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Abstract
The scattering length for hydrogenic atoms with variable lepton mass, ranging
from H to pµ, is calculated. The non-trivial sensitivity of the scattering length to
non-adiabatic effects is investigated using the coupled-channel approach. The
physical conditions for the Bose–Einstein condensation of exotic atoms are
expressed in terms of this scattering length, which for the pµ atoms interacting
via 3�+

u potentials, is calculated to be 1.13 × 10−2 au. The critical temperature
for condensing the pµ atoms is estimated to be 0.5 K at a density of 2.2 ×
1020 cm−3. Under these conditions the phonon velocity in the condensate is
2.2 m s−1 and the coherence length is nearly 5 µm.

1. Introduction

More than ten years after the creation of dilute Bose–Einstein condensates (BEC) of alkali
metal atoms in magneto-optical traps, the intense level of activity in ultracold atomic and
molecular species continues unabated. Nearly all the alkali metal atoms have now been
Bose condensed and degenerate Fermi gas and Bose condensation of molecules formed
from the magnetically tunable interaction between Fermionic atoms have been spectacularly
demonstrated [1, 2]. The demonstration of the reversible superfluid to Mott insulator phase
transition in an optical lattice and the transition to the Bardeen–Cooper–Schrieffer regime
are experiments [3, 4] in the condensed regime. More recently, the formation of a BEC
of chromium atoms in an optical dipole trap is the first example of condensation with large
anisotropic dipole–dipole interaction [5]. The prospect for condensation of light species, such
as positronium atoms [6–9], raises tantalizing hopes for applications such as the γ -ray laser.

A great deal of knowledge about the collisional properties of atoms at ultracold
temperatures has been gleaned from theoretical investigations of spin-polarized hydrogen
collisions, aiming to understand the accuracy of hydrogen maser clocks [10] and Bose
condensation of hydrogen [11]. Molecular hydrogen is unique in that it is the simplest of
all neutral molecules and hence amenable to sophisticated quantum molecular theories which
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can be applied to calculate accurate Born–Oppenheimer (BO) potential energy curves, non-
adiabatic coupling interactions and properties characterizing H–H collisions such as cross
sections and scattering lengths. Because the cold colliding atoms approach slowly and hence
spend long times interacting with each other, they are susceptible to weak long-range forces.
Substantial effort, in particular over the last decade, has been devoted to calculating long-range
interaction forces between hydrogen, alkali-metal and group II atoms. In the case of hydrogen
and alkali-metal atoms, considerable attention has been paid to the sensitivity of ultracold
collisional properties—the s-wave scattering length in particular—to small changes in the BO
potential energies, such as the inclusion of relativistic terms and diagonal interaction, the
so-called adiabatic correction term, and other effects such as altering the reduced mass from
nuclear to atomic mass [12, 13].

In this work, we calculate the scattering length for the hydrogen atom whose electron has
been replaced by a negative lepton and study the influence of the adiabatic corrections and
non-adiabatic molecular channel couplings. We concentrate on the muonic atom, an atomic
complex of proton and muon and find that the ratio of the lepton mass to the hadron mass
determines, to a large extent, the sensitivity of the scattering length to adiabatic corrections.
Using the results, we explore new regimes of BEC and estimate the physical conditions for
condensing light and strongly bound atoms such as pµ.

Collisions between muonic atoms are analogous to collisions between H atoms, except
that the size of the pµ-atom is much smaller. Compared to hydrogen atoms, muonic atoms
are more compact and more strongly bound by a factor η = µpµ/µpe � 186, where µpµ and
µpe are the reduced masses of the proton–muon and proton–electron systems, respectively.
In thermal collisions with hydrogen atoms or molecules, the pµ atom behaves like a spinless
neutron. Muonic atoms penetrate the electronic shells of ordinary atoms without breaking
them and collide with atomic nuclei (see [14]). Kinetics of collisions of muonic atoms has
been extensively studied in connection with the catalysis of nuclear reactions [15–17]; here
we discuss the quantal properties of the pµ gas.

2. Calculation and analysis of the scattering length for pµ atoms

The position of the minimum of the interaction potential for pµ atoms is reduced and the
depth of the potential increased by a factor of η � 186. The nuclear motion is described in
the adiabatic approximation by the Schrödinger equation(

Ĥ i + C
µ

ii (R)
)
χi(R) = Eχi(R), (1)

where i = 0, 1, 2, . . . refer to the ground and excited states of pµ–pµ of singlet or triplet
symmetry, and

Ĥ i = − 1

2M

d2

dR2
+

1

R
+ V

µ

i (R), (2)

M is the reduced mass of two protons, E is the collision energy, V
µ

i (R) = ηV e
i (Rη) is the

ith muonic adiabatic potential obtained by scaling the electronic potential V e
i (R) for two

hydrogen atoms, and atomic units have been used. In equation (1), C
µ

ii (R) is a diagonal
adiabatic correction to the ith Born–Oppenheimer (BO) potential, arising from the coupling
between the motion of the light and heavy particles. In the H2 molecule, the correction Ce

ii(R)

is small, but since it involves second derivatives with respect to the coordinates it scales as
C

µ

ii (R) = η2Ce
ii(Rη), and hence its importance relative to the BO potential increases by a

factor η.
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The standard form of the diagonal adiabatic correction [18, 19] is

Cii(R) = 〈φi(r1, r2;R)| − 1

2M
�R − 1

8M
(�1 + �2) − 1

4M
∇1 · ∇2|φi(r1, r2;R)〉 (3)

where φi(r1, r2;R) is the leptonic BO wavefunction corresponding to the leptonic channel
i, i.e. solution to the leptonic eigenvalue problem

[− 1
2ml

(�1 + �2) + V
]
φi(r1, r2;R) =

V l
i (R)φi(r1, r2;R), with V being the potential energy of the proton–lepton interaction and ml

the lepton mass.
We use the leptonic Hamiltonian in which the muon mass is replaced by the reduced

muon–proton mass. In changing the unit of energy from atomic units based on the muon mass
to units based on the muon–proton reduced mass, an amount of the leptonic kinetic energy
δK = −1/(4M)(�1 +�2) is incorporated into the kinetic energy term of the BO Hamiltonian
for the muons. Adding δK to the leptonic BO Hamiltonian −1/(2ml)(�1 + �2) + V changes
it to −1/(2µpl)(�1 + �2) + V , where µpl is the reduced mass of the proton–lepton system,
and subtracting δK from the term −1/(8M)(∇1 + ∇2)

2 of the adiabatic correction changes it
into 1/(8M)(∇1 − ∇2)

2. The adiabatic correction becomes

Cii(R) = 〈φi(r1, r2;R)| − 1

2M
�R +

1

8M
(�1 + �2) − 1

4M
∇1 · ∇2|φi(r1, r2;R)〉. (4)

Hence the transformation leads to the leptonic BO Hamiltonian based on the reduced proton–
muon mass and to the diagonal correction that vanishes asymptotically, providing the correct
scattering limit [20].

We first calculate the scattering length of the X1�+
g ground-state potential, as. We

have used the interaction potential together with the diagonal (adiabatic), relativistic and
radiative corrections from [13] and privately communicated data in the interval R = 12–20 au.
The long-range part is described by the C6, C8 and C10 coefficients from [21] and the exchange
correction from [22]. The phase shift, δ0(ki), where ki is the asymptotic linear momentum
in channel i, is obtained by numerically integrating equation (1) to a value of R = 100 mau,
where mau are the modified muonic atomic units based on the reduced proton–muon
mass. We have verified that the phase shift is converged by repeating the calculation to
a BO distance of R = 1000 mau. Finally, we extract the scattering length in the limit,
a = −limki→0 tan δ0(ki)/ki .

Using in equation (1) the BO X1�+
g potential together with the appropriately scaled

diagonal correction (4), we obtain the singlet scattering length as = 2.246 mau =
2.246 au/η = 1.208 × 10−2 au. If the correction C

µ

00 is omitted we obtain as = 2.323 mau;
the change induced by the diagonal adiabatic correction is −0.0764 mau or −3%. This is
much less than the change of −27% reported in [23] for the H−H system. The insensitivity
of the scattering length for pµ collisions is due to the absence of near threshold states of the
pµ–pµ system. We calculated the vibrational energy levels for the ground state of pµ–pµ

molecule and found that it has only one bound vibrational state with a binding of 354 eV.
We now consider the case of muonic atoms colliding with parallel spins, as is the case

in a magnetic trap, when the nuclei interact through the muonic potential of triplet symmetry
3�+

u . This potential is almost entirely repulsive and has no bound states. The 3�+
u scattering

length calculated in the BO approximation is at = 2.281 mau. Adding the diagonal adiabatic
correction changes it by −8% to at = 2.107 mau.

Thus far we have neglected the non-adiabatic radial coupling, which is much stronger for
pµ–pµ compared to H–H and might significantly affect the cross sections. The energy of the
nuclear vibrations in the muonic molecule is only moderately smaller than the energy of muonic
transitions, corresponding to a non-adiabaticity parameter Evib/�Eµ � √

mµ/mp � 0.3.
However, the smallness of that ratio provides a sufficient rather than a necessary condition for
the validity of the BO approximation [24].
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In view of the unusually large non-adiabaticity parameter, we investigate the sensitivity
of the triplet scattering length to the interaction between the adiabatic states.

With the inclusion of the non-adiabatic couplings B01(R) and B10(R) the resulting coupled
equations have the form

(Ĥ 0 − E)χ0(R) = −B̂01(R)χ1(R) (5)

(Ĥ 1 − E)χ1(R) = −B̂10(R)χ0(R) (6)

where the indices refer to the two lowest 3�+
u states of pµ–pµ and the operators Ĥ i are defined

in equation (2). The above equations (5)–(6) are solved at an energy just above the lowest
dissociation threshold to pµ(1s) + pµ(1s), at E = −1 + εi where εi is the relative kinetic
energy of the colliding atoms. In the Hamiltonian Ĥ 0, we used the appropriately scaled
adiabatic potential V e

0 (R) of the b3�+
u state and the concomitant adiabatic correction

from [25] up to R = 8 au and from [26] for 8 au < R < 12 au. For larger R, we
used the expansion from [21]. In the Hamiltonian Ĥ 1 we used the V e

1 (R) potential of
the e3�+

u state from [25] together with the long- and short-range data from [27]. The
lowest state, which is almost entirely repulsive, correlates in the separated atom limit to
the threshold energy E0 = E(H(1s) + H(1s)) = −1 au. The next lowest state has a
minimum V min

1 � −0.68 au at R � 2 au and converges to the separated atom limit with
energy E1 = E(H(1s) + H(2s)) = −0.625 au. The coupling matrix elements B01 and
B10 were obtained by fitting the graphical data from [28] to analytical functions. We
adapted these couplings to the muonic situation by scaling them with a factor η according to
B̂

µ

01(R) = ηBe
01(ηR)∂/∂R.

The calculation of the triplet scattering length gave at = 2.098 mau = 2.098 au/η =
1.128 × 10−2 au. This is two orders of magnitude smaller than for hydrogen atoms: for
spin-polarized hydrogen atoms interacting through the triplet b3�+

u potential aH = 1.216 au
[23]. We find that the inclusion of coupling to the first excited state (via B01) results in a
small change of the scattering length at. This effect is smaller than the effect of the adiabatic
correction. The influence of coupling to the next excited state (via B02) is also small and it is
thus probable that couplings to more distant states will be at most comparable. The effects of
non-adiabatic coupling are small because of the large energy gap between the muonic states
and the ultralow kinetic energy of the colliding atoms. The numerical instabilities, encountered
in calculations of the non-adiabatic scattering length for hydrogen [20], were not present in
our calculation for pµ.

The mass scaling of the interaction potential provides us with an opportunity to study
the dependence of the scattering length on the leptonic mass. In figure 1, we show our
singlet and triplet scattering lengths, calculated by including the adiabatic correction in the
BO Hamiltonian, as a function of the ratio of the light mass to heavy mass, ml/mh. The
singularities in the singlet scattering length reflect the presence of bound states with zero
binding energy. The triplet scattering length is smooth, indicating the absence of a bound
state for ml/mh � 0.169 × 10−3. For ml/mh � 0.113, corresponding to pµ, at attains a value
which is coincidentally very close to as.

3. Conditions for condensation of pµ atoms

For an ideal Bose gas in three dimensions, the necessary condition for condensation takes the
form [29, 30],

ρλ3
dB > 2.612 (7)
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Figure 1. Singlet (as, solid line) and triplet (at, dashed line) scattering lengths for collisions of
hydrogen-like atoms, given in mass-scaled atomic units, as a function of the mass ratio γ = ml/mh.
The dotted line to the left corresponds to γ = me/mp � 0.545 × 10−3 for hydrogen, the dotted
line to the right corresponds to γ = mµ/mp � 0.113 for pµ. The sensitivity of the scattering
length to the change of the mass ratio is seen to be larger for hydrogen than for pµ. This effect
would be seen even more clearly with a linear scale of the abscissa.

where ρ is the atom number density and λdB is the de Broglie wavelength, λdB =√
2πh̄2/(mkBT ), with m being the atomic mass, kB Boltzmann’s constant and T the absolute

temperature. In a trap and in the presence of atomic interaction, a diluteness parameter,
D = a/ρ−1/3, may be introduced to describe how an interacting quantum gas approaches the
ideal gas limit [29]. The almost ideal Bose gas is characterized by a small value of D [31] and in
this situation the condition for condensation can be expressed as λdB(T ,m) � d � a, where
d = ρ−1/3 is the average interparticle distance. For all the gaseous alkali-metal and hydrogen
BECs, the diluteness parameter is small; D ∼ 10−2 for the alkali metals and D ∼ 10−4 for
hydrogen, respectively [32]. We therefore assume that D will be small for the pµ condensate,
thus apµ/dpµ � 1, with apµ/dpµ = aH/dH = DH. The same diluteness does not mean the
same density; the average distance between the pµ atoms is given by dpµ = dHapµ/aH. Thus,
if hydrogen condenses at the density ρH = (dH)−3 the corresponding density for pµ is

ρpµ
c =

(
1

dpµ

)3

= ρH
c

(
aH

apµ

)3

= ρH
c

(
1.21

0.0113

)3

∼ 106ρH
c . (8)

The nearly ideal gas behaviour of the pµ atoms occurs therefore at densities six orders of
magnitude higher than for the hydrogen gas.

Using λ
pµ

dB = λH
dBapµ/aH from condition (7) we obtain the critical temperature for

condensation of the pµ atoms to be

T pµ
c = mH

mpµ

(
aH

apµ

)2

T H
c ∼ 104T H

c . (9)

Thus the condensation temperature T
pµ

c for the BEC of pµ atoms is four orders of magnitude
higher than that necessary to condense hydrogen. Since hydrogen condenses at T H �
50 µK [32] a modest T pµ = 0.5 K will be required to condense pµ. The hydrogen density at
the transition point is ρH = 1.8 × 1014 cm−3 and the corresponding critical density of pµ is,
according to equation (8), ρpµ � 2.2 × 1020 cm−3.
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A fascinating feature of the pµ BEC is its ultra high density, leading to condensed-matter
type properties in the regime of weak interatomic interaction. We find that the phonon velocity
in this condensate would be two orders of magnitude larger than in the hydrogen condensate.
Indeed, for small collisional energies, the energy of the elementary collective excitations (the
so-called Bogoliubov phonons corresponding to sound waves in the atomic gas) is a linear
function of momentum, ε = vsp, where vs =

√
4πh̄2aρ/m2 is the sound velocity. Hence

v
pµ
s = mH

mpµ

√
apµρpµ/(aHρH) � 96vH

s and the sound velocities may reach values of several

m s−1, creating favourable conditions for the propagation of the collective excitations and
superfluidity.

The formation and confinement of large quantities of pµ atoms in the form of an atomic
gas are challenging and unsolved experimental tasks, more difficult than for the case of
Ps = [e+e−] atoms [9] although the annihilation rate of positronium is about the same as
the decay rate of muons. Both types of atoms can in principle be formed by recombination.
The formation of pµ atoms occurs spontaneously when muons are brought in contact with
gaseous or liquid samples of hydrogen in atomic or molecular form. Muons replace electrons
in ordinary atoms, forming muonic atoms under a wide range of physical conditions. The
entire formation process, including slowing down of fast muons, capture of slow muons into
the highly excited states of muonic atoms, and deexcitation cascade into the ground state takes
on the order of 100 ps at liquid hydrogen density [14], a time much shorter than the natural
lifetime of the muon, τµ = 2.2 µs. Large quantities of pµ atoms might be obtained in µ−H2

collisions by stopping a beam of muons in a sample of hydrogen. However, the available beam
intensities are not sufficient for obtaining the critical density of pµ predicted in this work [33].

In conclusion, we have calculated the scattering length for a system consisting of two
hydrogenic atoms with a variable lepton mass. The sensitivity of the scattering length to the
non-adiabatic effects for pµ–pµ collisions was analysed using the coupled-channel approach.
The results indicate that the pµ atoms interact very weakly, manifesting behaviour similar
to that of an ideal gas, without extensive cooling or diluting. The pµ scattering length,
apµ = 1.13 × 10−2 au, is two orders of magnitude smaller than the corresponding scattering
length for hydrogen and for ortho-positronium, and four orders of magnitude smaller than
that for 87Rb. Thus the pµ atoms are expected to form a BEC in conditions very different
from those required for ordinary atoms, moving the BEC phenomenon into a completely
new regime, yet permitting theoretical treatment without complications originating from the
strong interatomic interactions. Our calculations show that the BEC of pµ would occur at
the temperature of 0.5 K (four orders of magnitude higher than for BEC of hydrogen) and the
density of 2.2 × 1020 cm−3 (six orders of magnitude denser than for BEC of hydrogen).
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