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High-frequency two-photon ionization of helium and cesium
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Calculations of the two-photon ionization of metastable levels of helium and the first three s levels of cesium
are presented. The calculations are carried out to second order in a perturbation expansion and are valid for
low laser intensities. The behavior of the ionization cross section at high photon frequencies w is studied, and
it is found that the N-photon ionization cross section behaves as o™ x w~#¥+12 This analytic asymptotic be-
havior is verified numerically in the case of two-photon ionization.

1. INTRODUCTION

The theory of multiphoton absorption of atoms and
molecules is a rapidly growing area of research activity.
The introduction of stable high-powered lasers to atomic
and molecular spectroscopy in the past two decades and
the observation of novel phenomena such as the above-
threshold structures associated with ionization and disso-
ciation have stimulated a substantial theoretical effort,
much of it using perturbation expansions of the multi-
photon transition matrix elements.'®

Infinite sums in the Nth order of photons involving
products of N dipole matrix elements have been evaluated
by several methods. Although truncation of the infinite
sums has yielded reasonably accurate results near reso-
nance lines, where a small number of discrete terms are
important, it gives incorrect nonresonant values for the
multiphoton matrix elements, primarily because of its ne-
glect of the intermediate continuum. Alternatively, the
infinite summation can be cast in the form of N — 1 inho-
mogeneous differential equations,®® each successive equa-
tion being driven by the response function of the previous
inhomogeneous equation. This method for the evaluation
of perturbation transition matrix elements has been quite
successful in prediction and interpretation of low laser in-
tensity data. Some researchers have also carried out the
infinite sums variationally on an L? discretized basis.>3®

Some nonperturbative ab initio methods have been pro-
posed.”® Numerical time-dependent techniques’™ on
single-electron and multielectron atoms allow for the
explicit introduction of time-dependent laser field ampli-
tudes (pulse shape). Floquet-type expansions of the time-
dependent state function'®2 (based on the periodic nature
of the light-atom interaction potential) have been devel-
oped into reliable nonperturbative methods for the study
of high-order ionization and harmonic generation by
medium-intensity lasers. In most of these calculations,
the atom-laser interaction is treated semiclassically.

In this paper we report a calculation of two-photon exci-
tation and ionization cross-sections of the Rydberg helium
and cesium metastable levels within the framework of
second-order perturbation theory.!® Similar calculations
were performed on these atoms.’*™® Our intent is to in-
vestigate the form of the ionization cross-sections at high
photon frequencies, to present highly accurate nu-
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merical results for the two-photon ionization of the atoms,
and to clarify some ambiguities that exist in the literature
regarding the choice of boundary conditions on the Green’s
function. In Section 2 the problem is discussed and a
simple analytic representation of the variation of the jon-
ization cross-section with energy is derived. In Section 3
the numerical technique is presented, and in Section 4 the
results are given. Comparisons are made with experi-
mental and other theoretical results. The asymptotic be-
havior of the ionization cross section at high photon
frequencies is verified by comparison with numerical cal-
culations. For the photoabsorption of cesium we discuss
the implications of core polarization by the valence elec-
tron and show the modified results. In Section 5 we dis-
cuss our results.

2. THEORY

A. Two-Photon Cross Section

If we denote the initial energy of the atom as E,, the ex-
pression for the differential two-photon ionization cross
section is™

do®
do

k2
= 277(27mw)2|./1/L(2)|2——(27T)3, (0
where the final energy of the photoelectron is Ey, = E, +
2w, ky = (2E,)"?, and M? is the amplitude for a two-photon
transition in the second order of time-dependent pertur-
bation theory:

MP = (f'& . rG(H(El)& . r|i>. (2)

In Eq. (2), {t|i) = Ru(")Yin(f is the wave function for the
initial state and

on

1/2
(e|f) = ( T ) > i exp(=ingy) Reye () D, Vi (E5)Yim ()
4 m

3)

is the outgoing wave function for the final state, where
Rg,r is the energy-normalized continuum radial wave
function, G (E,) is the outgoing Green’s function for the
one-photon intermediate energy E, = Ey + o, and & is the
light polarization vector.
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The angular part of the matrix element can be worked
out analytically, resulting in

MD = (8’”3)1/2 2 (—)tHarayz

,q'=*1
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I+ I+ + —
( 2 )( S )
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where J}},,.(f) are the components of an angular tensor
that may be written as

T im = 2 {'m'1B|Im)e; * Vinwe; * e, (5)
mp

where Vj,,» are the vector spherical harmonics and ez with
a Greek index B is a spherical vector.? M has the form

MEFI(Q) = f Pdr R (MSAEHQ; ), ®
0

in which #‘¥ is the radial linear response function in the
length gauge,*

A Qs r) = —f giQ; r, P )Ry (r)r'3dr, (N

where g{*’ is the radial outgoing Green’s function with or-

bital quantum number /, defined such that the full Green’s
function is given by the partial wave expansion

G, 1) = 2 87(Q; 1, 7) 2 Vi (DY (). ®
! m

Using the well-known identity?

1 1
o) - _
GMQ) = 111){10n i 9’( — H) imd(Q — H)
= G*™(Q) — ir8(Q — H), ©)

we can extract the imaginary part of the Green’s function.
The standing Green’s function G*V is a real quantity.
Thus the radial linear response function can be decom-
posed into a real and an imaginary part as follows:

l nl(Q r)

_ [ -
5521(9, r)

iTRY¥Rar(r)  if Q is an eigenvalue

otherwise ’

(10

where Y, the standing radial linear response function,
has the same form as #{‘ in Eq. (7) with the radial out-
going Green’s function replaced with the standing radial
Green’s function. In Eq. (10), RZ is defined as

RY = f R (r)Ru(r)ridr. 11

Because A is a real quantity, it can be computed by
the use of the Dalgarno-Lewis prescription.?? Then A"
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is the solution of the inhomogeneous differential equation

_ljrdf.d) 0+ _ (0
{ 2[1‘2 dr(r dr) e :"*‘V() El}ﬂ w(E1, 1)

= rR,(r). (12)

The boundary conditions on the solutions of Eq. (12) can
be extracted from the integral expression for #* in
Eq. (7). In the small-r region, #*” — constant. The ap-
plication of the asymptotic boundary condition requires a
more careful analysis. In fact, the large-r boundary con-
dition is energy dependent, and we must divide the energy
range into a region below the ionization threshold (case a),
and a region above the ionization threshold (case b).***

In case a, E; < 0 and the first photon is absorbed below
the ionization threshold. The asymptotic boundary con-
dition corresponds to an exponential decay:

AFE; ) ~0 as r— 13)

In case b, E; > 0 and only one photon is necessary to
achieve above-threshold ionization, and we have the
asymptotic boundary condition

2 1/2 ) 1
AFWE 1) ~ — ZT) REY= cos(hir — Zr+ 8, + )
kl r 2

as r— o, (14)

where k, = (2E;)'?, §, is the long-range phase shift, which
for a pure Coulomb field is &, = (1/ky)ln 2k,r +
arg I'[l — 1 — (/ky)], and 7, is the additional phase shift
necessary to represent the short-range interaction that is
due to the presence of a structured core. The phase shift
n; is zero for hydrogen but not for other atoms.

Equations (6) and (7) can now be integrated in reverse
order to produce the transition matrix element M (E,).
Once this integration is accomplished, M® can be calcu-
lated to give the following expression for the ionization of
an s state by linearly polarized light:

7@ = 2m(@maw)[(1/9)|M{FE,)|?
+ (4/45)M{EXEY)], as)

where n is the principal quantum number for the initial
state. The matrix element M in the case of above-
threshold ionization always contains a real part and an
imaginary part.

B. Asymptotic Energy Dependence of Cross Section

In this section we determine the order of the first term in
the inverse power expansion of the photoionization cross
section in w. The cross section is given by

0@ « W[fle - YGOELE - 1]i)| % (16)

Both the Green’s function and the outgoing final state can
be expanded in a Born series® as follows:

G(+)(Q) G‘”(Q) { i [V_C—;H')(Q)]p} , amn
p=0
(fl= <k2|{ > ['é<+><mV]P}» (18)
p=0

where G(Q) is the free-electron outgoing Green’s func-
tion (see below). In this expansion, we need to concern
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ourselves only with the first term in each of Egs. (17) and
(18) because we wish to obtain the leading term of the
cross section at high frequencies.

Noting that

(r| ko) = exp(—iks - ¥) = 47, 5, (kor) D, Vi () Vi (P),
1 m
(19)
gMQ; ) = 2k jikr)h{P(krs), 20)

where £ = (20)2 and j; and 2{" are, respectively, the
spherical Bessel function and the spherical Hankel func-
tion of the first kind, we can proceed to obtain the asymp-
totic energy dependence of the ionization matrix elements.

In the above expressions, only the conjugate product
kr or kr' appears. Therefore, we make the following sub-
stitution:

g 1) = kfi(kr, kr'), @n

where f; is a function of the products £r and &r'.
If we now introduce this expression into relation (16),
we find that the radial matrix element is proportional to

MY o b | drrithar) [ drrsiean, ki) Rutr).
0 0
©2)

In these integrals we make the substitutions p = &;r,
p’ = klr’, and { = ko/kl[ko = (2E0)1/2]. Then

M (Ey)
1 (-] -
ke f dpp%ir[(2 + {)p] j Ao’ *fr (p, I Ru(gp). (23)
1 Y0 0

For high frequencies where ¢ — 0, the integrals become
independent of energy, and

MBE(E) o k(' ~ 0™ (24)

or |[M?|? x w7, which implies that the two-photon cross
sections approach zero as

0@ & hywMP|? ~ 092, (25)

By repeating the argument to higher orders, we can gener-
alize this relation of the N-photon ionization cross section
to

a.(N) o« w—(2N+1/2) (26)

for N > 1.

3. NUMERICAL PROCEDURE

We have developed an efficient method for solving a set of
inhomogeneous equations with particular application to
multiphoton processes of atomic and molecular systems
where a central field potential is present. We use the
Numerov method to solve Eq. (12) subject to the boundary
conditions discussed above. The differential equations
are integrated from the origin on a logarithmic r scale.
(A typical initial value of x = In r for starting the integra-
tionisx = —30.) The integration is then switched to lin-
ear r scale at x = 1.5, The advantage of this method is
that the numerical solution ${(E;;r) becomes insensitive
to the choice of the amplitude of the wave function near
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the origin, which ordinarily causes difficulties in obtain-
ing inhomogeneous solutions. Both discrete and contin-
uum wave functions are calculated in a similar fashion
near the origin and are different only in the choice of the
asymptotic boundary conditions. A more detailed account
of the numerical procedures will be furnished elsewhere.

Once «(E;; r) has been evaluated from Eq. (12), the ma-
trix elements in Eq. (6) are calculated with relative ease
for case a, in which #(E;;r) is a bound wave function.
The situation is dramatically different for case b, where
HA(E;; r) is an oscillatory wave function containing real
and imaginary parts. The continuum-continuum matrix
elements between #(%;; r) and the final state scattering
wave function of energy E; = E; + w are computed follow-
ing the procedure of Gao and Starace®® by integrating out
to the asymptotic distance r = ry, beyond which WKB-
type phase-amplitude wave functions are valid. The solu-
tions are analytically continued in the complex plane, r —
ro + re’”. Then a rotation of 6 = #/2 to the imaginary
axis is performed in the upper half-plane. This rotation
forces the oscillatory part of the integrand for r = ry to
damp out exponentially, producing rapid convergence of
the numerical integration.

4. RESULTS AND DISCUSSIONS

A. Helium

We show in Fig. 1 the two-photon spectra of He(2'S) and
He(228) as functions of frequency. For the metastable
levels of helium, we use the central field potential of
Aymar and Crance,?” who evaluated the two-photon
absorption of metastable helium below the single ioniza-
tion threshold. Above the ionization threshold at w =
32014.11 em™, both the real and the imaginary parts in
expression (14) contribute. Below the threshold, the spec-
tra are identical to the results of Aymar and Crance.?’

B. Cesium

To represent the cesium valence electronic states, we use
the parametric model potential of Greene.?® This I-
dependent model potential includes the effect of the Cs™*
core polarization that is due to the electric field of the va-
lence electron.

log,, o (@)
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Fig. 1. Above-threshold ionization cross sections of He(2!'S)
(solid curve) and He(23S) (dashed curve) metastable states as
functions of the incident photon frequency.
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Fig. 2. (a) Two-photon absorption cross section of Cs(6s) level.
The dashed curves refer to the modified form of the cross section
when we use the dressed dipole operator. The first peak is due to
the Cs(6p) level. (b) Same as in (a) for Cs(7s) level. (c) Same as
in (a) for Cs(8s) level.

Figures 2(a), 2(b), and 2(c) give the two-photon absorp-
tion cross sections of the Cs(6s), Cs(7s), and Cs(8s) states,
respectively, as functions of w. The precursors to the in-
termediate np Rydberg resonances in these spectra are
the 6p, 7p, and 8p Rydberg resonances. In Fig. 3 we dis-
play the ionization cross sections of the cesium levels up
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to 9 au. above the 6s ionization threshold. The simple
power-law dependence of the cross section with photon en-
ergy confirms the predicted »™? variations. In Fig. 4
the fictitious cross sections from the real and the imagi-
nary components of the matrix element in Eq. (6) are
shown for the ionization of the cesium ground state to-
gether with the total cross section. The Cooper mini-
mum of 67500 ¢cm™ (to be compared with the value of
67 728.4 cm™* from Seaton®) is evident in the imaginary
part of the matrix element, which effectively gives the
one-photon ionization cross section, aside from the multi-
plicative dipole coupling of the intermediate continuum
state to the final state. The imaginary component pro-
duces a substantial contribution to the total cross section.
Indeed, at a frequency of 743000 cm™, the imaginary
part of the matrix element overtakes the real part and
becomes the dominant contribution to the total ionization
cross section.

In the model potential method for cesium, the effect of
the external electric field of the valence electron on the
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Fig. 3. Above-threshold ionization of Cs(6s) (solid curve), Cs(7s)
(dashed curve), and Cs(8s) (dotted curve) levels. Note the simple
power-law dependence of the cross section as »~** with photon
frequency.
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Fig. 4. The real (dashed curve) and imaginary (dotted curve)
fictitious two-photon cross sections from Eq. (6) for the ionization
of the cesium ground state. The Cooper minimum at 67500 em™
appears in the imaginary cross section. Also note that the two
components cross at @ ~ 7 X 10° em™. The total cross section is

shown as the solid curve.
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closed-shell core Cs™ is incorporated by adding a polariza-
tion term to the dipole operator.’®® This electric-field
perturbation, whose value at the nucleus is —r/r3, where r
is the electric dipole moment of the valence electron,
induces a dipole moment in the core, whose value is now
proportional to —r/r® such that the total dipole moment is
r(1 — a./2r®. Accordingly, we replace the dipole opera-
tor as

r r(l - %{1 - exp[—(r/rc)a]}), @n

where a,, the polarizability of Cs*, and r., the cutoff
radius, are the parameters of the model potential.
Sadeghpour and Dalgarno® showed that the inclusion of
this dressed dipole corrects for the discrepancy between
the experimental and uncorrected model values of the ce-
sium static polarizability.

A typical spectrum of cesium two-photon ionization
with the dressed dipole is given in Fig. 2(a) as dashed
curves. The discrepancy between the calculated curves
with bare and dressed dipole operators is greatest near
absorption lines. Because the adiabatic following of the
core polarization with the electric field of the valence elec-
tron and the eventual repulsion of the core from the outer
electron tends to reduce the discrete oscillator strengths,
we expect a general lowering of the absorption profile
strengths for the low-lying p levels.

5. SUMMARY

We present results for two-photon excitation and ioniza-
tion of helium and cesium in the lowest-order perturba-
tion expansion. The infinite sums over the intermediate
discrete and continuum states are handled by the inhomo-
geneous differential equation method. Boundary condi-
tions on the inhomogeneous solutions are treated so as
to allow for the absorption of a single photon in the
continuum.

The calculations take into account the virtual free—free
absorption of a photon for He | = 0 metastable states and
for I = 0 ground and metastable states of cesium. We
find that the high-frequency limit of the o® ionization
cross section behaves as w2, a finding supported by nu-
merical calculations. The states of helium and cesium
are described by parametric model potentials of Aymar
and Crance and by Greene, respectively. The cesium po-
tential includes a term that accounts for the polarization
of Cs* core of the electric field of the valence electron.
The effect of this polarization on the electric dipole mo-
ment is investigated, and we find that the effect is largest
near bound absorption lines, implying that the bound os-
cillator strength distribution of cesium is appreciably
modified by the inclusion of the core polarization in the
electric dipole moment.
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