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Anisotropic van der Waals coefficients for H&1 1S)—He(2 °P)
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We report on the anisotropic mass-dependent dispersion coeffi€git=0, +1) for He(1 19-He2%P)
interaction using two different techniques. The first is a highly accurate Hylleraas basis-set diagonalization,
while the second method is a semiempirical assessment based on tabulated oscillator strengths and available
photoionization cross sections. The results from the two techniques agree to within 1.5%.
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I. INTRODUCTION -
OPUCTIO Vi = (= DH4a(L,L S KT TR THB). ()
High precision photoassociation and ultracold collision of m

atoms or molecules probe details of the interaction potential
[1]. A good deal of attention has recently been attracted t
the investigation of long-range multipole terms in the elec- Oy s N, a
trostatic interaction of atoms and molecules and subsequent Tm(A) = 2 QiriYim(F) 3
physical properties that directly result from them, such as the !

elastic scattering lengtf2]. The bulk attention has focused anq py

on calculating the interaction terms between alkali-metal at-

oms, and as experiments on cooling and trapping diversify to L(R) = IE -~

other elements, better interaction potentials are also needed T (B) ;q'pj Vi) s @

for these specids]. Lately, the Bose-Einstein condensate of

metastable triplet states of helium became a reddifyand  whereQ; andr; are the electric charges and coordinates from
high-precision measurements of the fine-structure constant ithe local center for particles in system A, whigandp; are
collision of the same metastable helium atoms with groundthe electric charges and coordinates from the local center for
state He atoms have been m48é Spectral broadening and particles in system B. The coefficieK{] is
shift of atomic or molecular lines in the wings are due to

purely long-range interaction between the perturbing and ra- m {(I +L )( I +L )}1’2

he atomic multipole tensor operators are defined by

(5

diating specieg6]. Both classes of experiments probe the KiL = l+m/\L+m
asymptotic interaction between two helium atofv
In this work, we calculate the anisotropic terms in theand(l,L,...)=(2l+1)(2L+1)... .
perturbative3 expansion ?f the electrostatic interaction be- Eqr large separatioR the interaction potential Eq1) can
tween He¢2°P) and Hel"S) atoms, by employing first a pe treated as a perturbation. If both interacting systems are

numerical technique that in the past has proven fruitful inneytral then the multipolar serigs) is dominated by the
obtaining accurate dispersion coefficients and polarizabilities-| =1 gipole-dipole term:

for helium and other atoms and has been used for calculating

highly precise terms in the electron-nucleus interaction in ar 2

atoms. Next, we analyze and assess the quality and accuracy Vi=-— > KL d® d9, (6)
of available discrete oscillator strengths and photoionization 3 m1

cross sections for the relevant He states and calculate from - . )
this analysis the best set of dynamic polarizability and aniso/heredn=T, are the spherical components of the atomic
tropic dispersion coefficients. The two sets of calculationliPole operator. _

are compared and we find that the agreement is better than When the atoms A and B are not resonant, as is the case

1.5%. for the He1'9)-He(23P) system studied here, the first-
order perturbation theory gives no correction to the energy,
Il. PERTURBATION EXPANSION OF THE INTERACTION and the second-order corrections to the energy provide the
POTENTIAL 1/R® dispersion interaction

The interaction potential between atonfmr moleculay (0) (0)
systems A and B can be written as a multipole expansion in  AE® = - %E' (W1 @D Va ¥ __G 7
k

inverse powers of separatidhas[8] Ex—Eo R°
: i Vi where the indeXk enumerates stateB, in the discrete and
V= E < R 1) continuous spectrum of the A-B system, with the exception,
- symbolized by prime in summation, of the unperturbed state
where VO, This is the state of the system at infinite separation,
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o_ 1 y M The inner summations over the magnetic quantum num-
= E[‘I’A(r)‘I’B(P) + VAP YR ()], (8)  pers can be contracted using the Wigner-Eckart theorem to
give
where ¥, is the ground-state H&'S) wave function and 1672 AlldllA2 (Blldllo)2
WY is the wave function for H ®P) with the magnetic Co(-1,0,0=(1,4,2 a1 E< | AHS <A|I|E i ,
quantum numbeM corresponding to quantization along the Lo ¢+ AEs
internuclear axis. All electronic coordinatesandp; are rep- (1)
resented by andp, respectively. The factgg=+1 describes
th_e electronic gerade-ungerade symmetry and is irrelevant in ® B 82 < (Alld]|0)? (B||d|| 7)?
this treatment because the two atoms are not resonant. This Cg’(-1,0,1 = (5,2,5—>, A A ,
means that there is no allowed dipole transition between 815, E +AE,
He(11S) and Hé2 *P) because of the spin conservation law, (12)
which generally forbids singlet-triplet transitions. Therefore
we can take for simplicity SO 1 0. =(16.22 1 87722 (A2 (B||d||8)?
6 ( 1 5:1) ( 1 ] 9
PO = ‘I’A(r)\lf'é/'(p). (9) 40555 AE,+ AE;

Similarly, the intermediate stat@, can be written as prod- (13
ucts of two atomic wave functions. There are four symmetryin terms of reduced dipole matrix elementé||d||Z),
classes of states of helium atom which have nonzero dipolgg||d||g>, (B||d||m), and(B||d||5).

matrix elements with H& *S) or He(2 °P) and contribute in We employ two different methods to evaluate the infinite
summation of Eq(7). They are denoted b§, o, 7andéand  summations in Eqg11)—<(13). The first method evaluates the
are defined as matrix elements and summations using a finite variational
(i) ¢={He(¢ 1P)}§:2 5, the only states connected to the t.)asis.' Good convergence is obtained as the number of func-
ground state Hd 'S); Y tions in our basis is increased. The second method calculates

separately the discrete and the continuum contributions, us-
ing tabulated oscillator strengths and available photoioniza-
tion cross sections.

(i) o={He(0°9)},-p3. , States connected to K&*P).
State 2°S is special in that it has lower energy than

He(2 °P);
(i) p={He(n(pp) 3P)},,:2,3_,, double excited states _
connected to H& °P); A. Hylleraas basis
(iv) 6={He(5°D)}s34, , States connected to H&’P). To calculate the dispersion coefficiei@g(M), we expand

The contribution of each class of intermediate states caﬂ;e wave functiqn in a parameteric nonorthgo_nal basis set in
be separated in th€ coefficient defined by Eq(7), such ylleraas coordinates and transform the multipole operators
that 6 © Eg. (3) into the center-of-mass fran{®]. The basis set is

constructed in Hylleraas coordinates
Ce(M) =CO(M) + C(M) +CP(M) (10)

ryrhri e_ml_'grzy:'l'f/;(flifz) , (14)
where IM/s o . .
Wherey|l|2(r1,r2) are the coupled spherical harmonics for
1672 1 the two electrons. Except for some truncations, all terms are
CY(M) = > > KEKTHAld, £ ) included in the basis such that
9 o AEHAE, mimu 1
+j+k=<
X(Z |, |AY(B; M| ALy [ 0) (0] dr B M), i+j+k=Q, (15)
with Q being an integer. Furthermore, we divide our basis set
1602 1 into several blocks each having its own set of nonlinear pa-
ch>(|\/|) = > > KK T2 rametersy andB. A complete optimization is then performed
9 7, AE/+AE, —— with respect to the parameters and 8. Tables | and Il
o present the convergence study for the stateélM® and
X (Al ¢ )8 1l | AYBMId g 734 He(2 3P), respectively, as the size of basis set increases pro-
Xt A |B MY, gressively. Compared to Drake’s vaIL{és),ll], our results
2 are accurate to about 17 and 15 digits for(H) and
62 L He(2 3P) state, respectively. The spectrum of the intermedi-
1 . . - L
CgD)(M) - > D KK T2 ate states can be obtained by diagonalizing the Hamiltonian

9 s AE,+AE; in a chosen basis set. Although the variational principle does
not guarantee that these intermediate states correspond to the

o u') actual excited states of the system, the second-order correc-
tion Eq. (7) is exactly calculated only if this set of interme-

diate states is complete. The completeness of all intermediate

my, My, e e’
X (Aldm, | £; 1) ¢ pl A AXB;M[d-pn,
X(8; ' 1d-, |B;M).
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TABLE |. Convergence of the nonrelativistic ground-state en- B. Discrete and continuum oscillator strengths assessment
ergy of He.N denotes the number of terms in the basis set.

An array of oscillator strengths for transitions involving

Q N EQ) He(11S) and Hé2°P) are tabulated by NIST13]. The re-

duced dipole matrix elements required in the calculation of
16 1050 —2.903 724 377 034 118 93 C; coefficients Eqs(11)—13), described in the L-S coupling,
17 1230 —2.903 724 377034 119 37 are calculated from the available fine-structure oscillator
18 1430 —2.903 724 377 034119 53 strengths as the following:
19 1650 —2.903 724 377 034 119 57 3
20 1892 —2.903 724 377 034 119 58 —<A||d||§>2 = OAE ——f115 ,1p,
Drake[10] —2.903 724 377 034 119 598 311 B

417 - .
states is checked with sum rules. For example, the Thomas- ?<B||d||0 = SAE 2%-0’s forj=0.1.2,
(o

Reiche-Kuhn(TRK) sum rule for the HE °P) state[12]
reads, after letting the-axis component of angular momen-
tum M, be zero,

47
2 o

6
3L+ -SL=N.. 16 1
35550 o (16) 9

_ " 2AE,
In the above equation, 100

SIEDIEIA(RN (17)

o o

- for j=0,1,2,
2 Pﬂa D,
5 andj’'=1,2,3.

w|N ws O

(20)

In the last equation, the elements in the square brackets refer
- in rows toj’ and columns tq. The missing matrix elements
with f O(L) be|ng the oscillator Strength ConneCtIng the initial <B| |d||77> requ|red to Ca|cu|at€( P) coefficients in Eq (12)

state Wo(Lo) of angular momentuni, and the final state jnyolve double excited states and the corresponding oscilla-

W,(L) of angular momenturh, tor strengths are not available. Fortunately, because of the
large energy differences in the denominators in @§) and
L) = 8m because of the nature of the double excited states the contri-
rolL) = (2¢ +1)%(2Ly+ 1) bution of the coefficienCéP) towards the totaCq coefficient
is likely to be small. The validity of this approximation is
X (En= EQ[(Wo(Lo)l[ 2 r{Y((F)I[Wa(L)?, confirmed by the variational calculation, which shows that
i the contribution of these states is less than (T&ble V).
(18 Ignoring the contribution from double excited states the

dispersion coefficients Eq10) are then
and N is the number of electrons. For helium,=2. Our
numerical result shows that 2 ((1 4, DE ffs

Ce(- 1,0,
o~ 1.0.9= 7 ~ AE,AE, (AE§+ AE,)
6
3 (0.028 541 77+ ¢ X (1.595 354=2.000 05 . , 1922195 ffs
90 5 AEAELAE,+AE,)

(19
= §(1 4,)WS + 3(19 22,19WD (21)
TABLE II. Convergence of the nonrelativistic energy eigenvalue T4 407 '
of the state HE& 3P). N denotes the number of terms in the basis
set. The anisotropic van der Waals coefficients for the corre-
sponding molecular symmetries are now

Q N EQ)
66

12 910 —2.133164 190 779 194 2 C3 = C4(0) = 3WS + 4_0WD)’
13 1120 —2.133 164 190 779 246 8
14 1360 —2.133164 190 779278 8

_ 3 57
15 1632 2.133164 1907792812 Cl=Cy(21) = WO + WD), (22)
16 1938 —2.133164 190779282 7
Drake[11] —2.133164 190 779 283 2(8)

The averaged dispersion coefficient is
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TABLE lIl. Convergence characteristics 6(M) for the system Hel 1S)—He(2 °P). Nig, N3p, N, N o
N ,, andN ; denote, respectively, the sizes of bases for the two initial states and the four clasess of interme-
diate states of symmetrie¥S, P, (pp) 3P, and 3D. The nuclear mass is set to be infinite.

le N3p No’ N{ N,” N5 CG(M=O) C6(M=i1)
1430 1360 560 1360 1230 853 47.725 886 615 26.708 670 783
1650 1632 680 1632 1430 1071 47.725 886 732 26.708 670 884
1892 1938 816 1938 1650 1323 47.725 886 745 26.708 670 895
— 15 24 the NIST table$13], the second sum is obtained by extrapo-
Coe=3C6+3Cs- (23)  Jating the oscillator strengths and the transition energies

To write W andW®) in terms of atomic polarizabilities we
use single-center integral8] to obtain

for f
Vv(S) =2 [ 14
AE(,*};‘ AE? - AEZ.

2 (* f,
+_
Wfo %AE?"'UZ}(}

2
aA(AEO.*) + _f
o

0

fy
AEZ + 2

o0

f(r*
=2

e ap(in)al (iu) du, (24)

o*

where the state* refers to the HE2 3S) state whose transi-
tion energy to the HE 3P) state is negative, i.eAE, . <0,

through scaling with the principal quantum numbers, and the
integral term is obtained from photoionization cross sections
[16] by ensuring that at the spectral heads, the scaled discrete
oscillator strengths agreed with the zero-energy limits of the
photoionization cross sections. A similar expression also
holds fora(BD), where now the discrete oscillator strengths for
6=3-10 levels are taken from the NIST taBlE3]. At the
spectral heads, the scaled oscillator strengths feﬁfb
=lim,_...o3f,=0.240 and® =lim; ... 5% ;=3.352, while the
equivalent values obtained from the continudib| are
lim._o(df{¥/de)=0.231 and lim_o(df{>/de) =3.550.

The oscillator strength sum rule for the (2€P) state is
satisfied to within 0.2% , i.e3,fxsp_,,=1.002, with 0.765
units in the discrete part of the spectrum. The static dipole

and a(w) are atomic dynamic dipole polarizabilities at fre- polarizability for this state estimated with our semiempirical
quency w. For the ground-state helium atom, we use themethod isa,3p(0)=47.08 a.u., which compares well with the
dynamic polarizability at imaginary frequencies as obtainedaccurate value of Yafil7] of 46.7 a.u. Finally, upon substi-

by Chan and Dalgarnpl4]. For comparison, the value for tuting for the dynamic polarizabilities and transition ener-

the static polarizability using this representation dg(0)
=1.378, whereas the exact value is 1.383].
The expression fowW® follows as

WD) = 737 f ’ a(iu) o2 (iu) du.

0

(25)

The partial polarizabilities evaluated at imaginary frequency,

) (iu) and oP)(iu), are obtained according to

f f
(S)( )= T 4 o
aP(x > >
® (20810 AEZ=X2 77011, AES - X2
“df dE
Ao 9B STy + 0SB (x) + oSO(x
OdEAEi—xza (X) + a®7(x) + a>Y(x),

(26)

gies, we obtain

WS =7869 and WP =14.310 au. (27

Ill. RESULTS AND SUMMARY

Table Il contains the convergence behaviorGfM). It

is clear that the convergence is smooth against the sizes of
Hylleraas basis sets and variations are in the last two signifi-
cant digits. Table IV shows the contributions@g(M) from

the intermediate states of different symmetries. Note that the
doubly excited(pp) states contribute at the level of 0.16%
and 0.73%, respectively, to the total values for @¢0) and
Ce(21) coefficients. Table V shows the effect of different
nuclear masses 0@Gg. There is a systematic increase in the
values for the coefficient€g(M) with decreasing nuclear

where the first sum is taken over the values obtained fronmass. In general, the results for the van der Waals coeffi-

TABLE IV. Contributions to Cg(M) for the system H@ S)-He(23P) from the Hé P, ?39),
(lP,(pp) 3p), and(*P, °D) symmetries. The nuclear mass is set to be infinite.

Symmetries Cs(0) Ce()
Hylleraas semiempirical Hylleraas semiempirical
(*r, 3% 23.855 483 835@) 23.607 5.963 870 958 89) 5.902
(*P,(pp °P) 0.079 109 536 8@®) 0.197 773 842 0®)
(*p, °D) 23.791 293 3@) 23.612 20.547 026 G%) 20.392
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TABLE V. Effect of different nuclear masses @y(M) for the atom system Hg 19-He(23P)

Mass Ce(0) Ce()
Hylleraas semiempirical Hylleraas semiempirical
+00 47.725 886 7@) 26.708 670 8@)
“He 47.752 349 73) 47.210 26.723 515 42) 26.290
3He 47.761 010 1Q) 26.728 373 5R)
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