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Abstract
We present a non-Hermitian coupled-channel resonant diabatic approach
to Rydberg protonium formation in the ultraslow rearrangement collision
p̄ − H → Pn + e−, where the kinetic coupling between the electronic and
the nuclear motions is strong. We calculate complex diabatic potential energy
curves and associated coupling matrix elements that vary smoothly with pp̄
distance. The [Pn – e]− resonances split into two groups converging to the first
and second hydrogen thresholds.

Resonances are some of the most striking phenomena in quantum scattering [1, 2] whose
lifetimes are normally associated with the imaginary part of the Hamiltonian eigenvalues.
Resonant states are not therefore in the Hermitian domain of the Hamiltonian. Upon complex
scaling, i.e., scaling the internal coordinates of the Hamiltonian by exp(iθ), resonance
wavefunctions become square integrable (for a recent review on the complex scaling (CS)
formalism and its applications see [3]).

The complex-scaling method has been used successfully for the calculation of resonance
properties in molecular systems within the framework of the fixed nuclei approximation.
However, more often than not, the nuclear motion dramatically affects the electronic motion,
and non-adiabatic coupling terms cannot be ignored, requiring that a closed coupled set of
equations be solved. This is computationally resource-intensive and the judicious selection
of basis set gains in importance. It has been shown that resonances, formed during e−–H2

scattering experiments, can be calculated in the adiabatic approximation when the resonance
adiabatic eigenstates of the complex-scaled Hamiltonian are used as a basis set. In such a
case, the non-adiabatic coupling between the electronic and nuclear coordinates is introduced
by solving the nuclear equation of motion within a complex adiabatic potential energy surface
[4, 5]. This approach is limited to cases where the molecular system has finite lifetimes within
the adiabatic approximation. There are cases, however, as in the scattering of an antiproton
from a hydrogen atom, where even upon CS, the adiabatic states do not describe the resonance
phenomena.
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In this work, we introduce a method that enables calculation of resonance energies, widths
and cross sections for such cases. The key point is to use a resonant diabatic representation
instead of the adiabatic representation. The ‘frozen’ diabatic states in the Hermitian approach,
{�diab}, are defined as states for which the matrix elements

〈
�

(j ′)
diab

∣∣d/
dR

∣∣�(j)

diab

〉 = 0, where the
indices j and j ′ refer to diabatic channel quantum numbers. This strict definition of diabatic
states provides in our case bound states in the continuum (i.e., zero widths). The question then
is, how can diabatic resonance states be calculated in the non-Hermitian quantum mechanics?
Here, we introduce a method for the calculation of resonant diabatic states which serve as an
effective basis set in the solution of the full problem, where the coupling between the electron
and the nuclear motions is taken into consideration.

We calculate the autodetachment rates of the protonium negative ion, Pn−(n) resonances
that form in the collision between a slow antiproton, p̄, and a hydrogen atom—for purposes of
illustration and experimental interest, we deal with collision energies less than 10 eV, where
only H(1s) is an open channel. We have chosen this exotic example since slow antiproton
collision physics is currently the subject of intense theoretical [6, 9–13] and experimental
[14–16] investigations. A slow antiproton can replace a bound atomic or molecular electron
and form an exotic pp̄ complex, i.e. a protonium atom. The intermediate resonant complex, the
negative or positive Pn ion, depending on whether p̄–H or p–H̄ collision occurs, represents an
important step in the formation of highly excited Pn(n, l) Rydberg states. The spectroscopic
measurements of protonium excitation and de-excitation may help in testing fundamental
symmetries, such as the CPT invariance [17]. Highly excited Rydberg states are desirable for
stability against annihilation which could allow for high-precision spectroscopy of such exotic
atoms.

Before introducing the method, we need to motivate the problem with the complex
adiabatic approach for the rearrangement collision p̄ + H → Pn + e−. Using the well-known
result for the electron–dipole interaction [18, 19], it is expected that for p̄–p distances larger
than R � Rc = 0.338 Å, the electron will be bound to the protonium. However, this Born–
Oppenheimer (BO) value for Rc is smaller than the exact value by more than a factor of 2
[20, 21]. Therefore, one must go beyond the BO approximation and use the adiabatic states as
a basis set. However, the high density of states involved in the rearrangement collision makes
a direct approach prohibitive (for an idea of the density of states see figures 2 and 3 of [11]).

For the sake of simplicity and without loss of generality, we set the total angular
momentum, J = 0, such that the rotational angular momentum of Pn is equal to the electron
angular momentum in [H–p̄], l = 0, 1, 2 . . . . The adiabatic Hamiltonian is

Ĥ ad = Ĥ 0 +
1

|�r − �ezR| − 1

R
+

h̄2 l̂2

mpR2
(1)

where Ĥ 0 is the hydrogen atom Hamiltonian, mp is the proton mass, r is the electron–proton
distance, �ezR implies that R is along the fixed-frame z-direction and l̂2 is the square of the
electronic angular momentum. No restriction is placed on the orbital or rotational angular
momenta.

We analytically continue the Hamiltonian matrix elements, calculated with even-tempered
Gaussian basis functions, |n,m, l, α〉 = xnymzl exp(−αr2)—it is the Gaussian exponent that
is complex-scaled, i.e. α → α exp (iθ), where θ is the rotation angle [3]. In doing so, we
overcome the non-analytic nature of the ‘molecular’ potential |�r − �ezR|−1 [23]. This scaling
enables us to calculate the molecular resonance curves, Ead(R) − i

2�ad(R), identified with
the stationary solutions in the complex variational space [3]. �ad(R) provides the adiabatic
detachment rate for the decay of Pn−(R) → Pn(R) + e−. Our result shows that the electron is
bound to Pn for R > Rc, and nearly bound for R < Rc, where for the ground state Rc ∼ 0.5 Å
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Figure 1. The adiabatic and diabatic complex potential energy curves, and the diabatic complex
energy coupling between them, as a function of R. The full circles denote the critical dipoles at
R = Rc, where the bound to resonance transitions occur.

(figure 1). The figure resembles the Born–Oppenheimer result. The resonances are extremely
narrow for R < Rc due to the adiabatic transition of the electron orbital from a localized
hydrogen orbital to a diffuse Rydberg orbital. The transition regions are characterized by
strong non-adiabatic coupling between resonances and/or bound states.

Following the above discussion, it is clear that the resonances in the rearrangement
collision of an electron with Pn, or of an antiproton with H, result from strong non-adiabatic
coupling. In such a case, one may use the diabatic representation rather than the adiabatic one.
A diabatic approach was developed by Cohen et al [20] to calculate the 1s diabatic potential
state, �1s

diab. They calculated the frozen 1s diabatic energy curve using the 1s hydrogen orbital,
�1s

diab = φH
1s. The resonance width of this diabatic state was estimated, using the Fermi golden

rule. Using the CS method, we confirm that �1s
diab(R) = −2 Im

〈
φH

1s

∣∣Ĥ ad|φH
1s

〉
vanishes for all

values of R, due to the absence of resonance continuum in the 1s hydrogen wavefunction; see
figure 1.

To overcome this problem, a unique set of diabatic states is constructed as resonance
states, in the spirit of Fano interaction formalism [7], as bound hydrogen orbitals augmented
by states in the continuum. This diabatic transformation leads to smoothly varying potential
curves and coupling matrix elements (see figure 1).

For instance, the diabatic 1s resonant state is constructed as

�1s
diab = c1s,1s φH

1s +
∫

dk ck,1sφ
H
k (2)

where φH
1s and φH

k are, respectively, the bound and continuum hydrogenic orbitals. The 2p
diabatic resonance state is similarly described as a linear combination of the 2p hydrogen
bound state, φH

2p, and the continuum hydrogen orbitals, φH
k —likewise, the 2̄s diabatic state can

be formed whose contribution is smaller than the two diabatic states considered here. The
diabatic states form a non-orthogonal basis whose expansion coefficients, as the eigenvectors
of a generalized eigenvalue equation, are variationally calculated. The issue of numerical
dependence is addressed in the usual fashion by transforming into the representation in which
the overlap matrix is diagonal [8]. The d/dR coupling matrix elements between the bound
and continuum diabatic states will not be strictly zero, but are made small—at times by nearly
an order of magnitude over similar adiabatic d/dR couplings. We also find that CS greatly
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reduces the d/dR coupling between the diabatic 1s and 2p bound states and the continuum
states.

The corresponding eigenvalues, V 1s
diab(R) = E1s

diab(R) − i
2�1s

diab(R) in one case and

V
2p

diab(R) = E
2p
diab(R) − i

2�
2p
diab(R) in the second case, provide the resonant diabatic energies

and widths (autodetachment decay rates) presented in figure 1. As one can see from the results
presented in figure 1, �1s

diab = 0, when R > Rc = 0.857 Å. This compares well with the
value of 0.845 Å obtained in [20] for ‘polarized’ diabatic states. In our case, we obtain the
polarization effects due to the inclusion of the coupling to the continuum. �1s

diab(R) increases
substantially as R < Rc, however, it is three to four times smaller than the approximate values
which have been obtained from frozen diabatic bound states using the Fermi golden rule [20].
In agreement with the results presented in [9, 20], our calculations show a sudden transition
from a bound electron–protonium state to an autodetaching state (Pn formation) at a distance
Rc which is more than twice as large than the adiabatic critical dipole, Rad

c = 0.338 Å—
the adiabatic and diabatic critical dipole values are marked in figure 1. Our result is in
agreement with the conclusion of Sakimoto [9] who has shown that the probability for the
protonium formation remains nonzero for 0.338 < R < 1 Å, when non-adiabatic couplings
are incorporated in the calculation.

In figure 2, we represent the complex eigenvalues obtained by solving the following
nuclear Schrödinger equations,(

− h̄2

mp

d2

dR2
+ V

(j)

diab

)
χ(j)

α = λ(j)
α χ(j)

α (j) = 1s, 2p (3)

where α is the ‘vibrational’ quantum number of Pn, and χ
(j)
α is the corresponding ‘vibrational’

autodetaching wavefunction. V
(j)

diab(R); (j) = 1s, 2p are the potential energy curves, for the 1s
and 2p diabatic states, and the eigenenergies are λ

(j)
α = E(j)

α − i
2�

(j)
α . The results presented in

figure 2 show that the two diabatic resonances cross in the complex energy plane at an energy
E(j)

α = −18 eV and width �
(j)
α = 1.2 eV—the states lying in the vicinity of the crossing are

poorly described in the single-channel diabatic approximation. To obtain the avoided crossing
correctly, a set of coupled channel equations is solved:

∑
j ′

[(
− h̄2

mp

d2

dR2
+ V

(j)

diab

)
δjj ′ + V

(jj ′)
diab

]
χ(j ′)

α = λαχ(j)
α (4)

where the complex-diabatic coupling term is given by

V
1s,2p

diab = V
2p,1s

diab = 〈
�1s

diab

∗∣∣Ĥ ad

∣∣�2p
diab

〉
.

Here the complex-inner product rather than the usual scalar product has been used due to
non-Hermicity of the Hamiltonian [3, 24]. The real and the imaginary parts of the diabatic
energy coupling as a function of R are shown in figure 1. The diabatic coupling has its
maximum value at R � 1 Å, where the two complex diabatic potential energy curves do not
overlap. The diabatic coupling curve penetrates, however, into the small-R region where the
two diabatic curves do overlap. The resonance energies and widths of the [Pn–e]− complex
calculated in the coupled-diabatic representation are presented in figure 2. The results (open
triangles) clearly show the avoided crossing of the two coupled diabatic resonances.

The resonances, presented in figure 2, split into two groups converging to the first and
second hydrogen thresholds. Those which converge to the second energy threshold (with
energies above −13.6 eV) have an open ‘dissociation’ channel. Therefore, these resonances
can be populated during the ultra-slow p̄–H(1s) scattering experiment. The resonances, that
converge to the first energy threshold, were accurately obtained within the framework of the
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Figure 2. The vibrational autodetaching resonances of [Pn–e]−: the open and full circles
obtained from the uncoupled calculations for the 1s and 2p diabatic electronic states respectively
(equation (3)). The avoided crossing behaviour obtained when the coupled problem is solved.

current diabatic approximation. These resonances decay via ionization only. Since for these
resonances the ‘dissociation’ of Pn is a closed channel, they are not directly observable in
p̄–H(1s) scattering. However, they would play an important role in the scattering of electrons
from protonium. Hereafter, we denote the resonance energies, widths and wavefunctions,
obtained from the solutions of diabatic equations, Eα , �α and 	α(r, R), respectively.

The Pn formation probability is obtained from a spectral decomposition of the reactive
scattering Green function. The probability amplitude to populate an n, l state of protonium
is approximated using the non-Hermitian equivalent of the Lippmann–Schwinger formula for
the cross section [25, 26],

σ(n, l;E) =
∣∣∣∣∣
∑

α

an,l,α

E + EH(1s) − Eα + i
2�α

∣∣∣∣∣
2

(5)

where E is the relative kinetic energy of the ‘reactants’ p̄ and H(1s), and an,l,α is the transition
probability amplitude for forming the ‘products’, Pn and e−. The transition probability is
obtained from the product of W1s,α and γn,l,α , where W1s,α is the probability amplitude for
populating the αth resonance state during the collision process, and γn,l,α is the partial width
amplitude for the resonance state α to decay to the open product channel Pn(nl). The
probability amplitude W1s,α is approximated here by the overlap between the 1s hydrogen
atom orbital and 	α as

W1s,α =
√〈〈

	∗
α

∣∣φH
1s

〉
�r
〈
φH

1s

∣∣	α

〉
�r
〉
R
. (6)

The partial width amplitude is approximated by γ 2
n,l,α = �αPn,l,α , where

Pn,l,α = lim
re→∞

〈〈
	∗

α

∣∣φPn
n

〉
R
δ(r − re)

〈
φPn

n

∣∣	α

〉
R

〉
�r

〈	∗
α|δ(r − re)|	α〉R,�r

. (7)

The Pn formation distribution in highly excited Rydberg states as a function of collision
energy is shown in figure 3. The probability peaks move from n = 28 to n = 33 as the energy
collision is increased from ∼0 to 5 eV. This shows that the assumption of the energy-matching
condition [27], which predicts Pn formation in quantum numbers from n = 30 to n = 39 in
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Figure 3. The Pn formation probability in the rearrangement collision p̄− + H → Pn + e−, where
n is the nth Rydberg state of protonium. The collision energy is E = 0, 2.5, 5 eV. The distribution
is peaked and broad.

this energy interval, is reasonably accurate. The calculations show that the n-distributions are
peaked, but rather broad. The width of the distribution is expected to increase with increasing
collision energy. We therefore expect that Pn in a single clearly dominating excited Rydberg
state can be only formed in ultra-slow p̄–H collision experiments, when the energy collision
is likely to be less than 5 eV. Diabatic states converging to the second and higher hydrogen
thresholds should also be included in the coupled-channel scheme, as the collision energy
approaches the H(n = 2) threshold.
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