
P H Y S I C A L R E V I E W L E T T E R S week ending
2 APRIL 2004VOLUME 92, NUMBER 13
Strongly Magnetized Antihydrogen and Its Field Ionization
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Internal orbits of experimentally analyzed antihydrogen (H) atoms depend as much on an external
magnetic field as on the Coulomb force. A circular ‘‘guiding center atom’’ model is used to understand
their field ionization. This useful model, assumed in the theory of three-body H recombination so far,
ignores the important coupling between internal and center-of-mass motion. A conserved pseudomo-
mentum, effective potential, saddle point analysis, and numerical simulation show where the simple
model is valid and classify the features of the general case, including ‘‘giant dipole states.’’
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A pwithin an e plasma at a low temperature T will
most readily form H via the three-body process p� e� �

frequencies of the special case discussed next. When
these conditions are not met, the nonintegrable motion
Observations of slow H atoms [1–3] bring closer the
exciting prospect of H cold enough to be trapped and
precisely compared to H [4], building upon the laser
spectroscopy of H [5]. Slow H production takes place
during the positron (e�) cooling of antiprotons (p) in a
nested Penning trap [6], which intrinsically includes a
strong magnetic field. To demonstrate that H was pro-
duced, ATHENA counted e� and p annihilations taking
place within �8 mm and 5 �s [1]. ATRAP field ionized
the H and counted the p that were liberated by ionization
and then trapped [2,3]. This method also probes the
internal H orbits, knowledge of which is required to
devise ways to deexcite H for trapping and spectroscopy.

Of interest here are the general theoretical questions
raised by field ionization of H in a strong magnetic field.
For electric and magnetic fields Fz and Bz in direction z,
what does field ionization reveal about the H binding
energy and size? How does the coupling between center-
of-mass (c.m.) and internal motion affect field ioniza-
tion? This Letter first explores H field ionization using a
simple, useful model, then provides a more general
framework applicable to classical (and quantum) calcu-
lations of excited H states in a strong B field. A conserved
pseudomomentum [7–10] leads to an equation of motion
for the internal H motion in which the important cou-
pling of the internal and c.m. motion is contained in
an offset harmonic potential. Saddle point analysis and
numerical simulation reveal general features of the
ionization.

The nonintegrable internal motion of a Rydberg atom
in a strong B, following one and two photon excitations
from the ground state [11,12], was successfully analyzed
with semiclassical methods [13], large scale quantum
calculations [14], and random matrix theory [15]. How-
ever, three-body H formation [16–18] produces a greater
variety of states, higher angular momenta, and significant
motion perpendicular to the magnetic field.

�
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e� ! H� e� [16]. A e� (mass m � m� and charge e) is
initially captured into a large orbit about the p (mass
m� and charge �e) with a size of order of b �
remc

2=�kT�, the separation at which the thermal and
Coulomb energies are equal for two elementary charges;
re is the classical electron radius. H atoms then deexcite
towards the desired ground atomic state via replacement
[17] and diffusion collisions [18] until leaving the e�

plasma. An electric field Fz that turns on adiabatically
is intended to ionize and analyze the size and energy of
the H atoms.

One limit for the H formed is obtained in the guiding
center approximation (GCA) [19] in which the e� makes
cyclotron, axial, and magnetron motions much like a
particle in a Penning trap [20]. Rapid e� cyclotron mo-
tion at angular frequency !c � eB=m is treated as a
negligibly small magnetic moment at its ‘‘guiding center’’
[19], and the cyclotron kinetic energy Ec is essentially
conserved. The center oscillates axially along z at angular
frequency !z; the ratio of the axial energy and !z is an
adiabatic invariant. The drift or magnetron motion, at
angular frequency !m, has a transverse velocity, _�� �
�rV 	 z=B, dependent only on the electric and mag-
netic fields, to both of which it is perpendicular. The drift
kinetic energy is negligibly small. Drift orbit size, rather
than energy, best characterizes GCA atoms since a large
energy can be stored in tiny cyclotron orbits with little
consequence.

The first of two GCA conditions is a � � j�j (e.g.,
Fig. 1) much larger than the cyclotron radius, where r �
xx� yy � zz � �� zz is the position of the e� relative
to the p. For a thermal e� velocity ve �

���������������
2kT=m

p
, this

requires �� ve=!c � 0:01 �m for 4.2 K. Second, the
internal oscillations must differ in time scale so that
!c � !z � !m, as is familiar for a particle in a
Penning trap [20]. This corresponds to ��
�rec

2=!2
c�

1=3 � 0:04 �m for ATRAP’s B � 5:3 T for the
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FIG. 2 (color). Estimated pseudomomentum K? distributions
for H production within a 4.2 K e� plasma. For K? > Kcrit

giant dipole states can exist as we discuss.
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FIG. 1. A circular guiding center H atom (a) is polarized (b)
and ionized (c) by an electric field F is applied along B.
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in similar strength magnetic and Coulomb fields allows
for chaotic orbits [15].

The important special case is the circular GCA atom
[Fig. 1(a)] used to calculate rates for three-body forma-
tion of magnetized H [17,18] and for radiation from
circular Rydberg states [21], for an axially symmetric
V � 1=r with no H c.m. motion transverse to B. The
angular frequency for small axial oscillations (z �)
is !z �

�����������������
rec2=�3

p
, and the angular drift frequency is

!m � rec2=�!c�3�. The axial adiabatic invariant means
that the axial energy Ez �!z � ��3=2 for small z. The
guiding center of an H formed with axial energy Ez0 at
� � �0 then follows an orbit given by Ez0��0=��3=2 �
V�z � 0� � const in this limit.

Circular GCA atoms are polarized or ionized by Fz in
a way that depends upon their radial size �, but without
changing �. As Fz is adiabatically added to the Coulomb
potential, the calculated center of the axial oscillation of
the e� moves to stay centered in the resultant axial
potential well [the solid curves in Fig. 1(b)]. (For ATRAP
F changes adiabatically insofar as H move slowly into the
ionization field.) This H polarizability can be calculated
analytically for F small enough that the average z �.
The average induced dipole is then ez � �F, with a
polarizability � � e2�3=�remc

2� [dashes in Fig. 1(b)].
If we relaxed our assumption that F is spatially uni-

form, the force on the induced dipole, ��=2��@=@z�F2 in
the linearized case, would provide a 1D restoring force
on the H to any point for which F2 is maximum along z.
At the origin, a field F� cosazwill provide such confine-
ment whereas a harmonic F� z will not.

A polarized H ionizes when its e� is able to escape the
axial well, which eventually vanishes as F increases. An
H that survives F thus has � smaller than

� �
a����
F

p

�����������
e

4��o

r
; (1)

with a � �4=27�1=4 � 0:62 [Fig. 1(c)] and Coulomb con-
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stant 4��0. The square root constant is 1 a.u. and
3:795 �m

�������������
V=cm

p
. An e� with axial energy is ionized

by a smaller F [e.g., Fig. 1(c) for axial energies of kT and
10kT for T � 4:2 K]. A thermal distribution of e� axial
energies is predicted due to collisions with other e� [17];
for axial energy much less than the radial binding energy,
jEbj � 1=�, the limit Eq. (1) is jEbj �

����
F

p
=a

����������������������
e3=�4��o�

p
,

where this square root constant is 1 a.u. and
0:3795 meV

�������������
cm=V

p
. Quantum tunneling from the axial

well in the 100 �s or less that H travel from production to
detection only slightly lowers the curves of Fig. 1(c).

Determining where the simple circular model is valid,
and improving upon it, requires an analysis that includes
the motion of the H c.m., with mass M at position R,
neglected so far. The key is a pseudomomentum [7,8]

K � M _RR� er	 B; (2)

which is conserved along with the total energy, which
now is the sum of the energy in the relative and c.m.
motions. Kz is the c.m. momentum parallel to B. With-
out loss of generality we choose y so that K? � K?y. For
us, K? distinguishes different types of H states; earlier it
was useful in characterizing how c.m. motion was af-
fected as internal atomic motion became chaotic [9,10].

A simple model estimates the K? distributions that
might be expected for formation and deexcitation of H
(Fig. 2), consistent with a recent simulation [22]. We
associate a binding energy �kT with a radius r � b=�
as would pertain for circular atoms. For three-body for-
mation of H, a capture and deexcitation through a ‘‘bottle-
neck’’ at � � 4 is predicted [17]. The K? distribution
arises from a thermal distribution of c.m. velocities and a
random distribution of �; the basic features do not change
if we populate an area of radius b=� transverse to B, a
shell of this radius (in Fig. 2), or the interior of this shell,
so that K? < 1 a:u: is expected.

The conservation of K is established directly by the
first of two equations of motion for H in uniform mag-
netic and electric fields, B and F,
133402-2
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0 �
d
dt

�M _RR� er	B� �
dK
dt
; (3)

��rr � e _RR	 B� e _rr	 $B�
e2

4��o

r
r3

� eF: (4)

Here � is the familiar reduced mass, and $ � �m� �
m��=M would vanish for m� � m� (e.g., positronium).

Using the conserved K to eliminate explicit references
to the c.m. motion [9] from Eq. (4) yields an equation
involving only the relative coordinates,

��rr � �rV�r� � e _rr	 $B; (5)

for a charge e and mass � in an effective magnetic field
$B � B and an effective potential

V�r� �
1

2
M�2

c��� xo�
2 �

1

4��0

e2

r
� eF � r: (6)

Coupling to the c.m. motion is completely described by
the harmonic term with an offset x0 � K?x̂x=�eB� and a
strength given by �c � eB=M—nearly the p cyclotron
frequency. Figure 3 shows equipotentials and projections
of V�r� for K? � 1 a:u: As K? increases above Kcrit �
3e�MB=�16��0��1=3, a giant dipole well emerges as a
consequence of the coupling to the c.m. motion [10].

The relative equation of motion corresponds to a con-
served Hamiltonian,H � 1

2� _rr2 � V�r� [10], where� _rr �
p� eA�r� is related to the canonical momentum p and
the vector potential A in the usual way. The internal H
energy is Erel �

1
2� _rr2 � e2=�4��0r�. The alternate form,

H � 1
2M

_RR2
? � Erel, emphasizes that total energy is con-

served while Erel is not.
Figure 4 illustrates different types of regular drift

orbits. The GCA is valid over the area shown, except
very close to the Coulomb center (�), where � <
0:25 �m as we shall see. First, just outside this radius
but still within the Coulomb well, the GCA orbits are
nearly circular, becoming more elliptical with increasing
size. Second, an unusual class of nearly circular GCA
states with large electric dipole moments oriented per-
pendicular to B form in the very shallow giant dipole
well. These states are ionized before leaving the nested
Penning trap within which they form, by electric fields
FIG. 3 (color). (a) Three equipotential surfaces of V�r� for
B � 5:4 T, K? � 1 a:u:, and F � 0. (b) Effective potential
V�x; y � 0; z � 0� along the x axis for various values of K?.
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that exceed 2 V=cm. Third, noncircular guiding center
orbits nearly follow equipotentials that encircle both the
Coulomb well and the displaced giant dipole well, but
these too have weak axial binding energies and are easily
ionized. Fourth, but not shown, are orbits that can be
chaotic as they closely approach the Coulomb center.

A saddle point analysis seems appropriate for these
smaller orbits. The first manifestations of the onset of
chaos are close collisions which transfer energy between
cyclotron, axial, and drift motions, making rather sudden
changes in the e� orbit. These motions become com-
pletely entangled for smaller �, the chaotic orbits even-
tually filling the energetically allowed phase space. The
atom size is then the radius of the xy region bounded by
the equipotential going through the saddle point for V
[dashes in Fig. 5(g)] and approaching Eq. (1) with a �
1=2 with increasing F. In the limit of smaller atom sizes
and larger ionization fields, unlike the GCA for larger
atoms and smaller ionization fields, conservation of total
energy gives a limit to the size of the atom that increases
with increasing energy.

Numerical simulations confirm the general features
that have been described. For various adiabatically ap-
plied electric fields, trajectories started from the initial x
and y values in Figs. 5(a)–5(f) with _xx � _yy � 0 are not
field ionized for more than 103 cyclotron periods (7 ns).
The effective radii of these stable regions are represented
by the points in Fig. 5(g). More familiar ionization for
B � 0 [23] is recovered in Figs. 5(a) and 5(g) for which
K? � 0.

These different approaches give much the same result
for the smaller radii and larger ionization fields for which
c.m. motion and K? become increasingly less relevant.
The encouraging conclusion is that field ionization and
Fig. 5(g) should give a reliable indication of H size for
electric fields that can be readily applied in the laboratory,
even for smaller sized atoms which have chaotic orbits.

For c.m. motion, the conservation of K suggests that
c.m.trajectories are ballistic on average for thermal H
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FIG. 4 (color). Radial orbit examples superimposed on radial
equipotentials of V�r� for K? � 1 a:u: Cyclotron radii have
been increased and the cyclotron frequency decreased to make
them visible.
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velocities and reasonably small K? despite the coupling
to relative motion, as confirmed by simulations [22]. Both
r	 B and _RR in Eq. (2) oscillate at relative oscillation
frequencies to keep K independent of time. Since the
corresponding periods are short compared to the transit
time of an H through the apparatus, the effect of these
oscillations on the c.m. motion averages away.

Spatial gradients in F (e.g., due to the relatively weak
fields of the nested Penning trap) have not been included
in our analysis. Doing so adds er � r0F�r0�jr0�R to the
right of Eq. (3), and the sum of this term and eF�R�
replace eF in Eq. (5). K? is not conserved and coupled
equations for the c.m. and relative motion must be solved.
Fields from harmonic potentials are simple in that the
gradient terms are independent of R, but K? is still not
conserved and F�R� still couples the relative and c.m.
equations. For the special case F�z�z (e.g., for ATRAP
H traveling into the prestripping field), K? is conserved
and Eq. (5) is unchanged. The coupled c.m. and relative
axial equations describe the polarization of the H and the
force on this induced moment; for ATRAP this slightly
speeds the H motion to the detection well.
133402-4
In conclusion, a conserved pseudomomentum allows
the analysis of coupled internal and c.m. motions for
magnetized H atoms and provides a general framework
for improved classical and quantum calculations of the
formation of such atoms. A classical analysis shows that H
c.m. motion in a strong B produces unusual internal H
orbits, some with large electric dipoles. This general
approach shows that a simple circular atom model, com-
bined with a saddle point analysis and numerical simu-
lations, gives a consistent picture of the relationship
between the size of an H and the field that ionizes it,
thus supporting the usefulness of the ATRAP field ion-
ization method. The analysis shows that orbits with large
electric dipoles ionize so easily that they have not yet
been observed experimentally, and that the coupling be-
tween H center-of-mass and internal motion is less of a
complication for H moving along the magnetic field
direction, the configuration used by ATRAP.
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[5] C. Zimmerman and T.W. Hänsch, Hyperfine Interact. 76,
47 (1993).

[6] G. Gabrielse et al., Phys. Lett. B 507, 1 (2001).
[7] B. P. Carter, J. Math. Phys. (N.Y.) 10, 788 (1969).
[8] J. E. Avron, I.W. Herbst, and B. Simon, Ann. Phys. (N.Y.)

114, 431 (1978).
[9] P. Schmelcher and L. S. Cederbaum, Comments Mod.

Phys. D 2, 123 (2000).
[10] O. Dippel, P. Schmelcher, and L. S. Cederbaum, Phys.

Rev. A 49, 4415 (1994).
[11] G. Littman, M. M. Kash, and D. Kleppner, Phys. Rev.

Lett. 41, 103 (1978).
[12] J. Main, G. Wiebusch, A. Holle, and K. H. Welge, Phys.

Rev. Lett. 57, 2789 (1986).
[13] M. L. Du and J. B. Delos, Phys. Rev. A 38, 1896 (1988).
[14] C.W. Clark and K. T. Taylor, J. Phys. B 13, L737 (1980).
[15] D. Delande and J. C. Gay, Phys. Rev. Lett. 57, 2006

(1986).
[16] G. Gabrielse, S. L. Rolston, L. Haarsma, and W. Kells,

Phys. Lett. A 129, 38 (1988).
[17] M. Glinsky and T. O’Neil, Phys. Fluids B 3, 1279 (1991).
[18] P. O. Fedichev, Phys. Lett. A 226, 289 (1997).
[19] B. Lehnert, Dynamics of Charged Particles (Wiley, New

York, 1964).
[20] L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233

(1986).
[21] J. R. Guest, J.-H. Choi, and G. Raithel, Phys. Rev. A 68,

022509 (2003).
[22] F. Robicheaux (private communication).
[23] T. F. Gallagher, Rydberg Atoms (Cambridge University

Press, New York, 1994).
133402-4


