after
500 fs for time sampling reasons. The interferomet-
ric modulation of the spectrum appears after about
1 ps, which is roughly the orbital period for nuclear
motion in the ionic channel. The third time scale, i.e.,
the Rydberg time scale, appears after about 3–5 ps,
when the wavepacket has evolved long enough for
the Rydberg spacing to emerge.

The spatial spread of the wavepacket is shown
in Figure 5 in both the ionic and covalent poten-
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FIGURE 4. Appearance of three distinct frequency
scales in LiF. The upper time limits of the Fourier
transform are shown in each panel; from Ref. [22].

tials. Because the potentials are anharmonic, one
would expect the wavepacket to disperse and build
up amplitude in the coupled potentials with time.
The snapshots of the probability density in each di-
abatic channel, |ψi(t, R)|2, at different time intervals
is shown. Due to the coupling between the potential
curves at short distances, the initial wavepacket in
the ionic channel instantaneously obtains a compo-
nent in the covalent channel.

After 48 fs, the covalent pulse is about five times
as large as the ionic pulse; see Figure 5(a). The two
wavepackets reach the crossing point at the same
time at 91 fs, but their subsequent time evolution
is distinctly different. At about 357 fs, the covalent
pulse has escaped to dissociation, whereas the ionic
pulse has just reflected from the outer turning point.
At about 689 fs, the first indication of an interfer-
ing wave in the ionic channel due to dispersion
is evident. The more deeply bound components in
the wavepacket reflect sooner from the attractive
Coulomb potential and, on being reflected again
from the inner turning point, interfere with more
slowly moving components of the wavepacket that
are also weakly bound and are now returning from
the outer turning point. Of course, because the ionic
and covalent curves are coupled to each other, in-
terfering waves also form in the covalent channel,
but outside the crossing radius, there is only outgo-
ing traveling waves. The interfering wave formation
in the ionic channel begins to become prominent at
times longer than 1500 fs; see Figure 5(d) when com-
plete constructive or destructive interference takes
hold. The interfering waves form within a radius
of about 20 a.u. The ripple oscillations in the co-

FIGURE 5. Snapshots of the wavepacket on the ionic
and covalent potentials at different times, revealing the
interfering wave formation; from Ref. [22].

valent channel outside the crossing radius appear
because the higher frequency components of the
wavepacket that are more deeply bound (shorter
classical orbital periods) emerge faster from the re-
action zone; the low-frequency outgoing waves are
amplitude-modulated with higher frequency waves
in Figure 5(d).

Summary

Photodissociation of alkali–haldies demonstrates
lineshape modulations that result from a novel class
of interferometry between nuclear wave functions.
Coherent interference of alternative pathways to
bond breaking form extremely long-lived predisso-
ciating resonances that recur with specific period in
the spectrum. These resonances are calculated with
the aid of MQDT and analyzed in detail in the spirit
of channel interaction. By tuning the laser frequency
to these interferometric resonances, the interaction
between the channels is effectively turned off. Such
dynamic switching of the interaction provides a
level of control over the dissociation yield. The ex-
tremely long time nature of these resonances are
revealed as interfering waves, confined to the inter-
action zone, in a temporal evolution of wavepackets
on the coupled potential curves.
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