
J. Phys. 8: At. Mol. Opt. Phya. 25 (1992) L29-U.5. Printed in the UK 

LElTER TO THE EDITOR 

Resonant electron-hydrogen atom scattering using 
hyperspherical coordinate method 

H R Sadeghpour 
HaNardSmilhsonian Center for AStrophysiq 60 Garden Sireet, Cambridge, M A  02138. 
USA 

AbstrscL The scattering of unpolarized electrons fmm hydrogen atoms is lrealed using 
the hyperspherical cwrdinate and the multichannel quantum defect approach with par- 
ticular emphasis on the formation of quasi-stable resonant e--H complexes. Rsonanl 
positions and widths, formed below the H(n = Z), H(n = 3), and H(n = 4) thresholds, 
are calculated [or symmetries 1,3Sc,  3P0, and 'De. Rewmani cmss seetiom are also 
given for lhe singlet and triple1 L = 0 panial waves. Good agreement is found with 
other more computationally intensive calculalions. 

Electron-hydrogen scattering forms the most basic of all three-body atomic collisions. 
Many elaborate methods have been proposed and implemented covering the range 
oi eiectron energies irom thermai energies to hundreds of eV above the ionization 
limit. Close-coupling expansion using pseudostates (Burke er a1 1963, Callaway and 
Wotten 1974, Morgan ef (11 1977, Callaway 1982, 1985) and R-matrix (Scholz el a1 
1988, Pathak ef (11 1988) methods have yielded accurate numerical values for the 
elastic and inelastic cross sections including resonance parameters. Other numerical 
methods, while not providing non-resonant information such as cross sections, have 
calculated positions and widths of these resonant states for this two-electron system 
(Ho and Callaway 1986, Ho 1990). 

This letter reports on a calculation of scattering cross sections and resonant posi- 
tions and widths for incident electron energies sufficient for excitation of H(n = 2), 
H(n = 3), and H(n = 4) states using the non-adiabatic hyperspherical coordinate 
representation (HSC) and the multichannel quantum defect theory (MQDT). The util- 
ity of the HsC coordinates has been most effectively demonstrated over the past two 
decades in the classification and identification of the doubly-excited resonant states 
of two-electron species such as H- and He (Macek 1968, Lin 1974, 1986, Koyoma er 
01 1986). In Macek's adiabatic HSC treatment (Macek 1968), the HSC Hamiltonian is 
parametrized in the 'slow' coordinate R = (T-: + in analogy with the adiabatic 
Born-Oppenheimer approximation for diatomic molecules. Recent studies using this 
adiabatic representation have been able to identify the dominant excitation and pho- 
toabsorption channels for the photodetachment and photoionization of H- and He 
(Sadeghpour and Greene 1990, Sadeghpour 1991). 

In this work, the non-adiabatic radial coupling terms responsible for the excitation 
of different hydrogenic manifolds are taken into account by numerical propagation 
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of a set of coupled equations in R outward to a matching radius R = R, in the 
asymptotic region, beyond which the radial couplings are ignored. Radial solutions in 
the inner region are mapped onto the asymptotic solutions which are assumed valid 
for all R R,. Scattering parameters weakly dependent on energy are obtained 
within the framework of MQDT (Seaton 1966, 1982, Greene et a1 1979, Greene and 
Jungen 1985). These parameters are then interpolated on a fine energy mesh for 
the calculation of scattering phaseshifts and cross sections exhibiting rich resonance 
stlBCt'::e. 

The calculations presented here arc performed in two stages. First, adiabatic 
hyperspherical potential curves and associated couplings are obtained. ?b this end, 
the total operator O ( R ; R )  = ( A 2 / 2 R 2  + C(a,O,,)/R] is diagonalized at each R 

U (  R a)@,,( R; R) = U,,(R)@,,( fin). (1) 

In (l), a = tan-'(r2/rl) lies in the range 0 to ?r/2 and 012 = cos-'(i., . PI) 
ranges from 0 to 27r, A z  is the 'grand' angular momentum operator and C(a,O,,) 
acts as an 'effective' charge for the three-body system. (Ekplicit expressions for 
these operators are given in Sadeghpour (1991).) The diagonalization of the iixed 
R Hamiltonian in (1) is done using a linear combination of non-orthogonal ba- 
sis functions, @,(R,R) = xi +i(R,52)ci,,( R ) ,  which includes eigenfunctiom of 
,,IC grartu augural I I I U L L I ~ I I L U I I I  uywarur auglllcllLcu W l l l l  LWU-CIULIUII van LulIGlluIw 

constructed from properly symmetrized products of one-electron orbitals to repre- 
sent the asymptotic channel functions. The resulting generalized eigenvalue equation 
Uc, = U p ( R ) O c , ,  in which 0 is the full overlap matrix between the basis functions, 
is solved to obtain accurate adiabatic potential energy curves and radial coupling 
elements, P,,,,(R) = (@,l(d/dR)Q,,,). 

Next, exntation and non-radiative decay probabilities of the autodetaching states 
are calculated by the non-adiabatic coupling of these HSC potentials in 

.&- --"..A ^_I _ _ I ^ _  -_-- ~.-. -..".-"..."A ___:.L -._- A,n,..--.. ,.^^L c .._-. :-..- 

where I denotes the identity matrix and the diagonal matrix U(R) contains the 
porenrlar energies. ine components oi iiie soiuiion mrtrix F j p ( X )  in each chan- 
nel are propagated outward from the origin, subject to the boundary condition 
q j a ( R )  - Rxi+16jp as R -+ 0 where X are the eigenvalues of the grand angu- 
lar momentum operator, to the matching radius R = R,. Here j z {n, p ) ,  where n 
is the hydrogenic principal quantum number and p is the HSC channel function index. 
The Gordon stablilization procedure is used to ensure the linear independence of the 
solution vectors (Gordon 1967). 

A shortcoming of the HSC representation is the 'artificial' behaviour of the channel 
coupling, P,,,,(R) - R-l, at large R. This residual coupling has been shown by 
Macek (1985) to manifest itself in the phase of the out-going electron wavefunction 
such that at high energies the effect of this coupling on the phaseshift becomes 
large. An attempt at remedying this problem for the calculation of the elastic S-wave 
phaseshift involved matching the HSC wavefunctions to the close-coupling solutions 
in independent-electron coordinates (Christensen-Dalsgaard 1984). It will be shown 
here that a combined hyperspherical and quantum-defect treatment can adequately 
describe the long-range phenomena in terms of a few parameters typical to all MQDT 
analyses. 
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’Ib this end, h e a r  combinations of the solution vectors, F,, are expanded on the 
hypersphere at R = Re, in terms of regular and irregular functions appropriate to 
the asymptotic region 

N 

E ~ ~ ( R O ) C ~ ~  = f j ( ~ o ) u j ~  c o s ( v , )  -g j (Ro)u , . s in(v , )  (3) 
o= 1 

where v = 1,. . . , No, with No the number of open and weakly-closed (energetically 
inaccessible) channels, and N the total number of channels retained in (2). A 
similar equation also holds for the radial derivatives. fj and g .  are the energy- 
normalized functions in each fragmentation channel j and are evaluated at R = R,. 
These functions are oscillatory in the energetically accessible open channels and are 
exponentially divergent in the weakly-closed channels in which the resonances form. 
UjY are the orthogonal frame-transformation matrices connecting the eigenchannels 
v and the detachment channels j and 1-1, are the eigenquantum defects common to 
each detachment (fragmentation) channel (Greene and Jungen 1985). In the strongly- 
closed channels the linear superposition of the inner solution vectors vanishes for 
R 2 R,. Equation (3) can be transformed into 

rc = tan r p A c  (4) 

where the matrices r and A contain the  Wronskian of the left-hand side of (3) with 
fj and gj, respectively. The number of the eigenvalues of (4) will be the same as the 
number of open and weakly-closed channels, since A is of rank No. In this fashion, 
all the information about the  short-range interaction of the incident electron with 
the hydrogen atom is embedded in Ujv and ngu. These parameters, which valy 
smoothly with energy, are used to construct the full scattering matrix in the usual 
MQDT manner (see Greene and Jungen 1985 for details). Elastic and inelastic cross 
sections are computed, enhanced by the presence of resonance structures. These 
resonances form in each HSC channel j where the  outer electron experiences an 
attractive permanent dipole moment of the hydrogen atom, a j  < -: (Gailitis and 
Damburg 1963, Seaton 1961). There are also repulsive dipole fragmentation channels 
(a j  > -a) which contribute only to the continuum excitation. The non-radiative 
decay width and the position of these resonances scale approximately as E,,,+~/C,,, = 
Tm+l/Tm = e-zr /af  where a .  = ( - a j  - and m = n indexes the lowest 
member of any resonance series belonging to the j 3 { n , p }  group. E,,, is the one- 
electron binding energy relative to the respective n-series limit and Tm is the full 
width at half maximum. 

In figure l(a) and (b), the 1s-1s ’Se and ‘Se cross sections are given for incident 
electron energies near the H(n = 2) threshold. Six HSC channels were included 
inside a ‘box’ of R,  = 25 au for the result shown. The highest three channels were 
treated as strongly closed and a threechannel MQDT analysis was carried out on the 
reaction boundaly. Also shown are the results of an R-matrix calculation by Scholz 
and Scott (1991). The resonance positions and widths below the n = 2 thresh- 
old, tabulated in table 1, were obtained from the maximum value of 2(dS/dE)-l, 
where 6 is the short-range phaseshift of the electron in the open lsr l  channel. This 
phaseshift displays rapid variation with energy as shown in figure l(c). However, the 
eigenphaseshifts ( r ~ ” )  calculated with the MQDT method for the three open and 
weakly-closed channels do not show, in figure l(d), this variation with energy. Thii 
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Figurr 1. (U) The elastic l s l s  3Sc c m  see- 
lion in ra; for incident electron energies (in 
atomic units) below the H(n =2) threshold, 
( b )  'Se cross section. (c) the elastic phasc- 
shift 6 in the 1s.s open channel exhibiting 
resonance effect and (d)  the eigenqusntum 
defects pv for the three open and weakly- 
closed 'So channels. The n = 2 thresh- 
old is a1 0.375 au (1 au = 27.211 652 ev). 
The asterisb are the R-matrix calculation of 
Scholz and Scott (1991). 
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is the trademark of MODT analysis which allows the numerical$ intensive short-range 
calculation inside the HSC box to be carried out for a few energies and the result- 
ing parameters to be interpolated economically on any desired energy mesh so as to  
resolve even the narrowest structure in the cross section 

Table 1. Resonance energies ( E )  and Widths (r) in eV lle Rydberg unit is 13.605826 eV. 

2s+lL" .{")A, E ( r )  (present) E ( r )  (apt) E ( r )  (calculated) 

'se z{O)$ 9.559(0.0475) 9.549(0.063)s g.s6(0.~7). ,  9~7(0.05z)b 
9.55735(0.047 17)'. 9.5572(0.0471)' 

2 {O)? 10.176(0.W31) 10.178(0.W22)a, 10.177(0.W26)b 
3{O)f 11.731(0.0399) 11.7241b 11.7281(0.038y)', 11.72805(0.040 95)b 

3{0)$ 12.03qO.OlW) 12.03367(0.008 313)', 12.033 71(O.W7 891)b 
,to)$ 12.s2y0.0225) 12.528(0.0298)', 12.S272(0.02S 
I {O): 12.69y0.008) 12.6936(0.W7 35)b, 12.6927(0.W9 25)d 

r { l ) t  12.671(0.0195) 12.6618(0.019 32)b, 12.6609(0.023 95) 
3 s  z{O)g 10.148(0.M)0 46) 10.15qZ.O x IO-")', 10.147b 

>IO}; lO.ZOl(l.68 x 

3{0); 12.075(4.1 x 12.0754(5.82 x IO-')', 12.07554b 
3{0)3 12.W1(0.00021) 12.0098h 1 z . m ( o . w o z 4 ) ~ ,  1z.wo40.aoo ~ 3 ) ~  

'De z { O ) i  10.129(0.0101) 10.115(0.~6)s 10.1253(0.00~81)., 10.12h(0.M153)b 
10.12446(0.008 62)' 

3PD *to); , 9.745(0.007 65) 9.736(0.005)g 9.74(0.0059)', 9.7382(0.WS 82)< 
9.741(0.0071)b, 9.7381(0.W58p 

z{O)F 11.771(0.0519) 11.772Ih 11.7582(0.0435)', 11.7578(0.046 68)' 
11.758 15(0.04354)d 

' 'Bylor and Burke (1967). Pathak I 01 (1988). 

Warner el 01 (1990). 

Ho el 01 (1977). 
Ho (1990). e Scholz CI a1 (1988). ' Callaway (1982). 
Wrner CI a1 (1986). ' Bhatia and Ho (1993). 

The 1s-Is cross section in the ISe is shown in figure 2(0)  for incident electron 
energies between the H(n = 2) and H(n = 3) thresholds. Seven HSC channels 
were included in (2) and a six-channel (No = 6) MODT analysis was carried out at 
R, = 42 au for the 'Se scattering parameters. The cross section reveals resonance 
structure converging on the n = 3 manifold of hydrogen. 

These resonances are classified with the group theory quantum numbers of Herrick 
(1983) and Lin (1983) (IC, T and A), which for the S-wave even-parity scattering 
t akeva lueso fT=O,  K = n - l , n - 3  ,..., - ( n - 3 ) , - ( n - l ) , a n d  
with S the total spin. It has been shown for the photodetachment of H- that a more 
appropriate quantum number is the 'bending' quantum number uA (Sadeghpour and 
Greene 1990, Watanabe and Lin 1986) which for the ISc and 3Sc symmetries has 
values of uA = O+, 1+, 2 + ,  . . ., and u A  = 0- , 1-,  2 - ,  . . ., respectively. For 
instance, the lowest member of the resonance series converging to H(n = 3) can 
be identified with the compact notations of , , { u ) A  = 3{O)i and 3{O);, depending 
upon the spin. In this '+' state, the electrons interact strongly through the electron- 
electron interaction term and are therefore rapidly autodetaching (Cooper ar a1 1963). 
On the other hand, in the '-' state, the interaction is minimal leading to strong 
stability against autodecay as the electrons occupy different radial 'orbits'. Resonance 
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Figure 2. The 'SF elastic cross'section for (a) electron energies near the H(n = 3) 
threshold at 0.44444 au and ( b )  electron.energies in the vicinity of the H(n = 4) 
lhmhold at 0.468 75 au. 

parameters for symmetries 3P0 and lDe are also given in table 1 and are classified 
with the above notation. 

In figure 2(b)  the lSC cross section for electron energies above the H(n = 3) 
threshold is presented displaying resonances converging to the series limit at H(n = 
4). An eleven-channel HSC-MQDT calculation was performed at E,  = 63 a'u for the 
results shown. For the 'Se symmetry, the n = 4 manifold is the first instance the 
electron can bind to more than one attractive dipole channel, namely the = 
4{O)f and 4{1}+ channels. One should therefore expect two separate series of 
resonances identihable with these quantum numbers. Indeed the first broad resonance 
is the lowest member of the 4{0}+ series classified as a 4{O}.$ resonance and the next 
resonance has the quantum numbers ,{1}.$ belonging to the next attractive dipole 
channel 4{1)t. The resonance parameters are provided in table 1 where good accord 
with other calculations is observed. The magnitude of the cross section also agrees 
reasonably well (to within 15%) with the calculations of Callaway and Wooten (1974) 
and the R-matrix calculation of Scholz and Scott (1991). 

In conclusion, cross sections and resonant positions and widths have been obtained 
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for the e-H scattering in the combined hyperspherical coordinate and multichannel 
quantum defect approach. The results of this work confirm that this unified theory 
can successfully predict the formation of resonance structure in the scattering of 
electrons from hydrogen atoms. 

This work was supported by the US Department of Energy, Division of Chemical 
Sciences, Office of Basic Energy Sciences, Office of Energy Research. The calculations 
were performed on an IBM RISC6000 Workstation. I thankfully acknowledge Tim 
Scholz for providing numerical R-matrix data. 

References 

Bhatia A K and Ho Y K 19W Phys. RN. A 51 504-7 
Burke P G: Schey H M and Smith K 1963 Phjs Rev 129 1258-74 
Callaway J 1982 Phys. Reu A 26 199-208 
- 1985 Phys Rev. A 31 7 7 5 4  
Callaway J and Wooten J W 1974 Phys RN. A 9 1294-331 
Christensen-Dalsgaard B L 1984 Phys. RN. A 29 22424 
&per J W, Fano U and Pram F 1963 Phys. Reu Lex 10 518-21 
Gailitis M and Damburg R 1963 Roc. Phys Soe. 82 192-200 
Gordon R G 1969 1. C h n  Phys. 51 14-25 

Greene C H and Jungen Ch 1985 Adv. AL MOL Phys. 21 51 
Herrick D R 1983 Adu C h n  Phys 52 I 
Ho Y K 1990 1. PhF B: AL MOL Opr Phys. 23 L71-7 
Ho Y K, Bhalia A K and Emkin A 1977 Phys. Rn? A 15 1423 
Ho Y K and Callaway J 1986 Phys Rm A 34 130 
Koyoma N, Fukuda H, Moloyama T and Matsuzawa M 1986 I. Phys B: AL MOL Phys 19 U31-1 
Iin C D 1974 Phys RN. A 10 1986-2001 
- 1983 Phys. Rn! L e r L  51 1348-51 
- 1986 Adv. AL MOL Phys. 21 77 
Macek J H 1968 I. Phys. B: AL MOL Phys 1 83143  
- 1985 Phys Rn! A 31 2162-70 
Morgan L A, McDwell M R C and Callaway J 1977 I. Phys B: AL MOL Phys 10 3297-305 
Pathak 4 Kingslon A E and Berrington K A 1988 1. Phys. B: AL MOL Opt. Phys 31 2939-51 
Sadeghpour H R 1991 Phys Reu A 43 5821-31 

Scholz T and Scott M P 1991 pnvale communication 
Scholz T Scou P and Burke P G 1988 I Phys. 6: AL MOL O ~ L  Phys. 21 L139-45 
Sealon M J 1961 Roc, Phys. Soc. 77 174 
- 1966 Pfm. Phys Soc. 88 801 
- 1982 Rep. prok Phys 46 167 
Taylor A J and Burke P G 1967 Pfoc. Phys. Soc. 92 336 
Wrner C D. King G C. Hammond P and Slevin J 1986 J. Phys. B: AL MOL Phya. 19 3297-303 
warner C D. Ruutter P M ana King G C i490 i. Pnys. B: AL Md Opt. Phys 23 YW 
WIanabc S and Lin C D 1986 Phys Rn! A 34 823-37 

Greens c. Fano G and S i ~ i i B i i  G 1978 Phy. Rev. A i9 1 4 3  

Sadqhrmur H R and Greene r H !99n Phyr Rm Lar 65 313-5 

... 


