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We report on the anisotropic mass-dependent dispersion coefficientsC6sM =0, ±1d for Hes1 1Sd–Hes2 3Pd
interaction using two different techniques. The first is a highly accurate Hylleraas basis-set diagonalization,
while the second method is a semiempirical assessment based on tabulated oscillator strengths and available
photoionization cross sections. The results from the two techniques agree to within 1.5%.
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I. INTRODUCTION

High precision photoassociation and ultracold collision of
atoms or molecules probe details of the interaction potentials
f1g. A good deal of attention has recently been attracted to
the investigation of long-range multipole terms in the elec-
trostatic interaction of atoms and molecules and subsequent
physical properties that directly result from them, such as the
elastic scattering lengthf2g. The bulk attention has focused
on calculating the interaction terms between alkali-metal at-
oms, and as experiments on cooling and trapping diversify to
other elements, better interaction potentials are also needed
for these speciesf3g. Lately, the Bose-Einstein condensate of
metastable triplet states of helium became a realityf4g, and
high-precision measurements of the fine-structure constant in
collision of the same metastable helium atoms with ground-
state He atoms have been madef5g. Spectral broadening and
shift of atomic or molecular lines in the wings are due to
purely long-range interaction between the perturbing and ra-
diating speciesf6g. Both classes of experiments probe the
asymptotic interaction between two helium atomsf7g.

In this work, we calculate the anisotropic terms in the
perturbative expansion of the electrostatic interaction be-
tween Hes2 3Pd and Hes1 1Sd atoms, by employing first a
numerical technique that in the past has proven fruitful in
obtaining accurate dispersion coefficients and polarizabilities
for helium and other atoms and has been used for calculating
highly precise terms in the electron-nucleus interaction in
atoms. Next, we analyze and assess the quality and accuracy
of available discrete oscillator strengths and photoionization
cross sections for the relevant He states and calculate from
this analysis the best set of dynamic polarizability and aniso-
tropic dispersion coefficients. The two sets of calculations
are compared and we find that the agreement is better than
1.5%.

II. PERTURBATION EXPANSION OF THE INTERACTION
POTENTIAL

The interaction potential between atomicsor moleculard
systems A and B can be written as a multipole expansion in
inverse powers of separationR as f8g

V = o
l=0

`

o
L=0

`
VlL

Rl+L+1 , s1d

where

VlL = s− 1dL4psl,Ld−1/2o
m

KlL
m Tm

sldsAd T−m
sLdsBd. s2d

The atomic multipole tensor operators are defined by

Tm
sldsAd = o

i

Qir i
lYlmsr̂ id , s3d

and by

Tm
sLdsBd = o

j

qjr j
LYLmsr̂ jd , s4d

whereQi andr i are the electric charges and coordinates from
the local center for particles in system A, whileqj andr j are
the electric charges and coordinates from the local center for
particles in system B. The coefficientKlL

m is

KlL
m = FSl + L

l + m
DS l + L

L + m
DG1/2

s5d

and sl ,L , . . .d=s2l +1ds2L+1d. . . .
For large separationR the interaction potential Eq.s1d can

be treated as a perturbation. If both interacting systems are
neutral then the multipolar seriess1d is dominated by theL
= l =1 dipole-dipole term:

V11 = −
4p

3 o
m=−1

1

K11
m dm

sAd d−m
sBd , s6d

wheredm=Tm
s1d are the spherical components of the atomic

dipole operator.
When the atoms A and B are not resonant, as is the case

for the Hes1 1Sd–Hes2 3Pd system studied here, the first-
order perturbation theory gives no correction to the energy,
and the second-order corrections to the energy provide the
1/R6 dispersion interaction

DEs2d = −
1

R6o
k
8
kCs0duV11uFklkFkuV11uCs0dl

Ek − E0
= −

C6

R6 , s7d

where the indexk enumerates statesFk in the discrete and
continuous spectrum of the A-B system, with the exception,
symbolized by prime in summation, of the unperturbed state
Cs0d. This is the state of the system at infinite separation,
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Cs0d =
1
Î2

fCAsr dCB
Msrd + bCAsrdCB

Msr dg , s8d

where CA is the ground-state Hes1 1Sd wave function and
CB

M is the wave function for Hes2 3Pd with the magnetic
quantum numberM corresponding to quantization along the
internuclear axis. All electronic coordinatesr i andr j are rep-
resented byr andr, respectively. The factorb= ±1 describes
the electronic gerade-ungerade symmetry and is irrelevant in
this treatment because the two atoms are not resonant. This
means that there is no allowed dipole transition between
Hes1 1Sd and Hes2 3Pd because of the spin conservation law,
which generally forbids singlet-triplet transitions. Therefore
we can take for simplicity

Cs0d = CAsr dCB
Msrd. s9d

Similarly, the intermediate statesFk can be written as prod-
ucts of two atomic wave functions. There are four symmetry
classes of states of helium atom which have nonzero dipole
matrix elements with Hes1 1Sd or Hes2 3Pd and contribute in
summation of Eq.s7d. They are denoted byz, s, h andd and
are defined as

sid z;hHesz 1Pdjz=2,3,. . ., the only states connected to the
ground state Hes1 1Sd;

sii d s;hHess 3Sdjs=2,3,. . ., states connected to Hes2 3Pd.
State 23S is special in that it has lower energy than
Hes2 3Pd;

siii d h;hHeshsppd 3Pdjh=2,3,. . ., double excited states
connected to Hes2 3Pd;

sivd d;hHesd 3Ddjd=3,4,. . ., states connected to Hes2 3Pd.

The contribution of each class of intermediate states can
be separated in theC6 coefficient defined by Eq.s7d, such
that

C6sMd = C6
sSdsMd + C6

sPdsMd + C6
sDdsMd , s10d

where

C6
sSdsMd =
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The inner summations over the magnetic quantum num-
bers can be contracted using the Wigner-Eckart theorem to
give

C6
sSds− 1,0,1d = s1,4,1d

16p2

81 o
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DEz + DEs

,

s11d

C6
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DEz + DEh
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C6
sDds− 1,0,1d = s19,22,19d
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405oz,d

kAuuduuzl2 kBuuduudl2

DEz + DEd

s13d

in terms of reduced dipole matrix elementskAu udu uzl,
kBu udu usl, kBu udu uhl, andkBu udu udl.

We employ two different methods to evaluate the infinite
summations in Eqs.s11d–s13d. The first method evaluates the
matrix elements and summations using a finite variational
basis. Good convergence is obtained as the number of func-
tions in our basis is increased. The second method calculates
separately the discrete and the continuum contributions, us-
ing tabulated oscillator strengths and available photoioniza-
tion cross sections.

A. Hylleraas basis

To calculate the dispersion coefficientsC6sMd, we expand
the wave function in a parameteric nonorthgonal basis set in
Hylleraas coordinates and transform the multipole operators
Eq. s3d into the center-of-mass framef9g. The basis set is
constructed in Hylleraas coordinates

r1
i r2

j r12
k e−ar1−br2Yl1l2

LMsr̂ 1, r̂ 2d , s14d

where Yl1l2
LMsr̂ 1, r̂ 2d are the coupled spherical harmonics for

the two electrons. Except for some truncations, all terms are
included in the basis such that

i + j + k ø V , s15d

with V being an integer. Furthermore, we divide our basis set
into several blocks each having its own set of nonlinear pa-
rametersa andb. A complete optimization is then performed
with respect to the parametersa and b. Tables I and II
present the convergence study for the states Hes1 1Sd and
Hes2 3Pd, respectively, as the size of basis set increases pro-
gressively. Compared to Drake’s valuesf10,11g, our results
are accurate to about 17 and 15 digits for Hes1 1Sd and
Hes2 3Pd state, respectively. The spectrum of the intermedi-
ate states can be obtained by diagonalizing the Hamiltonian
in a chosen basis set. Although the variational principle does
not guarantee that these intermediate states correspond to the
actual excited states of the system, the second-order correc-
tion Eq. s7d is exactly calculated only if this set of interme-
diate states is complete. The completeness of all intermediate
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states is checked with sum rules. For example, the Thomas-
Reiche-KuhnsTRKd sum rule for the Hes2 3Pd state f12g
reads, after letting thez-axis component of angular momen-
tum M0 be zero,

3SS
1 +

6

5
SD

1 = Ne . s16d

In the above equation,

SL
, = o

n

fn0
, sLd , s17d

with fn0
, sLd being the oscillator strength connecting the initial

state C0sL0d of angular momentumL0 and the final state
CnsLd of angular momentumL,

fn0
, sLd =

8p

s2 , + 1d2s2L0 + 1d

3sEn − E0dukC0sL0duuo
i

r i
,Y,sr̂ iduuCnsLdlu2 ,

s18d

and Ne is the number of electrons. For helium,Ne=2. Our
numerical result shows that

3 3 s0.028 541 77d +
6

5
3 s1.595 354d = 2.000 05 .

s19d

B. Discrete and continuum oscillator strengths assessment

An array of oscillator strengths for transitions involving
Hes1 1Sd and Hes2 3Pd are tabulated by NISTf13g. The re-
duced dipole matrix elements required in the calculation of
C6 coefficients Eqs.s11d–s13d, described in the L-S coupling,
are calculated from the available fine-structure oscillator
strengths as the following:

4p

3
kAuuduuzl2 =

3

2DEz

f1 1S→z 1P,

4p

3
kBuuduusl2 =

9

2DEs

f2 3Pj→s 3S for j = 0,1,2,

4p

3
kBuuduudl2

=
9

2DEd3 1 0 0

4 4
3 0

100 20
3

25
21

4 f2 3Pj→d 3D
j8

for j = 0,1,2,

and j8 = 1,2,3.

s20d

In the last equation, the elements in the square brackets refer
in rows to j8 and columns toj . The missing matrix elements
kBu udu uhl required to calculateC6

sPd coefficients in Eq.s12d
involve double excited states and the corresponding oscilla-
tor strengths are not available. Fortunately, because of the
large energy differences in the denominators in Eq.s12d and
because of the nature of the double excited states the contri-
bution of the coefficientC6

sPd towards the totalC6 coefficient
is likely to be small. The validity of this approximation is
confirmed by the variational calculation, which shows that
the contribution of these states is less than 1%sTable IVd.

Ignoring the contribution from double excited states the
dispersion coefficients Eq.s10d are then

C6s− 1,0,1d =
27

4 o
z
S s1,4,1d

9 o
s

fzfs

DEzDEssDEz + DEsd

+
s19,22,19d

90 o
d

fzfd

DEzDEdsDEz + DEddD
=

3

4
s1,4,1dWsSd +

3

40
s19,22,19dWsDd. s21d

The anisotropic van der Waals coefficients for the corre-
sponding molecular symmetries are now

C6
S = C6s0d = 3WsSd +

66

40
WsDd,

C6
P = C6s±1d =

3

4
WsSd +

57

40
WsDd. s22d

The averaged dispersion coefficient is

TABLE I. Convergence of the nonrelativistic ground-state en-
ergy of He.N denotes the number of terms in the basis set.

V N EsVd

16 1050 22.903 724 377 034 118 93

17 1230 22.903 724 377 034 119 37

18 1430 22.903 724 377 034 119 53

19 1650 22.903 724 377 034 119 57

20 1892 22.903 724 377 034 119 58

Drake f10g –2.903 724 377 034 119 598 311s1d

TABLE II. Convergence of the nonrelativistic energy eigenvalue
of the state Hes2 3Pd. N denotes the number of terms in the basis
set.

V N EsVd

12 910 22.133 164 190 779 194 2

13 1120 22.133 164 190 779 246 8

14 1360 22.133 164 190 779 278 8

15 1632 22.133 164 190 779 281 2

16 1938 22.133 164 190 779 282 7

Drake f11g 22.133 164 190 779 283 202s5d
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C6 =
1

3
C6

S +
2

3
C6

P. s23d

To write WsSd andWsDd in terms of atomic polarizabilities we
use single-center integralsf8g to obtain

WsSd = 2
fs*

DEs*
o

z

fz

DEz
2 − DEs*

2

+
2

p
E

0

`

o
z

fz

DEz
2 + u2o

s

fs

DEs
2 + u2 du

= 2
fs*

DEs*
aAsDEs*d +

2

p
E

0

`

aAsiudaB
sSdsiud du, s24d

where the states* refers to the Hes2 3Sd state whose transi-
tion energy to the Hes2 3Pd state is negative, i.e.,DEs* ,0,
and asvd are atomic dynamic dipole polarizabilities at fre-
quency v. For the ground-state helium atom, we use the
dynamic polarizability at imaginary frequencies as obtained
by Chan and Dalgarnof14g. For comparison, the value for
the static polarizability using this representation isaAs0d
=1.378, whereas the exact value is 1.383f15g.

The expression forWsDd follows as

WsDd =
2

p
E

0

`

aAsiudaB
sDdsiud du. s25d

The partial polarizabilities evaluated at imaginary frequency,
aB

sSdsiud andaB
sDdsiud, are obtained according to

aB
sSdsxd = o

s=s2−6,8,10d

fs

DEs
2 − x2 + o

s=s7,9,11,̄ d

fs

DEs
2 − x2

+E
0

` dfs

dE

dE

DEs
2 − x2 = asSTdsxd + asSEdsxd + asSCdsxd,

s26d

where the first sum is taken over the values obtained from

the NIST tablesf13g, the second sum is obtained by extrapo-
lating the oscillator strengths and the transition energies
through scaling with the principal quantum numbers, and the
integral term is obtained from photoionization cross sections
f16g by ensuring that at the spectral heads, the scaled discrete
oscillator strengths agreed with the zero-energy limits of the
photoionization cross sections. A similar expression also
holds foraB

sDd, where now the discrete oscillator strengths for
d=3–10 levels are taken from the NIST tablef13g. At the
spectral heads, the scaled oscillator strengths aref`

sSd

=lims→`s3fs=0.240 andf`
sDd=limd→`d3fd=3.352, while the

equivalent values obtained from the continuumf16g are
lime→0sdfi

sSd /ded=0.231 and lime→0sdfj
sDd /ded=3.550.

The oscillator strength sum rule for the Hes2 3Pd state is
satisfied to within 0.2% , i.e.,onf23P→n=1.002, with 0.765
units in the discrete part of the spectrum. The static dipole
polarizability for this state estimated with our semiempirical
method isa23Ps0d=47.08 a.u., which compares well with the
accurate value of Yanf17g of 46.7 a.u. Finally, upon substi-
tuting for the dynamic polarizabilities and transition ener-
gies, we obtain

WsSd = 7.869 and WsDd = 14.310 a.u. s27d

III. RESULTS AND SUMMARY

Table III contains the convergence behavior ofC6sMd. It
is clear that the convergence is smooth against the sizes of
Hylleraas basis sets and variations are in the last two signifi-
cant digits. Table IV shows the contributions toC6sMd from
the intermediate states of different symmetries. Note that the
doubly excitedsppd states contribute at the level of 0.16%
and 0.73%, respectively, to the total values for theC6s0d and
C6s±1d coefficients. Table V shows the effect of different
nuclear masses onC6. There is a systematic increase in the
values for the coefficientsC6sMd with decreasing nuclear
mass. In general, the results for the van der Waals coeffi-

TABLE III. Convergence characteristics ofC6sMd for the system Hes1 1Sd–Hes2 3Pd. N 1S, N 3P, N s, N z,
N h, andN d denote, respectively, the sizes of bases for the two initial states and the four clasess of interme-
diate states of symmetries3S, 1P, sppd 3P, and 3D. The nuclear mass is set to be infinite.

N 1S N 3P N s N z N h N d C6sM =0d C6sM = ±1d

1430 1360 560 1360 1230 853 47.725 886 615 26.708 670 783

1650 1632 680 1632 1430 1071 47.725 886 732 26.708 670 884

1892 1938 816 1938 1650 1323 47.725 886 745 26.708 670 895

TABLE IV. Contributions to C6sMd for the system Hes1 1Sd–Hes2 3Pd from the Hes 1P, 3Sd,
s 1P,sppd 3Pd, ands 1P, 3Dd symmetries. The nuclear mass is set to be infinite.

Symmetries C6s0d C6s±d

Hylleraas semiempirical Hylleraas semiempirical

s 1P, 3Sd 23.855 483 835 6s1d 23.607 5.963 870 958 89s1d 5.902

s 1P,sppd 3Pd 0.079 109 536 86s3d 0.197 773 842 09s9d
s 1P, 3Dd 23.791 293 39s2d 23.612 20.547 026 09s1d 20.392
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cients from the two techniques agree to within 1.5%.
In this work, we investigate the anisotropic long-range

interaction between two helium atoms in the ground and the
first excited tripletP state. We employ two complimentary
methods to obtain theC6sMd coefficients. The agreement is
quite satisfactory, providing a logical check on the methods.
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