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Split diabatic representation
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A split diabatic representation is proposed as a technique for generating diabatic potential curves with the
maximal physical content and favorable computational characteristics. This method is a mixed adiabatic-
diabatic representation, in which smoothly varying couplings appear in both the kinetic- and potential-energy
matrices. It requires the solution of the first-order differential equation for the transformation matrix of the
standard strict diabatic representation for which an efficient numerical scheme is also presented. A transfor-
mation propagator, akin to the Cayley-Hamiltonian time evolution operator, is employed to obtain the diabatic
states while preserving unitarity. Several examples illustrate the advantages of the proposed split diabatic
representation.
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I. INTRODUCTION

Nearly all systems of interest in physics do not adm
separable solutions, leading to the development of m
methods to find approximate solutions. One common
proximation is the adiabatic approximation—holding som
slow variable fixed while solving for the remaining degre
of freedom. The adiabatic approximation has been used p
itably, relying on the very intuitive and physical notion o
separation of time~or energy! scales. Probably the most fa
miliar example of the adiabatic approximation is the wo
horse of theoretical chemistry and molecular physics, nam
the Born-Oppenheimer approximation and its variants@1#.

While the Born-Oppenheimer potential curves are of
used independently to generate approximate solutions, u
the adiabatic eigenfunctions as basis for the fast coordin
yields exactsolutions of the Schro¨dinger equation. This ap
proach is labeled the perturbed stationary state method
in the broader sense of adiabatic approaches, simply the a
batic representation@2#. It requires the nonadiabatic couplin
between the channels as well as the infinite set of chann
In practice, of course, the number of channels must be t
cated, but numerical convergence in this respect can usu
be achieved at least for slow collisions. For higher-ene
collisions, the truncated basis contributes to the mu
discussed electron translation factor problem@3#.

Besides the need to calculate the nonadiabatic couplin
the first place, the most troublesome practical aspect of
adiabatic representation is solving the coupled radial eq
tions themselves. Near avoided crossings of the adiab
potential curves, the radial functions undergo rap
changes—the sharper the crossing, the more rapid
change. Numerically representing such changes is a c
lenging task. Moreover, it requires that the coupling near
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crossings be accurately calculated, a task that is challen
in itself.

Because of these difficulties with the adiabatic repres
tation, much effort has been invested in finding physica
meaningful diabatic representations@4–6#. Generically, the
adiabatic representation yields radial~slow-coordinate! equa-
tions in which the potential energy is diagonal and the c
pling enters through the radial kinetic-energy operator.
contrast, the coupling in the diabatic representation reside
the potential energy, and the kinetic energy is usually dia
nal. While most people agree on the definition of the ad
batic representation, definitions for diabatic representati
do not enjoy similar universal agreement. This ambiguity
but one reason that—despite the difficulties mention
above—the adiabatic representation is generally chosen
a diabatic one.

A compelling practical motivation for working in a diaba
tic representation, however, is the ability to cleanly elimina
physically unimportant channels from a calculation. In t
adiabatic representation, eliminating thenth channel is rela-
tively easy, but the picture that results invariably miss
some essential physics because the physical configura
represented by that channel can change drastically with e
avoided crossing. In contrast, diabatic states tend to track
configuration of the system, not just the nodal count as
adiabatic states. So, eliminating a single diabatic channe
equivalent to excluding a configuration of the system that
been identified as unimportant.

Another practical motivation for using diabatic represe
tations is their slowly varying coupling elements—even
transition regions. Physically motivated diabatic potenti
trace through avoided crossings just the way one would d
with a pen. More rigorously, one says that diabatic potent
are ‘‘more physical’’ when the velocity at the crossing
large or the splitting small. The diagonal kinetic energy
then the dominant part of the equation, and the crossin
traversed diabatically. In the opposite limit of small veloc
ties, the diagonal potential of the adiabatic representa
dominates, and the crossing is traversed adiabatically.
©2003 The American Physical Society06-1
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Diabatic representations fall into two broad categori
those that are derived from the adiabatic representation
those that are obtained directly. Computationally, the la
are preferred since any diabatization scheme based on
adiabatic representation requires at least that the adia
channel functions be computed on a fine grid near
avoided crossings. Most schemes additionally require the
sociated nonadiabatic couplings on a similarly fine grid.
the other hand, diabatization schemes derived directly ten
have some of the advantages of the adiabatic represent
itself, i.e., they are well defined and retain much of the c
siderable physical content of the adiabatic states. Unfo
nately, there does not exist a general prescription to ob
such a physical diabatic representation.

Standard definitions of diabatic representations fail to p
duce physically appealing potentials if the nonadiabatic c
plings do not fall off faster thanR21 asymptotically. Unfor-
tunately, two of the most important examples of the adiab
approach in scattering—the Born-Oppenheimer and the
perspherical coordinate representations—do not satisfy
criterion.

We describe below a diabatization scheme that see
compromise between the various considerations listed ab
While it requires first having the adiabatic representation
yields physical diabatic channel potentials even for the
perspherical case. Moreover, unlike some previousad hoc
diabatization methods in hyperspherical coordinates,
scheme, in principle, allows the radial equations to be sol
exactly.

II. BACKGROUND

To put our representation into context, we will define
this section the adiabatic representation and the ‘‘strict’’
abatic representation. We assume that there is only a si
adiabatic coordinateR. While our method may generalize t
several adiabatic coordinates, we prefer to preserve the
plicity of a single coordinate in order to make the logic mo
transparent.

The Hamiltonian for a system can in general be written

H52
1

2m

]2

]R2 1Had~R,V!, ~1!

whereV represents all of the rapidly varying coordinates a
R is the adiabatic parameter. The adiabatic equation is th

Had~R,V!Fn~R;V!5Un
A~R!Fn~R;V!. ~2!

The superscript ‘‘A’’ on the potential designates this as th
adiabatic potential; the diabatic potential will be denot
with superscript ‘‘D. ’’ The channel functionsF form a com-
plete set at everyR and are used to expand the total wa
function as

C~R,V!5(
n

`

Fn~R!Fn~R;V! ~3!

in the adiabatic representation. With the expansion take
infinity, the Schro¨dinger equation is transformed exactly to
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F2
1

2m S I
d

dR
1PD 2

1UAGF5EF, ~4!

where I is the unit matrix,UA is the diagonal matrix of
adiabatic potentials, andF is the vector of radial channe
functions. The nonadiabatic coupling matrixP, representing
the residual coupling between the fast and slow coordina
~such as the electronic and nuclear coordinates in molecu
respectively!, is given by

Pln~R!5Š^Fl~R!u
d

dR
uFn~R!&‹.

In this expression, the double brackets indicate integrati
over the fast coordinates only. Also, note that the matrixP is
anti-Hermitian under interchange of the indicesm and n.
The form of Eq.~4! is reminiscent of the minimal-coupling
Schrödinger equation representing a charged particle in
external field. In fact, Eq.~4! has been discussed in the la
guage of gauge theories@4,7–9#, the simplest example o
which is electrodynamics.

Equation~4! can also be written as

F2
1

2m S I
d2

dR2 12P
d

dR
1QD1UAGF5EF ~5!

with the new coupling matrixQ defined as

Qmn~R!5^^Fmu
d2

dR2 uFn&&. ~6!

This new equation is identical to Eq.~4! through the equality

Q5P21
dP

dR
. ~7!

When the expansion in Eq.~3! is truncated, however, Eq.~5!
with Q obtained from Eq.~6! is more accurate since th
implied sum in theP2 term of Eq.~7! must include the infi-
nite set of adiabatic states to be strictly true. In the remain
of this work, we will neglect this issue with the assumptio
that either our general logic can be adapted or the sum ca
made to include enough states to achieve convergence fo
desired elements ofQ.

The strict diabatic representation can now be defined fr
the unitary transformation that diagonalizes the kinetic
ergy in Eq.~4!. This well-known transformation,

d

dR
C52PC, ~8!

can only be unambiguously defined for a single adiaba
parameter@4#. This restriction, though, includes the impo
tant examples of the Born-Oppenheimer approximation
diatomic molecules and the adiabatic hyperspherical meth
The radial equations in the strict diabatic representation

F2
1

2m
I

d2

dR2 1UDGG5EG ~9!
6-2
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SPLIT DIABATIC REPRESENTATION PHYSICAL REVIEW A68, 042706 ~2003!
with the diabatic radial functionsG,

G5C†F,

and diabatic potential matrix

UD5C†UAC.

The strict diabatic representation accomplishes the imp
tant goal of eliminating the sharply peaked nonadiabatic c
plings, Pln50, leaving only smooth off-diagonal elemen
in UD. Unfortunately, it also has one major drawback: due
the fact thatPln(R→`) do not vanish identically or vanish
in a power-law fashion, the diabatic channel potentials,Unn

D ,
do not have the physical behavior we had set out to fi
That is, they do not fall on top of the adiabatic potentia
tracing smoothly through avoided crossings. In particular,
tails of the diabatic potentials exhibit undesirable, unphys
behavior, and do not lead to the correct fragmentation,
sociation, or ionization limits atR5`. The culprit is the
long-range coupling present inP for both the Born-
Oppenheimer and the adiabatic hyperspherical approach

In the Born-Oppenheimer representation, the off-diago
elements connecting states that have nonvanishing di
matrix elements@4,10# approach constants with values on t
order of the electronic to nuclear mass ratio asR approaches
infinity. This residual coupling, related to the electron tran
lation factor problem, leads to diabatic potentials that os
late sinusoidally asymptotically. In fact, this constant co
pling mustbe present to make up for the fact that the redu
mass is not the correct mass in the asymptotic system, w
two separated atoms result. For instance, the reduced ma
the radial equation for H2

1 is mp/2, wheremp is the mass of
the proton. The ground state 1ss channel, however, corre
lates to p1H(1s) for which the reduced mass should b
mp(mp11)/(2mp11). The difference is small as adve
tised, but nonetheless significant@11#.

A two-channel example will serve to illustrate the path
logical behavior of the diabatic potentials. Consider the
rivative coupling matrix

P~R!5S 0 P~R!

2P~R! 0 D .

The solution of Eq.~8! for this case is

C~R!5S cosu~R! sinu~R!

2sinu~R! cosu~R!
D , ~10!

where the rotation angle is

u~R!5E
R0

R

P~R8!dR8. ~11!

The diabatic representation thus defined coincides with
adiabatic representation atR0, but its behavior forR.R0
depends on the long-range behavior ofP(R). Using the
transformationC, the diabatic potentials are thus

U11
D 5U1

Acos2u1U2
Asin2u, ~12!
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U22
D 5U1

Asin2u1U2
Acos2u.

In the case of the Born-Oppenheimer approximation,
which the worst-case situation isP(R→`)→const, u(R)
}R and the diabatic potentials oscillate sinusoidally at la
distances. Note that the magnitude of the constant asymp
coupling only affects the period of oscillation, not its amp
tude.

The situation is superficially better in the adiabatic hyp
spherical approach. Here, it is the same-center, same-an
momentum, bound state to bound state off-diagonal coup
that is problematic, behaving asa/R asymptotically. While it
does vanish in the limitR→`, it nevertheless leads to di
abatic potentials proportional to sin2(a ln R) from Eqs.~11!
and ~12!. This asymptotic mixing of the two-body channe
can be traced to the fact that the hyperspherical coordin
only slowly approach the Jacobi coordinates@12#. Only for
coupling that vanishes faster thanR21 will the asymptotic
diabatic potentials take a physically sensible form.

Neither the Born-Oppenheimer nor the adiabatic hyp
spherical representations, then, lead to strict diabatic po
tials that have the physical asymptotic behavior we des
Moreover, for the usual case in which the diabatic and ad
batic representations are chosen to agree at infinity, i.e.R0
→`, the accumulated effect of these oscillations genera
unphysical small-R potentials.

III. SPLIT DIABATIC REPRESENTATION

Since the root cause of the problems with the strict dia
tic representation is the long-range misbehavior of
P-matrix elements, we propose the natural solution of sp
ting P into two parts:

P5Pa1Pb .

One part, sayPb , nominally contains the long-range ta
while the other,Pa , contains the short-range crossings. T
idea is to usePa to transform away these crossings wh
preserving the physical long-range behavior of the adiab
potentials by retainingPb as the nonadiabatic coupling. Th
result is thus a mixed diabatic-adiabatic representation
hopefully retains the best features of both representatio
The division ofP amongPa andPb is completely arbitrary,
but will affect the resulting diabatic potentials. Since all
the coupling is retained in one form or another, though,
calculation remains exact.

The split diabatic representation is defined using Eq.~8!
with Pa instead of the full coupling matrixP. Thus, we have

d

dR
Ca52PaCa . ~13!

For isolated crossings,Pa is well approximated by a Lorent
zian. As before,Ca is a unitary matrix that affects the trans
formation from the radial functionsF to a new set

Ga5Ca
†F.

These new functions satisfy the radial equation
6-3
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F2
1

2m S I
d

dR
1P̃bD 2

1ŨGGa5EGa , ~14!

where the tilde is used to denote the similarity transformat

Ã5Ca
†ACa .

These radial equations have an intuitive form: they disp
the residual adiabatic behavior due toPb and the diabatic
behavior inŨ generated byPa .

The diabatic channel potentialsŨnn can now cross and
will generally have the physical behavior desired for app
priate choices ofPa . Further, the channels will be couple
by both diabatic and nonadiabatic terms. The off-diago
matrix elements ofŨ trace smoothly through the crossing
and by constructionPb has no sharp peaks. It must still b
determined whether the similarity transformation toP̃b has
reintroduced peaks from the transformation matrixCa itself,
however.

To this end, let us again consider a two-channel prob
since isolated crossings in even the most complicated p
lem can be profitably pictured two channels at a time.
have, then, a transformation matrix as in Eq.~10! except that
the rotation angleu is now defined fromPa , and

Pb5S 0 Pb~R!

2Pb~R! 0 D .

Note that the crossing occurs atu5p/4 where the channel
are equally mixed; any peak due toCa should also occur a
this point. Explicitly evaluating the transformedPb gives

P̃b5S 0 ~cos2u2sin2u!Pb

2~cos2u2sin2u!Pb 0 D .

Thus, the similarity transformation does not reintroduce
peak in the nonadiabatic coupling at the crossing,u5p/4. It
does, however, force theP̃b matrix element to zero at th
crossing over a distance on the order of the width of
original coupling peak profile. While this is still a rapi
change, it is less problematic sincePb only includes the re-
sidual coupling which is small by construction. When mo
channels are included, it is likely that the off-diagona
would no longer vanish, but there should still be no peak

IV. NUMERICAL METHOD

Traditionally, one of the impediments to using the str
diabatic approach has been the need to solve theN2 coupled
equations, Eq.~8!, for C whereN is the number of channels
By extension, the present split diabatic method will share
same drawback. We have, however, found a particularly c
venient method for solving the differential equations. T
essential observation is that Eqs.~8! and ~13! share many
properties with the time-dependent Schro¨dinger equation. In
particular, it is a system of first-order equations whose so
tion obeys a unitarity condition. Simply using a straightfo
04270
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ward Runge-Kutta integration, for instance, does not guar
tee unitarity.

Many algorithms have been developed for the tim
dependent problem that have the desirable property of
tary propagation. One of the more common of these is
Crank-Nicholson method@13#. As it is generally associated
with the finite difference representation of the spatial coor
nates with propagation in time, it will not be directly appl
cable here. The essence of the method—the Cay
Hamilton form of the time evolution operator~which is itself
just a Pade` approximation!—can be directly applied, how
ever.

The short-distance propagator solution of Eq.~13! is

C~R1DR!5e2PDRC~R!.

SinceP depends onR, this expression is not exact, bu
can be accurately used for smallDR. Using P†52P, it is
easy to show thatC remains unitary. The Cayley-Hamilto
replacement is

e2PDR5

I2P
DR

2

I1P
DR

2

1O~DR3!,

which, with a little algebra, can also be shown to be unita
A slight rearrangement gives the Crank-Nicholson-like eq
tion for the transformation matrix propagation:

S I1P
DR

2 DC~R1DR!5S I2P
DR

2 DC~R!. ~15!

The set ofN linear equations are propagated using efficie
numerical routines for several right-hand sides, to obtain
transformation matrixC(R). It might also be possible to tak
advantage of the fact that theP matrix often has many
zeros—this is especially true forPa in the present scheme. I
practice, the step sizeDR should be chosen with an adaptiv
scheme for accuracy near avoided crossings. In the simp
implementation, theP matrix would be calculated indepen
dently, then interpolated as required for the integrat
above, although more elaborate schemes can easily be im
ined.

V. APPLICATIONS: NUMERICAL EXAMPLES

To illustrate the split diabatic representation propos
here, we proceed with three examples in atomic and mole
lar collisions. The first application is to the hyperspheric
potential-energy curves of the hydrogen negative ion. Ne
we consider the mass-scaled antiproton-hydrogen hy
spherical potentials, and the last example is a model al
trimer adiabatic hyperspherical potential-energy calculati

A. HÀ

In Fig. 1, we show the adiabatic hyperspherical poten
curves for the excitation of the hydrogen negative ion in
1Po symmetry@14#. The three curves shown converge to t
6-4
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SPLIT DIABATIC REPRESENTATION PHYSICAL REVIEW A68, 042706 ~2003!
H(2l ) threshold and can be labeled by the so-called ‘‘ne
exact’’ radial quantum numbers,A51, 2, and 0, respec-
tively @15#. The curve converging to H(1s) is also in the
figure, but the threshold is off the scale of the figure. The t
1 and2 curves strongly repel each other nearR'13 a.u. so
that theP-matrix element coupling them~also shown in the
figure! peaks there.

Probably the simplest splitting of theP matrix uses only
the couplingP23 between the1 and2 curves to define the
diabatic transformation. The resulting diabatic potenti
energy curves shown in Fig. 2 follow their adiabatic cou
terparts closely and cross each other at the crossingR
'13 a.u. The1 diabatic curve has a minimum nearR
'8.5 a.u. and becomes repulsive after the crossing re
~not shown!. It supports a single resonance above the Hn
52) threshold (E520.125 a.u.) that coincides with the ce

FIG. 1. Adiabatic hyperspherical potential-energy curves for2

1Po symmetry near the H(n52) threshold. The nonadiabatic cou
pling between the1 and 2 curves is also shown~long dashed
line!. Note that it has a relatively sharp, locally Lorentzian peak
the avoided crossing.

FIG. 2. Adiabatic and split diabatic hyperspherical potenti
energy curves for H2 1Po symmetry near the H(n52) threshold.
The 1 diabatic curve is shown with a heavy dashed line; the2
diabatic curve, with a heavy solid line. The adiabatic curves fr
Fig. 1 are shown as thin solid lines for comparison. The circ
mark the off-diagonal diabatic coupling element between the1 and
2 states.
04270
r-

o

-
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ebrated H2 shape resonance@16#. By design, the curve la-
beled 0 and the curve converging to H(1s) ~off the scale of
the graph! are identical to the adiabatic potentials since
elements coupling to these states were included inPa .
Physically, an avoided crossing signals a change in
character—shape, nodal pattern, etc.—of the channel fu
tion. The transformation to this diabatic representation th
can be thought of as preserving such properties of the ch
nel functions.

The diabatic couplingŨ23 is also shown in Fig. 2. This
coupling is smooth and slowly varying through the cross
region as desired. All of the remaining coupling resides
the nonadiabatic termP̃b shown in Fig. 3. Because of ou
selection ofPa and Pb , the original, sharply peaked nona
diabatic coupling elementP23 is completely transformed to
diabatic coupling. Thus, (P̃b)23 is zero as indicated by a
dashed line in Fig. 3. The1 and 2 channels are directly
coupled only by the diabatic couplingŨ23 shown in Fig. 2.
For the present purposes, the relevant point to notice ab
the remaining nonadiabatic coupling is that it pass
smoothly through the region of the crossing of the1 and
2 curves.

B. Mass-scaledp̄¿H

Figure 4 shows the adiabatic and diabatic hyperspher
potential curves for another Coulomb system. In this ca
we examine a mass-scaled version of thep̄1H system@17#.
In this model, the masses of thep and p̄ have been scaled to
17 times the electron mass in order to reduce the numbe
channels. For the realistic system, the H(1s) threshold lies
above thepp̄(n530) manifold. Here, the analogous H(1s)
threshold lies instead just above then53 manifold which
greatly simplifies the calculation, making it a suitable e
ample for diabatization.

To obtain the diabatic curves in Fig. 4~b!, Pa was chosen
to include only the nonadiabatic coupling between the hi

t

-

s

FIG. 3. The residual nonadiabatic couplingP̃b among all of the
H(n51) and H(n52) channels~heavy lines!. The dashed line

shows that (P̃b)23 is zero~compared to the originalP23 shown as a
thin solid line!.
6-5
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est three states shown in Fig. 4~a!. In the pure adiabatic
curves, the potential that we would like to draw correlati
to the H(1s) threshold undergoes three avoided crossi
with the upper two potentials of thepp̄(n53) manifold. The
transformation produces a diabatic curve that traces thro
these crossings, giving a physically reasonable curve re
senting thep̄1H(1s) channel.

It turns out that the diabatic curves in Fig. 4~b! are not
sensitive to the exact choice ofPa . For instance, the curve
are identical if all of the couplings between the three cur
are included or if only the nearest-neighbor couplings am
these three states are included. The residual nonadia
couplingsP̃b , however, do depend on this choice. Figure
shows the nonadiabatic coupling both before and after
diabatic transformation. Figure 5~a! shows the original
P-matrix elements between the three curves in quest
Note that the two nearest-neighbor couplings are extrem
sharply peaked—the peak values are off the scale of the

FIG. 4. The~a! adiabatic and~b! diabatic hyperspherical poten

tial curves for a modelp̄1H system for theJp501 symmetry. The

masses of thep and p̄ have been rescaled to'17me .

FIG. 5. The nonadiabatic coupling between the highest th
states—labeled 5, 6, and 7—shown in Fig. 4. In~a!, the original

nonadiabatic coupling is shown, and in~b! the residual couplingP̃b

if Pa includes onlyP56 andP67.
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ure, ranging from 6 to 70 a.u. If only the nearest-neighb
couplings are included inPa , the transformed nonadiabati
couplingsP̃b display sharp peaks, as shown in Fig. 5~b!. The
magnitude of these peaks is, however, reduced by more
an order of magnitude from the original couplings. If all th
couplings between the three states are included, the res
coupling between them vanishes. In all cases, the diab
couplingŨ between the curves remains smooth and qual
tively the same as shown in Fig. 2.

In Fig. 6, we show the original nonadiabatic coupling b
tween then51 channel andn56 andn57 ~thin lines!. So,
even thoughn51 has no sharp crossings with any state,
crossings among the higher excited channels lead to ab
changes in the rest of the couplings as illustrated by the
lines. The heavy lines in the figure indicate the transform
couplingP̃b . The relatively slow variation of these new cou
plings is a fortunate by-product of the diabatization.

It has been conjectured@17# that only the lowestpp̄ state
in eachn manifold couples strongly to thep̄1H(1s) en-
trance channel. With the split diabatic representation, we
more clearly test this idea by looking at the residual no
diabatic coupling to thep̄1H(1s) entrance channel~dashed
line in Fig. 4!. Figure 7 shows all of the coupling—bot
diabatic and nonadiabatic—with this channel (n57). We
can in fact see that the largest coupling seems to be with
lowestpp̄(3l ) state (n54). Furthermore, the couplings wit
the lowest states in then51 andn52 manifolds (n51 and
n52) are larger than the couplings with the highern52
(n53) state. To produce this figure, we included all of t
coupling between the highest three states in Fig. 4, so the
no residual nonadiabatic coupling between them. Instead
coupling is all in the off-diagonal elements of the diaba
potential matrix. These couplings show the same trend—
energetically lower of the two channels (n55) has a stron-
ger coupling with the entrance channel.

C. Model Rb trimers

For our final example, we examine a model for three
teracting neutral alkali-metal atoms, which has been use

e

FIG. 6. The residual nonadiabatic couplings (P̃b)17 and (P̃b)16

~heavy lines! compared to the original nonadiabatic couplingsP17

andP16 ~thin lines!.
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the calculation of ultracold three-body recombination ra
@18#. In particular, the quartet Born-Oppenheimer poten
surface for three interacting Rb atoms has been approxim
as a pairwise sum of realistic Rb-Rb interactions. This
proximate potential was then scaled by an overall facto
reduce the number of channels to a more manageable s

Figure 8~a! shows the lowest adiabatic hyperspherical p
tential curves for the case that the realistic potential is sca
by a factor of about 0.01. This neutral atom case is clea
much more complicated than the Coulomb systems con
ered above. There are many more broad avoided crossin
well as a few sharp ones. With only a little imagination, o
can begin tracing diabatic curves through these crossi
For instance, the lowest potential shows a deep well wit
small shoulder. The higher curves undergo avoided cross
that suggest the deep well could continue upwards smoo
while another diabatic potential comes down with a w
sitting right on the shoulder. It has been shown that s
shoulders in adiabatic hyperspherical curves correspon

FIG. 7. The residual nonadiabatic couplings (P̃b)17 and (P̃b)16

~heavy lines! compared to the original nonadiabatic couplingsP17

andP16 ~thin lines!.

FIG. 8. The~a! adiabatic and~b! diabatic hyperspherical poten
tial curves for a model Rb system for theJp501 symmetry.
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changes in the geometry of the molecular system@19#. The
deep well, for example, is due to nearly equilateral config
rations while the shoulder represents a local energy m
mum for more closely linear configurations.

To generate the diabatic curves shown in Fig. 8~b!, we
included the nearest-neighbor coupling between the low
22 adiabatic channels. If only the coupling between the f
lowest adiabatic channels were included, then the diab
channels would look very different than in the figure. T
structure shown began to emerge after about eight chan
were included. The original nearest-neighbor nonadiab
couplings among the four lowest channels are shown in F
9 as heavy lines. These are, in fact, somewhat simpler t
the couplings between higher channels. Note that they t
cally have larger magnitudes than the couplings in the C
lomb systems shown above as well as more complica
structure. Nevertheless, reasonable diabatic curves ca
generated. In this case, however, the broad avoided cross
in the adiabatic curves lead to more mixing between the
abatic channels so that they do not as closely resemble
adiabatic potentials as before. Finally, we show in Fig
the residual nonadiabatic couplingP̃b ~thin lines! between
the lowest four diabatic channels. While the magnitude of
coupling has been reduced by a factor of roughly
the structure is as complicated as for the original couplin

VI. SUMMARY

Curve crossings are a recurring problem in adiabatic tre
ments of nonseparable systems. Accurate calculations
come difficult in the vicinity of such crossings, but must b
carried out since essentially all inelastic processes occu
these points. Unfortunately, adiabatic solutions are gener
the most straightforward to obtain and typically have su
stantial physical content away from the crossings. A comm
goal, then, is to simply ‘‘correct’’ the adiabatic potentia
near the crossings. More often than not, such corrections

FIG. 9. The original nearest-neighbor nonadiabatic coupl
~heavy lines! between the lowest four adiabatic channels. Al

shown is the residual nearest-neighbor nonadiabatic couplingP̃b

~thin lines! between the lowest four diabatic channels.
6-7
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applied manually rather than in a rigorous, systematica
improvable manner.

We have presented a scheme to rigorously generate po
tial curves that coincide with the adiabatic curves away fr
crossings, but trace through the crossings diabatically.
resulting representation—which we label the ‘‘split diaba
representation’’—is a mixed adiabatic-diabatic represen
tion with radial coupling in both the kinetic- and potentia
energy terms. Both types of coupling, though, vary slow
with R in this representation.

We have also presented a numerical scheme to integ
the transformation equation, Eq.~8!, that exactly preserve
unitarity. When coupled with an adaptive step-size sche
the method is efficient and accurate. Moreover, it can be u
independently of the split diabatic scheme.

While the present method does produce diabatic po
tials, it has the disadvantage of requiring the adiabatic s
tion and nonadiabatic couplings as input. A better sche
would take advantage of some physical insight to gene
the diabatic states directly. For instance, one way to th
l

. A

.

04270
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ed

n-
u-
e
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k

about a diabatic state is that it follows a particular physi
configuration through the evolution of the adiabatic para
eter. Enforcing boundary conditions or using basis functio
that represent only this configuration would generate diab
potentials. Another way that might profitably be used to ge
erate a diabatic state is to enforce a symmetry that is o
approximately good in the full problem. In the H2 example,
the 1 and 2 labels might be enforced somehow from th
start as good quantum numbers. Once the diabatic state
found, their coupling can, of course, be calculated.
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