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LETTER TO THE EDITOR

Resonant electron-hydrogen atom scattering using
hyperspherical coordinate method

H R Sadeghpour

Harvard—Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138,
USA

Abstract. The scatiering of unpolatized electrons from hydrogen atoms is treated using
the hyperspherical coordinate and the multichannel quanium defect approach with par-
ticular emphasis on the formation of quasi-stable resonant e~-H complexes. Resonant
positions and widths, formed below the H(n = 2), H(n = 3), and H(n = 4} thresholds,
are calculated for symmetries 135%, 3p° and 1D®. Resonant cross sections are also
given for the singlet and triplet L = 0 partial waves. Good agreement is found with
other more compuiationally intensive calculations.

Electron-hydrogen scattering forms the most basic of all three-body atomic coilisions.
Many elaborate methods have been proposed and implemented covering the range
of eiectron energies from thermal encrgies to hundreds of ¢V above the ionization
limit. Close-coupling expansion using pseudostates (Burke e al 1963, Callaway and
Wotten 1974, Morgan et al 1977, Callaway 1982, 1985) and R-matrix (Scholz et al
1988, Pathak et al 1988) methods have yi€lded accurate numerical values for the
elastic and inelastic cross sections including resonance parameters. Other numerical
methods, while not providing non-resonant information such as cross sections, have
calculated positions and widths of these resonant states for this two-electron system
(Ho and Callaway 1986, Ho 1990).

This letter reports on a calculation of scattering cross sections and resonant posi-
tions and widths for incident electron energies sufficient for excitation of H(n = 2),
H(n = 3), and H(n = 4) states using the non-adiabatic hyperspherical coordinate
representation (HSC) and the multichannel quantum defect theory (MQDT). The util-
ity of the HSC coordinates has been most effectively demonstrated over the past two
decades in the classification and identification of the doubly-excited resonant states
of two-electron species such as H~ and He (Macek 1968, Lin 1974, 1986, Koyoma ez
al 1986). In Macek’s adiabatic HSC treatment (Macek 1968), the HSC Hamiltonian is
parametrized in the ‘slow’ coordinate R = (v 4 r3)'/? in analogy with the adiabatic
Born—Oppenheimer approximation for diatomic molecules. Recent studies using this
adiabatic representation have been able to identify the dominant excitation and pho-
toabsorption channels for the photodetachment and photoionization of H™ and He
(Sadeghpour and Greene 1950, Sadeghpour 1991).

In this work, the non-adiabatic radial coupling terms responsible for the excitation
of different hydrogenic manifolds are taken into account by numerical propagation
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of a set of coupled equations in R outward to a matching radius R = R, in the
asymptotic region, beyond which the radial couplings are ignored. Radial solutions in
the inner region are mapped onto the asymptotic solutions which are assumed valid
for all R > R;. Scattering parameters weakly dependent on energy are obtained
within the framework of MQDT (Seaton 1966, 1982, Greene et al 1979, Greene and
Jungen 1985). These parameters are then interpolated on a fine energy mesh for
the calculation of scattering phaseshifts and cross sections exhibiting rich resonance
etrrncotnre

The calculations presented here are performed in two stages. First, adiabatic
hyperspherical potential curves and associated couplings are obtained. To this end,
the total operator U( R; Q) = [A2/2R? + C(«,0,,)/ R] is diagonalized at each R

U(R; Q)% ,(R;Q) = U, (R)}®,(R; Q). Q)

In (1), @ = tan™*(ry/r,) lies in the range 0 to = /2 and &,, = cos~ (7, - #,)
ranges from O to 27, A% is the ‘grand’ angular momentum operator and C(«a, 6,,)
acts as an ‘effective’ charge for the three-body system. (Explicit expressions for
these operators are given in Sadeghpour (1991).) The diagonalization of the fixed
R Hamiltonian in (1) is done using a linear combination of non-orthogonal ba-
sis functions, ® ,(R; Q) = 37, ¢;(R,)¢;,(R), which includes eigenfunctions of
the granu angunar momentuin operator augmented with two-eleciron basis functions
constructed from properly symmetrized products of one-electron orbitals to repre-
sent the asymptotic channel functions. The resulting generalized eigenvalue equation
Ue, = U,{R)Oc,, in which Q is the full overlap matrix between the basis functions,
is solved to obtain accurate adiabatic potential energy curves and radial coupling
elements, P, .(R) = (®,[(d/dR)D ).

Next, excitation and non-radiative decay probabilities of the autodetaching states
are calculated by the non-adiabatic coupling of these HSC potentials in

[(ld—‘i,t;+P(R))2+2(|EwU(R))]F(R)=o @

where | denotes the identity matrix and the diagonal matrix U{R) contains the
potential energies. The components of the solution matrix F;,(R) in each chan-
nel are propagated outward from the origin, subject to the boundary condition
Fig(R} — R":‘“éj g 8 R — 0 where A are the eigenvalues of the grand angu-
lar momentum operator, to the matching radius R = R,. Here j = {n, u}, where n
is the hydrogenic principal quantum number and g is the HSC channel function index.
The Gordon stablilization procedure is used to ensure the linear independence of the
solution vectors (Gordon 1967).

A shortcoming of the HSC representation is the ‘artificial’ behaviour of the channel
coupling, P, ,.(R) ~ R™', at large R. This residual coupling has been shown by
Macek (1985) to manifest itself in the phase of the out-going electron wavefunction
such that at high energies the effect of this coupling on the phaseshift becomes
large. An attempt at remedying this problem for the calculation of the elastic S-wave
phaseshift involved matching the Hsc wavefunctions to the close-coupling solutions
in independent-cleciron coordinates (Christensen-Dalsgaard 1984). It will be shown
here that a combined hyperspherical and quantum-defect treatment can adequately
describe the long-range phenomena in terms of a few parameters typical to all MQDT
analyses.
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To this end, linear combinations of the solution vectors, F};, are expanded on the
hypersphere at R = R, in terms of regular and irregular functions appropriate to
the asymptotic region

N
Y Fip(Rodes, = f;(Ro)U;, cos(mp,) — 9;(Rp)U;, sin(mp,) (3)
g=1

where v =1,..., Ny, with N; the number of open and weakly-closed (energetically
inaccessible) channels, and N the total number of channels retained in (2). A
similar equation also holds for the radial derivatives. f; and g; are the energy-
normalized functions in each fragmentation channel j and are evaluated at R = R,.
These functions are oscillatory in the energetically accessible open channels and are
exponentially divergent in the weakly-closed channels in which the resonances form.
U;, are the orthogonal frame-transformation matrices connecting the eigenchannels
v and the detachment channels j and s, are the eigenquantum defects common to
each detachment (fragmentation} channel (Greene and Jungen 1985). In the strongly-
closed channels the linear superposition of the inner solution vectors vanishes for
R > R,. Equation (3) can be transformed into

Te =tanwpAe {4)

where the matrices I and A contain the Wronskian of the left-hand side of (3) with
f; and g;, respectively. The number of the eigenvalues of (4) will be the same as the
number of open and weakly-closed channels, since A is of rank N,. In this fashion,
all the information about the short-range interaction of the incident electron with
the hydrogen atom is embedded in U;, and wy,. These parameters, which vary
smoothly with energy, are used to construct the full scattering matrix in the usual
MQDT manner (see Greene and Jungen 1985 for details). Elastic and inelastic cross
sections are computed, enhanced by the presence of resonance structures. These
resonances form in each HSC channel j where the outer electron experiences an
attractive permanent dipole moment of the hydrogen atom, a; < —1 (Gailitis and
Damburg 1963, Seaton 1961). There are aiso repulsive dipole fragmentation channels
(a; > —1) which contribute only to the continuum excitation. The non-radiative
decay width and the position of these resonances scale approximately as €, , /e =
Tyt /T = €727/ where a; = (—¢; — 1)1/? and m = n indexes the lowest
member of any resonance series belonging to the j = {n,u} group. ¢, is the one-
electron binding energy relative to the respective n-series limit and I', is the full
width at half maximum.

In figure 1(a) and (&), the 1s-1s 3S° and 'S® cross sections are given for incident
electron energies near the H(n = 2) threshold. Six HSC channels were included
inside a ‘box’ of Ry = 25 au for the result shown. The highest three channels were
treated as strongly closed and a three-channel MQDT analysis was carried out on the
reaction boundary. Also shown are the results of an R-matrix calculation by Scholz
and Scott (1991). The resonance positions and widths below the n = 2 thresh-
old, tabulated in table 1, were obtained from the maximum value of 2(dé/dE)~1,
where 6 is the short-range phaseshift of the electron in the open 1sel channel. This
phaseshift displays rapid variation with energy as shown in figure 1(c). However, the
eigenphaseshifts (7u,) calculated with the MQDT method for the three open and
weakly-closed channels do not show, in figure 1(d), this variation with energy. This
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Figure 1. (@) The elastic 15-1s 38¢ cross sec-
tion in wa? for incident clectron energies (in
atomic units) below the H(n =2) threshold,
(B) *S° cross section, (¢) the elastic phase-
shift § in the lses open channel exhibiting
resonance effect and (d) the eigenquantum
defects u, for the three open and weakly-
closed !S® channels. The m = 2 thresh-
old is at 0.375 au (1 au = 27.211 652 eV).
The asterisks are the R-matrix calculation of
Scholz and Scott (1991).
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is the trademark of MQDT analysis which allows the numerically intensive short-range
calculation inside the HSC box to be carried out for a few energies and the result-
ing parameters to be interpolated economically on any desired energy mesh so as to
resolve even the narrowest structure in the cross section.

Table 1. Resonance encrgies (E) and widths (I") in eV. The Rydberg unit is 13.605826 eV.

WHipr {v}A  E(T) (present) E(T) (expt) E(T) (calculated)
lg¢ 2{0} 9.559(0.0475) 9.549(0.063)8 9.56(0.047)%, 9.557(0.052)
9.55735(0.047 17)°, 9.5572(0.0471)*
{0} - 10.176(0.0031) 10.178(0.0022)%, 10.177(0.0026)®
{0 11.731(0.0399) 117241k 11.7281(0.0389)f, 11.72805(0.040 $5)®
3{03  12.030¢0.0100) 12,033 67(0.008 313)f, 12.033 71(0.007 891)°
o) 12525000225 12.528(0:0298)%, 12.5272(0.025 85)°
0} 12.693(0.008) 12.6936(0.007 35)®, 12.6927(0.009 25)¢
S 12.671(0.0195) 12.6618(0.01932)®, 12.6609(0.023 95)
ige 2{0}7  10.148(0.000 46) 10.150(2.0 x 1075y, 10.147°
2{0}7  10.201(1.68 x 10—%)
3{0};  12.001(0.000 21) 12.0098H 12.0008(0.000 24)F, 12.0008(0.000 23)°
340}y 12.075(4.0 x 107%) [2.0754(5.82 x 107%), 12.07554b
e 2{0}  10.1290.0101) 10.115(0.006§  10.1253(0.008 81)¢, 10.126(0.0088)°
10.124 46(0.008 62)
spe 2{0};  9.745(0.007 65) 9.736{0.005)8 9.74(0.0059)%, 9.7382(0.005 £2)°
9,741(0.0071)°, 9.7381(0.0058)
3{0}; 1L.7710.0519) 1177217 11.7582(0.0435), 11.7578(0.046 68)°

11.758 15(0.04354)%

* Taylor and Burke (1967).
4 Ho (1990).
& VWamer et al (1986).

b Pathak er al (1988).
¢ 8Scholz et al (1988).
R Warner e al {1990).

¢ Ho et al (1977).
[ Callaway (1982).
! Bhatia and Ho (1990).

The 1s—1s cross section in the !S° is shown in figure 2(z) for incident electron
encrgies between the H{n = 2) and H(n = 3) thresholds. Secven HSC channels
were included in (2) and a six-channel (N, = 6) MQDT analysis was carried out at
R, = 42 au for the 1S° scattering parameters. The cross section reveals resonance
structure converging on the n = 3 manifold of hydrogen.

These resonances are classified with the group theory quantum numbers of Herrick
(1983) and Lin (1983) (J/(, T and A), which for the S-wave even-parity scattering
take values of T=0, K =n—-1,n-3,...,-(n=-3),—(n—1),and A = (-1)5,
with S the total spin. It has been shown for the photodetachment of H™ that a more
appropriate quantum number i the ‘bending’ quantum number v (Sadeghpour and
Greene 1990, Watanabe and Lin 1986) which for the 'S¢ and *S°® symmetries has
values of v = 0%, 1+, 2+ ... and v* =0-, 1-, 27, ..., respectively. For
instance, the lowest member of the resonance series converging to H(n = 3) can
be identified with the compact notations of , {v}; = 5{0}F and {0}, depending
upon the spin. In this ‘+° state, the electrons interact strongly through the electron—
electron interaction term and are therefore rapidly autodetaching (Cooper at al 1963).
On the other hand, in the ‘-’ state, the interaction is minimal leading to strong
stability against autodecay as the electrons occupy different radial ‘orbits’. Resonance
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Figure 2. The 8¢ elastic cross section for (a) electron energies near the H{n
threshold at 0.444 44 au and (b) eleciron. energies in the vicinity of the H{n
threshotd at 0.468 75 au.

- 3)
= 4)
parameters for symmetries 3P® and !D* are also given in table 1 and are classified
with the above notation.

In figure 2(b) the !S® cross section for electron energies above the H(n = 3)
threshold is presented displaying resonances converging to the series limit at H(n =
4). An eleven-channel HSC-MQDT calculation was performed at R, = 63 au for the
results shown. For the 'S* symmetry, the n = 4 manifold is the first instance the
electron can bind to more than one attractive dipole channel, namely the , {v}4 =
4{0}* and ,{1}* channels. One should therefore expect two separate series of
resonances identifiable with these quantum numbers. Indeed the first broad resonance
is the Jowest member of the ,{0}* series classified as a ,{0}} resonance and the next
resonance has the quantum numbers ,{1}} belonging to the next attractive dipole
channe! ,{1}*. The resonance parameters are provided in table 1 where good accord
with other calculations is observed. The magnitude of the cross section also agrees
reasonably well (to within 15%) with the calculations of Callaway and Wooten (1974)
and the R-matrix calculation of Scholz and Scott (1991).

In conclusion, cross sections and resonant positions and widths have been obtained
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for the e~H scattering in the combined hyperspherical coordinate and multichannel
quantum defect approach. The results of this work confirm that this unified theory
can successfully predict the formation of resonance structure in the scattering of
electrons from hydrogen atoms.

This work was supported by the US Department of Energy, Division of Chemical
Sciences, Office of Basic Energy Sciences, Office of Energy Research. The calculations
were performed on an IBM RISC6000 Workstation. I thankfully acknowledge Tim
Scholz for providing numerical R-matrix data,
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