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Abstract. We present the elastic and charge exchange cross sections for slow (meV) H+ + D(1s)
collisions based upon a recently formulated adiabatic representation. This representation avoids
many of the usual ‘translational factor’ issues, and those that remain have no significant effect for
scattering in the n = 1 manifold. The cross sections are converged at the 1% level. The various
Feshbach and shape resonances that form in the isotopic gap and in the charge transfer region
are identified and compared with previous work. An exact analytical expression for the ratio of
H+ + D(1s) and D+ + H(1s) charge exchange cross sections suitable for astrophysical simulations
is presented.

Collisions between slow protons and atomic hydrogen provide an excellent testing ground for
studies of electron transfer because of the simplicity of the system. The transfer of an electron
in slow H+ + H(1s) collisions is a resonant process involving the two lowest electronic states
of the transient H+

2 molecular ion formed during the slow collision. Experiments and theory
are in agreement for energies above a few eV (Belyaev 1967, Newman et al 1982). As the
collision energy is reduced, quantum mechanical effects become important, and experimental
difficulties increase. In fact, there have been very few experiments below 10 eV (see the review
by Gilbody (1994)).

The H+ +D(1s) or D+ +H(1s) collision system is similar electronically to the homonuclear
system. In the heteronuclear system, however, electron transfer is only a near-resonant process,
again involving the two lowest electronic states of the transient HD+ molecular ion formed
during the slow collision. It is only near resonant due to the energy gap of about 3.7 meV
between the ground 1sσ state and the first excited 2pσ state at the separated-atom limit. Merged
beam experiments have produced results down to 0.12 eV (Newman et al 1982), still more
than 50 meV above the energy range where the calculated results for the various isotopes differ
significantly from each other (see figure 1).

Charge transfer in the H+ + D(1s) system is profoundly more challenging than from the
H+ + H(1s) collision, because of the issues raised by the difference in the nuclear mass, which
removes the symmetry present in H+

2 under the exchange of nuclei. The symmetry-breaking
term in HD+ couples the nuclear and electronic degrees of freedom and produces the splitting of
the adiabatic potential energy curves as the nuclei separate. The two lowest adiabatic potential
energy curves nearly cross around an internuclear distance of 12 au, inducing non-adiabatic
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Figure 1. Electron transfer in slow collisions: �, H+ + H(1s) → H(1s) + H+; �, H+ + D(1s) →
H(1s) + D+; ◦, H(1s) + D+ → H+ + D(1s). The � are data from Belyaev (1967) while the other
symbols are the points calculated by Hunter and Kuriyan (1977b). The energy is the final channel
kinetic energy in the centre-of-mass frame.

transitions. At energies larger than about 3.7 meV above the dissociation limit of the 1sσ
state, charge transfer can occur via the coupling at this crossing. Because a permanent dipole
is formed in the ground and excited electronic states, collisions between H+ and D can result
in radiative vibrational and rotational transitions.

In addition to the fundamental interest, the presence of the deuterium atom in the
heteronuclear case makes the collision system important for applications in aeronomy and
astrophysics. In planetary atmospheres, charge exchange interactions between abundant
isotopic hydrogen neutrals and ions regulate the neutral distribution and escape from the
atmosphere. Results of calculations of the differential cross section for electron transfer and
elastic scattering in H+ + D(1s) and D+ + H(1s) collisions below 10 eV are used to determine
temperature-dependent rate coefficients for these processes (Hodges and Breig 1993). In
astrophysics, understanding the chemistry of deuterium in the post-recombination era of the
early universe is important in evaluating the observed D/H ratio. Using this ratio, it is possible
to derive constraints on the primordial deuterium, or, equivalently, on the allowed range of the
baryon-to-photon ratio according to the standard big-bang nucleosynthesis (e.g. Burles and
Tytler 1998, Penzias et al 1977). Additionally, the formation of deuterated molecules (HD,
in particular) in the gas phase has an effect on the cooling mechanisms of the primordial gas
and on the shocks that led to structure formation, such as galaxies and globular clusters (Palla
et al 1995). Charge transfer between D and H+ (or D+ and H) is one of the first steps in
the formation of many deuterated molecules. For example, the primary mechanism for HD
formation in interstellar clouds is believed to be the sequence

H+ + D → H + D+ (1)

followed by

H2 + D+ → HD + H+ (2)
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Figure 2. Different electron transfer cross sections in slow H+ + D(1s) collisions. ◦, calculated
values of Hunter and Kuriyan (1977b); broken curve, Davis and Thorson (1978); full curve, present
work. �, experimental values from Newman et al (1982).

(Stancil et al 1998, Galli and Palla 1998). Because it is produced in a nearly resonant charge
neutralization process, HD plays a role in producing many other deuterated molecules. Rates
for all of the many contributing reactions need to be known if the relative abundances of
these deuterated molecules are to be determined. Because of the limited number of processes
involved in HD formation, the abundance of HD in diffuse interstellar clouds serves as a key
diagnostic for models of other molecules with more complicated origins (Watson et al 1978).

Two quantum mechanical treatments of the problem of charge transfer in the H+ + D(1s)
system were formulated in the mid-1970s. Hunter and Kuriyan adapted the computational
methods developed for the homonuclear system (Hunter and Kuriyan 1975, 1977a) to the
heteronuclear system (Hunter and Kuriyan 1977b). The Born–Oppenheimer approximation,
which does not discriminate between the two dissociation limits, was employed to separate the
nuclear and electronic motions in HD+ and to reduce the three-body problem to the solution of
coupled radial Schrödinger equations for the relative motion of the proton and deuteron. The
symmetry-breaking term was introduced in the first order of perturbation theory.

This work was followed by a calculation by Davis and Thorson (1978), where the focus
was to search for effects on the elastic and charge-exchange cross sections arising from the
nuclear mass asymmetry in HD+. Their main finding was that the perturbed stationary state
(PSS) approach of Hunter and Kuriyan resulted in ‘spurious’ couplings for the HD+ system,
and therefore had to be removed. The spurious couplings arise because the PSS formulation
does not account for the translation of the electron, locally bound to one centre, with respect
to the molecular centre of mass (Riera and Salin 1976). Delos and Thorson (1978) suggested
essentially that by identifying and ignoring the spurious coupling, a correct theory could be
formulated. Their results for the electron transfer cross section are compared with those
of Hunter and Kuriyan in figure 2. The lack of structure in Hunter and Kuriyan’s (1977b)
calculation can be accounted for by differences in the numerical energy mesh. Note, however,
that Hunter and Kuriyan’s cross sections appear 5–10% lower than those of Davis and Thorson
from 30 to 100 meV, due to the accidental overlap of their calculated points with the minima
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in the oscillations of the calculated values of Davis and Thorson (1978). The truncated set
of two-centre coupled radial wave equations derived by Hunter and Kuriyan was solved more
recently using a different numerical technique (Hodges and Breig 1993) and those results did
show additional features not seen in the original calculations. They found, for example, a
pronounced J = 10 shape resonance just slightly above the H(1s) threshold as had Davis and
Thorson (1978). The two methods are in reasonable agreement for the overall magnitude of
the electron transfer cross section, thus leaving the question of the effect of the ‘spurious’
couplings unsettled.

We present scattering calculations based upon a recently developed adiabatic
representation for diatomic molecular ions (Esry and Sadeghpour 1999). This representation
overcomes many of these ‘translational factor’ deficiencies of the traditional Born–
Oppenheimer representation by obtaining the exact finite atomic mass thresholds for the
adiabatic potential curves, thereby resulting in the correct asymptotic energies. The departures
from the usual Born–Oppenheimer treatment lie in using the centre of mass of the nuclei as
the origin of the electronic coordinates and in including selected pieces of the nuclear kinetic
energy in the adiabatic Hamiltonian. The resulting adiabatic Hamiltonian in the body frame is

Had = − 1
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∇2
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while ZA,B are the charges of nuclei A and B, rA,B are the distances from the electron to the
nuclei and R is the internuclear distance. The quantum numbers J and � represent the usual
total orbital angular momentum and its projection on the internuclear axis, respectively. The
operator Y originates from the radial part of the nuclear kinetic energy and is given in prolate
spheroidal coordinates as (Esry and Sadeghpour 1999)
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3 for HD+. The operator

l2 in equation (3) comes from the angular part of the nuclear kinetic energy and is the usual
electronic orbital angular momentum. Given the adiabatic Hamiltonian in equation (3), the
electronic wavefunctions and potential energies are found by solving
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Figure 3. Calculated lowest two adiabatic potential energy curves (full curves) and the P -matrix
coupling between them (broken curve). The inset shows an expanded region around the H(1s) and
D(1s) thresholds.

The last two terms describe rotation–electronic coupling. The coupling matrices P and Q

account for the non-adiabatic effects resulting from the action of the nuclear radial derivatives
on the channel functions. Explicitly,
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and the Coriolis coupling matrix elements are

C�±
νλ = 〈��±1

ν |l±|��
λ 〉

where l± are the usual angular momentum raising and lowering operators. In the present study,
spectroscopic precision is not warranted, so the Coriolis coupling is neglected.

Figure 3 shows the two lowest adiabatic potential curves for HD+ and the P -matrix
coupling between them. Note that the asymptotic limit of the adiabatic potentials are the
exact atomic thresholds µD

2 and µH

2 , respectively, where µ−1
D = 1 + 1

mD
and µ−1

H = 1 + 1
mH

.
The radial equations were solved using the variational R-matrix method (Greene and Jungen
1984) and expanding the radial solutions on B-splines. The scattering and reaction matrices
are obtained using conventional scattering techniques.

To meet the present goal of obtaining cross sections converged to ∼ 1%, only the n = 1
curves shown in figure 3 were needed. The potential energy curves converging to H(n = 2) and
D(n = 2) begin to contribute at about the 1% level only for collision energies near 10 eV—near
the minimum of the lowest n = 2 curve. Over the range of energies approximately 1–8 eV
above the H(1s) threshold, partial waves up to J = 300 were included to obtain convergence
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Figure 4. Calculated charge transfer cross sections in slow H+ + D(1s) collisions as a function of√
E − EH(1s). The vertical bars at the top of the figure locate the shape resonances tabulated in

table 1.

to 1%, while 70–100 partial waves were included for energies up to 1 eV above the H(1s)
threshold. For energies in the gap between the D(1s) and H(1s) thresholds, only 20 partial
waves were needed for convergence, in part because the 1sσ centrifugal barrier goes above the
H(1s) threshold at J ≈ 10.

We show in figure 2 the comparison between the present charge exchange cross section
and previous calculations. The agreement with the results of Davis and Thorson is reasonable,
although their work still lacks the energy resolution needed to resolve many of the resonances
we find. We follow their example and attempt to identify each resonance in the charge exchange
cross section. Figure 4 shows our calculated charge exchange cross section on a square root
energy scale referred to the H(1s) threshold with the position of each resonance marked across
the top of the figure (even and odd J values have been indicated separately for clarity). All
of the resonances marked in the figure are shape resonances, although some were labelled
‘orbiting resonances’ by Davis and Thorson. They use this label to distinguish resonances
that lie just above the top of the centrifugal barrier from more typical shape resonances
below the barrier. These orbiting resonances are quite broad and often overlap a narrower
resonance with the same J just below the top of the barrier, and thus were not located for
some of the higher J s. The position of each resonance is shown in table 1 along with the
vibrational and rotational quantum numbers. The vibrational quantum number is, of course,
only a convenient label and refers to the number of nodes within the potential well behind the
centrifugal barrier.

The resonance positions were located using the maximum of the time delay

τ = 2
dδ

dE
(10)

where δ is the eigenphase sum. Some of the resonances presented in table 1 lie quite far below
the top of the centrifugal barrier and are thus extremely narrow. We did not explicitly locate
each of these resonances via equation (10); rather, their position was inferred from a plot of
the resonance energies versus J . Analysing the trends in such a plot allowed us to accurately
predict the locations of the ‘missing’ resonances. This approach was verified by an explicit
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Table 1. Shape resonances above the H(1s) threshold. Energies marked with an asterisk
are estimated resonance positions while the remainder have been explicitly calculated using
equation (10). The uncertainty in all resonance positions including those of Moss (1993) is in the
last digit shown. The bullets indicate resonances Moss suspected but could not directly calculate.

v J EvJ (au) Moss v J EvJ (au) Moss

0 42 −0.498 872 763 8 31 −0.498 45∗ −0.498 455 013
43 −0.496 39∗ −0.496 395 532 32 −0.497 0481 −0.497 052 310
44 −0.493 99∗ −0.493 999 183 33 −0.495 7838 −0.495 786
45 −0.491 69∗ −0.491 692 826 34 −0.494 7515
46 −0.489 48∗ −0.489 488 927 35 −0.493 8979
47 −0.487 4015 −0.487 407 7 9 29 −0.499 17∗ −0.499 175 812
48 −0.485 4894 • 30 −0.497 8497 −0.497 853 697
49 −0.483 7777 31 −0.496 6485 −0.496 652

1 40 −0.498 023 146 32 −0.495 6505 •
41 −0.495 70∗ −0.495 702 415 33 −0.494 8599
43 −0.493 51∗ −0.493 470 721 10 28 −0.498 5173 −0.498 521 155
44 −0.491 38∗ −0.491 342 047 29 −0.497 3896 −0.497 393 05
45 −0.489 3335 −0.489 339 4 30 −0.496 4362 •
46 −0.487 5118 • 31 −0.495 6999
47 −0.485 9176 32 −0.495 0588
48 −0.484 3900 11 26 −0.499 05∗ −0.499 056 825

2 39 −0.499 49∗ −0.499 490 360 27 −0.498 0082 −0.498 011 53
40 −0.497 24∗ −0.497 246 392 28 −0.497 1127 •
41 −0.495 08∗ −0.495 088 491 29 −0.496 4293
42 −0.493 17∗ −0.493 031 053 30 −0.495 846
43 −0.491 0914 −0.491 097 0 12 24 −0.499 46∗ −0.499 464 255
44 −0.489 3334 • 25 −0.498 5073 −0.498 510 471
45 −0.487 8233 26 −0.497 6830 •
46 −0.486 4042 27 −0.497 0569

3 38 −0.498 63∗ −0.498 632 383 28 −0.496 5418
39 −0.496 59∗ −0.496 549 678 13 23 −0.498 8919 −0.498 894 879
40 −0.494 65∗ −0.494 562 907 24 −0.498 1510 •
41 −0.492 71∗ −0.492 693 78 25 −0.497 5905
42 −0.490 9825 −0.490 98 26 −0.497 1446
43 −0.489 5298 14 21 −0.499 1699 −0.499 172 600
44 −0.488 2182 22 −0.498 5233 •

4 37 −0.497 85∗ −0.497 856 023 23 −0.498 0379
38 −0.495 98∗ −0.495 941 781 24 −0.497 6619
39 −0.494 21∗ −0.494 137 886 15 19 −0.499 3528 −0.499 355 218
40 −0.492 4773 −0.492 482 20 −0.498 8104 •
41 −0.491 0625 • 21 −0.498 4087
42 −0.489 8434 22 −0.498 1062

5 35 −0.499 00∗ −0.499 007 995 16 17 −0.499 4573 −0.499 453 63
36 −0.497 17∗ −0.497 169 889 18 −0.499 0284 •
37 −0.495 52∗ −0.495 434 038 19 −0.498 7150
38 −0.493 8277 −0.493 832 1 20 −0.498 4958
39 −0.492 4415 • 17 15 −0.499 5072 −0.499 5089
40 −0.491 2936 16 −0.499 1977 •
41 −0.490 1828 18 13 −0.499 5379 •
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Table 1. Continued.

v J EvJ (au) Moss v J EvJ (au) Moss

6 34 −0.498 24∗ −0.498 248 166 14 −0.499 3398
35 −0.496 63∗ −0.495 359 159 19 10 −0.499 6011 •
36 −0.495 0383 −0.495 042 76 11 −0.499 587
37 −0.493 6825 • 12 −0.499 4820 0.499 657 657
38 −0.492 5846 20 8 −0.499 66
39 −0.491 5618 9 −0.499 63

7 32 −0.499 17∗ −0.499 176 819 21 5 −0.499 7087
33 −0.497 5870 −0.497 591 574 6 −0.499 6933
34 −0.496 1113 −0.496 115 678 7 −0.499 6778
35 −0.494 7953 • 22 4 −0.499 7224
36 −0.493 7328 23 2 −0.499 7273
37 −0.492 8013

Table 2. Feshbach resonances below the H(1s) threshold. Except for the second column, all
energies are below the H(1s) threshold and are reported in cm−1.

Wolniewicz and Davis and Kennedy Lin and
Present Orlikowski Thorson et al Igarashi

J E (au) E ) E ) E ) E ) E )

0 −0.499 754 657 5.886 5.298 5.868 5.261 9.0 9.4 5.840 7.4 5.827 4.26
0 −0.499 728 207 0.0808 0.214 — — — — 0.103 — — —
1 −0.499 751 617 5.219 4.668 5.196 4.632 8.44 8.89 4.974 8.8 5.190 3.71
2 −0.499 745 131 3.795 3.369 3.769 3.336 6.58 7.13 3.304 7.1 3.839 2.79
3 −0.499 734 716 1.509 1.725 1.478 1.707 3.51 4.57 0.987 4.6 1.496 1.56

calculation of the time delay in a narrow energy range around two of the predicted locations
of missing resonances, for (v, J ) = (10, 28) and (7, 33). The remaining resonances predicted
using the above scheme are indicated in the table with asterisks.

In table 1 we also show some of the resonance positions calculated by Moss (1993) for
comparison. Moss used an artificial channel method and was able to find primarily the low-
lying shape resonances. In fact, Moss found two resonances that our approximate scheme
above failed to locate for v = 0 and 1. All of our estimated positions, however, agree well with
those of Moss, generally to four or five digits. Furthermore, where our coupled channel results
overlap with those of Moss, the agreement is somewhat better with discrepancies generally
occurring in the sixth digit. The bullets in the table indicate resonances that Moss suspected
but could not calculate. We should note that the results of Moss account for the *–+ Coriolis
coupling, while ours do not. For low J s (J � 3), this correction is of the order of 0.001 cm−1

(Balint-Kurti et al 1990), and increases to roughly 0.01 cm−1 already for J = 5. For the high
values of J in table 1, a similar increase in the magnitude of the shift will bring our results into
better agreement with those of Moss.

We note that for J larger than about 10, all shape resonances are primarily 1sσ in character
since the 2pσ channel is completely repulsive for all higher J . The main effect of the 2pσ
channel in these cases is to contribute a non-resonant background. For low J (J < 7), some
of the shape resonances are, however, primarily 2pσ in character.

Further quantitative comparison with previous calculations can be made using the
Feshbach resonances in the elastic cross section below the H(1s) threshold. This comparison
is accomplished in table 2 where the positions of the resonances are again determined from
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Figure 5. Calculated partial elastic cross sections for J = 0–3 between the D(1s) and H(1s)
thresholds. The positions and widths of the Feshbach resonances are indicated by vertical bars and
horizontal ‘error’ bars, respectively.

equation (10) and the widths are determined from

) = 4

τmax
. (11)

Agreement with Wolniewicz and Orlikowski (1991) to approximately two digits in both the
position and width is found. We found a second J = 0 resonance whose profile straddles
the H(1s) threshold. This resonance had been reported by Kennedy et al (1988) leading
Wolniewicz and Orlikowski (1991) to specifically attempt to locate it, but they were unable
to. The agreement with the results of Davis and Thorson (1978) is much worse even though
the total cross sections in figure 2 agree reasonably well. This quantitative difference for the
Feshbach resonances could possibly arise from inadequate handling of the spurious couplings
by Davis and Thorson. Since the features of the total cross section above a few meV are almost
totally controlled by the 1sσ curve, the agreement of the various calculations in figure 2 is not
very revealing. The quantitative characteristics of the Feshbach resonances are more stringent
tests since they depend critically on the 1sσ–2pσ coupling.

We show in figure 5 the partial elastic cross sections for J = 0–3 and mark the location
and width of the Feshbach resonances. One striking feature is the large asymmetry for the
J = 0 and 1 resonances. The higher J = 0 resonance and the J = 2 and 3 resonances,
however, show more recognizable profiles. Just below the H(1s) threshold, the total elastic
cross section is dominated by a J = 10 shape resonance which overwhelms the second J = 0
Feshbach resonance. It turns out that this is the same J = 10 shape resonance found by
Davis and Thorson (1978) to lie just above the H(1s) threshold. Again, this difference between
our calculation and that of Davis and Thorson may be a result of more systematic handling
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Table 3. Shape resonances between the D(1s) and the H(1s) thresholds. The uncertainty in all
resonance positions including those of Moss (1993) is in the last digit shown.

Present Moss

J E (au) J E (au) E (au)
2 −0.499 8630 12 −0.499 8014 −0.499 802 872
3 −0.499 8619 22 −0.499 7458 −0.499 749 086
4 −0.499 8570 27 −0.499 7510 −0.499 755 09
5 −0.499 8445 36 −0.499 8551 −0.499 860 41
6 −0.499 8353
7 −0.499 8105
8 −0.499 7604
9 −0.499 7464

10 −0.499 7285

of the 1sσ–2pσ coupling in the present calculation or it may come from the difference built
into the potential curves themselves in the present representation. This question could be
more definitively answered in a hyperspherical calculation—such as that of Igarashi and Lin
(1999)—since the hyperspherical approach is free of translational factors.

We have also located shape resonances in the gap and give their positions in table 3. Note
that there is no shape resonance for J = 1. This results simply from the fact that the barrier
is not sufficiently high to support a resonance. Note that there is a shape resonance for all
other values of J up to 10. For J > 10, the 1sσ centrifugal barrier peaks above the H(1s)
threshold, and a shape resonance occurs in the energy gap for only a few values of J . These
resonances are also given in table 3 along with their positions as calculated by Moss (1993).
The agreement between the present results and those of Moss is quite good and of the same
quality as for table 1.

For completeness, the calculated charge transfer and elastic cross sections as a function of
collision energy are shown in figure 6 for both H+ + D(1s) and H(1s) + D+ collision systems.

In many astrophysical models it is assumed that the reactions

H+ + D(1s) → H(1s) + D+

and

H(1s) + D+ → H+ + D(1s)

occur with equal probability. If, however, the energy of the collision is below about 0.1 eV
(≈ 1000 K), this assumption fails. The ratio of the cross sections for the two reactions has
been fitted by Galli and Palla (1998) as R = e−43/T , where T is the temperature of the gas
(the temperature is associated with the kinetic energy above the H(1s) ground state). This
expression approaches unity at high temperature so that the charge transfer proceeds in both
directions at the same rate in this limit. Below about 200 K, however, this approximate
expression underestimates the calculated ratio R, as can be seen from figure 7. Note that this
ratio is smooth in contrast to the structure seen in the cross sections for each individual reaction
shown in figure 6. To understand this coarse behaviour and derive a simple analytic form for
this ratio, we note that the inelastic cross section is given by

σ12 ∝ 1

k2
1

|S12|2 (12)

with a similar expression for the second reaction. S12 is the transition matrix element. In this
expression, 1 labels the channel corresponding to the lower threshold, namely H+ + D(1s); and
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Figure 6. Calculated charge transfer and elastic scattering cross sections in slow H+ + D(1s) and
H(1s) + D+ collisions.

2, the channel corresponding to the higher threshold, D+ + H(1s). Thus,

R = σ12

σ21
= (1/k2

1)|S12|2
(1/k2

2)|S21|2
= 1/k2

1

1/k2
2

= E − EH(1s)

E − ED(1s)
. (13)

This expression, in contrast with the fit of Galli and Palla (1998), is exact over the entire
energy (temperature) range, as long as there are only two channels dominating these reactions.
Furthermore, it is as simple to apply as the analytic fit used for astrophysical modelling.

We have presented a calculation of the low-energy charge exchange cross sections for
H+ +D(1s) using a recently developed adiabatic formulation of the problem that removes many
of the translation factor problems of previous calculations. The myriad shape and Feshbach
resonances near the n = 1 thresholds have been analysed and identified. The ratio of charge
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Figure 7. The ratio of the cross section for charge transfer in H+ + D(1s) to H(1s) + D+ collisions.
The full curve is the present theory (see text) and the broken curve is the fit used by Galli and Palla
(1998).

exchange cross sections, which has been previously obtained as a fit, is expressed exactly in
terms of the collision and the atomic energies.
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