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A split diabatic representation is proposed as a technique for generating diabatic potential curves with the
maximal physical content and favorable computational characteristics. This method is a mixed adiabatic-
diabatic representation, in which smoothly varying couplings appear in both the kinetic- and potential-energy
matrices. It requires the solution of the first-order differential equation for the transformation matrix of the
standard strict diabatic representation for which an efficient numerical scheme is also presented. A transfor-
mation propagator, akin to the Cayley-Hamiltonian time evolution operator, is employed to obtain the diabatic
states while preserving unitarity. Several examples illustrate the advantages of the proposed split diabatic

representation.
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[. INTRODUCTION crossings be accurately calculated, a task that is challenging

in itself.

Nearly all systems of interest in physics do not admit Because of these difficulties with the adiabatic represen-
separable solutions, leading to the development of manyation, much effort has been invested in finding physically
methods to find approximate solutions. One common apmeaningful diabatic representatiop$—6]. Generically, the
proximation is the adiabatic approximation—holding someadiabatic representation yields radiglow-coordinatgequa-
slow variable fixed while solving for the remaining degreestions in which the potential energy is diagonal and the cou-
of freedom. The adiabatic approximation has been used profling enters through the radial kinetic-energy operator. In
itably, relying on the very intuitive and physical notion of contrast, the coupling in the diabatic representation resides in
separation of timeor energy scales. Probably the most fa- the potential energy, and the kinetic energy is usually diago-
miliar example of the adiabatic approximation is the work-nal. While most people agree on the definition of the adia-
horse of theoretical chemistry and molecular physics, namelfatic representation, definitions for diabatic representations
the Born-Oppenheimer approximation and its varidfis do not enjoy similar universal agreement. This ambiguity is

While the Born-Oppenheimer potential curves are ofterbut one reason that—despite the difficulties mentioned
used independently to generate approximate solutions, usirgpove—the adiabatic representation is generally chosen over
the adiabatic eigenfunctions as basis for the fast coordinates diabatic one.
yields exactsolutions of the Schiinger equation. This ap- A compelling practical motivation for working in a diaba-
proach is labeled the perturbed stationary state method—dic representation, however, is the ability to cleanly eliminate
in the broader sense of adiabatic approaches, simply the adiphysically unimportant channels from a calculation. In the
batic representatiof2]. It requires the nonadiabatic coupling adiabatic representation, eliminating théh channel is rela-
between the channels as well as the infinite set of channeltively easy, but the picture that results invariably misses
In practice, of course, the number of channels must be trunsome essential physics because the physical configuration
cated, but numerical convergence in this respect can usualhepresented by that channel can change drastically with each
be achieved at least for slow collisions. For higher-energyavoided crossing. In contrast, diabatic states tend to track the
collisions, the truncated basis contributes to the mucheonfiguration of the system, not just the nodal count as for
discussed electron translation factor probleh adiabatic states. So, eliminating a single diabatic channel is

Besides the need to calculate the nonadiabatic coupling iequivalent to excluding a configuration of the system that has
the first place, the most troublesome practical aspect of thbeen identified as unimportant.
adiabatic representation is solving the coupled radial equa- Another practical motivation for using diabatic represen-
tions themselves. Near avoided crossings of the adiabati@tions is their slowly varying coupling elements—even in
potential curves, the radial functions undergo rapidtransition regions. Physically motivated diabatic potentials
changes—the sharper the crossing, the more rapid thieace through avoided crossings just the way one would draw
change. Numerically representing such changes is a chalith a pen. More rigorously, one says that diabatic potentials
lenging task. Moreover, it requires that the coupling near theare “more physical” when the velocity at the crossing is

large or the splitting small. The diagonal kinetic energy is
then the dominant part of the equation, and the crossing is

*Electronic address: esry@phys.ksu.edu; traversed diabatically. In the opposite limit of small veloci-
URL:http://www.phys.ksu.edlgsry ties, the diagonal potential of the adiabatic representation
"Electronic address: hrs@cfa.harvard.edu dominates, and the crossing is traversed adiabatically.

1050-2947/2003/68)/0427068)/$20.00 68 042706-1 ©2003 The American Physical Society



B. D. ESRY AND H. R. SADEGHPOUR PHYSICAL REVIEW &8, 042706 (2003

Diabatic representations fall into two broad categories: 2
those that are derived from the adiabatic representation and [— 2—( Id_R+ P) +UA
those that are obtained directly. Computationally, the latter K
are preferred since any diabatization scheme based on théhere | is the unit matrix, U is the diagonal matrix of
adiabatic representation requires at least that the adiabatigjiapatic potentials, anf is the vector of radial channel
channel functions be computed on a fine grid near thg,nctions. The nonadiabatic coupling matRx representing
avoided crossings. Most schemes additionally require the agpe residual coupling between the fast and slow coordinates

sociated nonadiabatic couplings on a similarly fine grid. Oryg,ch as the electronic and nuclear coordinates in molecules,
the other hand, diabatization schemes derived directly tend tRespectiver is given by

have some of the advantages of the adiabatic representation

F=EF, @)

itself, i.e., they are well defined and retain much of the con- d

siderable physical content of the adiabatic states. Unfortu- va(R)=(<‘I’x(R)|ﬁ|‘I’V(R)>>-

nately, there does not exist a general prescription to obtain

such a physical diabatic representation. In this expression, the double brackets indicate integrations

Standard definitions of diabatic representations fail to progyer the fast coordinates only. Also, note that the maris
duce physically appealing potentials if the nonadiabatic couznti-Hermitian under interchange of the indicesand v.
plings do not fall off faster thaiR~* asymptotically. Unfor-  The form of Eq.(4) is reminiscent of the minimal-coupling
tunately, two of the most important examples of the adiabati& hrginger equation representing a charged particle in an
approach in scattering—the Born-Oppenheimer and the hysyternal field. In fact, Eq(4) has been discussed in the lan-
perspherical coordinate representations—do not satisfy th'@uage of gauge theorigd,7-9, the simplest example of

criterion. R which is electrodynamics.
We describe below a diabatization scheme that seeks a Equation(4) can also be written as

compromise between the various considerations listed above.
While it requires first having the adiabatic representation, it
yields physical diabatic channel potentials even for the hy-
perspherical case. Moreover, unlike some previadshoc
diabatization methods in hyperspherical coordinates, thi§ith the new coupling matrixQ defined as
scheme, in principle, allows the radial equations to be solved

exactly. g2

+UA|F=EF (5)

! | : 2Pd
“ 2. 'ar T?PaRTQ

Il. BACKGROUND

To put our representation into context, we will define in This new equation is identical to E¢#) through the equality

this section the adiabatic representation and the “strict” di- dP
abatic representation. We assume that there is only a single Q=P*+ R’ (7)
adiabatic coordinat® While our method may generalize to

several adiabatic coordinates, we prefer to preserve the Sini'/(/hen the expansion in E¢@) is truncated, however, E)
plicity of a single coordinate in order to make the logic more, Q obtained from Eq.(6) is more a;:curate since the

transparent. I . > . -
The Hamiltonian for a system can in general be written aémpl'Ed sum In theP term of Eq.(?)_ must include the |nf|_
nite set of adiabatic states to be strictly true. In the remainder
1 2 of this work, we will neglect this issue with the assumptions
H= +H.(R,Q), (1)  that either our general logic can be adapted or the sum can be

5 R?
21 IR made to include enough states to achieve convergence for the

whereQ represents all of the rapidly varying coordinates angdesired elements d@.

Ris the adiabatic parameter. The adiabatic equation is then 1he strict diabatic representation can now be defined from
the unitary transformation that diagonalizes the kinetic en-

H.dRQ)P (R Q)=UNR)®(R;Q). (2)  ergy in Eq.(4). This well-known transformation,
The superscript A” on the potential designates this as the d
adiabatic potential; the diabatic potential will be denoted ﬁc__PC' ®

with superscript D.” The channel functionsb form a com-

plete set at everyR and are used to expand the total wavecan only be unambiguously defined for a single adiabatic
function as parameteff4]. This restriction, though, includes the impor-
tant examples of the Born-Oppenheimer approximation for
diatomic molecules and the adiabatic hyperspherical method.

[

‘P(R’Q):EV: F(R)®,(RQ) 3 The radial equations in the strict diabatic representation are
in the adiabatic representation. With the expansion taken to _ —I—2+UD G=EG 9)
infinity, the Schralinger equation is transformed exactly to 2u dR?
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with the diabatic radial function&, US,=U4sir? 6+ U5cos .

G=C'F, In the case of the Born-Oppenheimer approximation, in
which the worst-case situation B(R—o)— const, 4(R)
«R and the diabatic potentials oscillate sinusoidally at large
ul=cfuAc. distances. Note that the magnitude of the constant asymptotic
coupling only affects the period of oscillation, not its ampli-
The strict diabatic representation accomplishes the importude.
tant goal of eliminating the sharply peaked nonadiabatic cou- The situation is superficially better in the adiabatic hyper-
plings, P, ,=0, leaving only smooth off-diagonal elements spherical approach. Here, it is the same-center, same-angular
in UP. Unfortunately, it also has one major drawback: due tomomentum, bound state to bound state off-diagonal coupling
the fact thatP, ,(R— ) do not vanish identically or vanish that is problematic, behaving agR asymptotically. While it
in a power-law fashion, the diabatic channel potentiul,%,,, does vanish in the limiR— o, it nevertheless leads to di-
do not have the physical behavior we had set out to findabatic potentials proportional to ${aInR) from Egs.(11)
That is, they do not fall on top of the adiabatic potentials,and(12). This asymptotic mixing of the two-body channels
tracing smoothly through avoided crossings. In particular, thean be traced to the fact that the hyperspherical coordinates
tails of the diabatic potentials exhibit undesirable, unphysicapnly slowly approach the Jacobi coordinai@g]. Only for
behavior, and do not lead to the correct fragmentation, discoupling that vanishes faster th&1 * will the asymptotic
sociation, or ionization limits aR=%. The culprit is the diabatic potentials take a physically sensible form.
long-range coupling present i for both the Born- Neither the Born-Oppenheimer nor the adiabatic hyper-
Oppenheimer and the adiabatic hyperspherical approachesspherical representations, then, lead to strict diabatic poten-
In the Born-Oppenheimer representation, the off-diagonalials that have the physical asymptotic behavior we desire.
elements connecting states that have nonvanishing dipoMoreover, for the usual case in which the diabatic and adia-
matrix element$4,10] approach constants with values on the batic representations are chosen to agree at infinity,Reg.,
order of the electronic to nuclear mass raticRaapproaches —, the accumulated effect of these oscillations generates
infinity. This residual coupling, related to the electron trans-unphysical smalR potentials.
lation factor problem, leads to diabatic potentials that oscil-
late sinusoidally asymptotically. In fact, this constant cou- Ill. SPLIT DIABATIC REPRESENTATION
pling mustbe present to make up for the fact that the reduced ) o
mass is not the correct mass in the asymptotic system, where Since the root cause of the problems with the strict diaba-
two separated atoms result. For instance, the reduced massify epresentation is the long-range misbehavior of the
the radial equation for £ is m,/2, wherem, is the mass of P-matrix elements, we propose the natural solution of split-

the proton. The ground statesd channel, however, corre- N9 P into two parts:

and diabatic potential matrix

lates top+H(1s) for which the reduced mass should be P=P +P
m,(my+1)/(2my+1). The difference is small as adver- al T
tised, but nonetheless significgnfl]. One part, sayP;, nominally contains the long-range tail

A two-channel example will serve to illustrate the patho-hjle the otherP,, contains the short-range crossings. The
logical behavior of the diabatic potentials. Consider the dejgeg is to useP, to transform away these crossings while

rivative coupling matrix preserving the physical long-range behavior of the adiabatic
0 P(R) potenti.als by retair_lin@B as thg nor_ladia_batic coupling_. The

P( R)=( ) result is thus a mixed diabatic-adiabatic representation that

-P(R) 0O hopefully retains the best features of both representations.

The division ofP amongP, andPg is completely arbitrary,
but will affect the resulting diabatic potentials. Since all of
cosf(R)  sinf(R) the cou_pling is r(_atained in one form or another, though, the
), (100  calculation remains exact.
The split diabatic representation is defined using @.
with P, instead of the full coupling matriR. Thus, we have

The solution of Eq(8) for this case is

CR)= —sinf(R) cosfH(R)
where the rotation angle is
d

0(R)=fRRP(R’)dR'. (12) grC e~ ~PaCa- (13)
0

. . . i o ) For isolated crossing®,, is well approximated by a Lorent-
The diabatic representation thus defined coincides with thgjy, A beforeC  is a unitary matrix that affects the trans-

adiabatic representation &, but its behavior forR>R,  formation from the radial function to a new set
depends on the long-range behavior BfR). Using the

transformationC, the diabatic potentials are thus G,=C!F.
D_ A Ag; . . . .
U= U7cos 6+ Uit e, (12 These new functions satisfy the radial equation
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2

~ ward Runge-Kutta integration, for instance, does not guaran-
+U

G.=EG,, (14 tee unitarity.

Many algorithms have been developed for the time-
flependent problem that have the desirable property of uni-
tary propagation. One of the more common of these is the
Crank-Nicholson metho@i13]. As it is generally associated
with the finite difference representation of the spatial coordi-

These radial equations have an intuitive form: they displayggﬁg V\;]Itehrepro_gl?ﬁgatéc;r;érr\] Ct:am%fltt\élvle” nngte&%gﬁﬁiy %‘;F;/llléy_

the re?'dga,l. adiabatic behavior due g and the diabatic Hamilton form of the time evolution operat@which is itself

behavior inU generated by,. just a Padeapproximation—can be directly applied, how-
The diabatic channel potentialg,, can now cross and ever.

will generally have the physical behavior desired for appro- The short-distance propagator solution of Etf) is

priate choices oP,. Further, the channels will be coupled

by both diabatic and nonadiabatic terms. The off-diagonal C(R+AR)=e "RC(R).

matrix elements of) trace smoothly through the crossings, Since P depends orR, this expression is not exact, but
and by constructios has no sharp peaks. It must still be .o accurately used for smalR. Using P'=—P, it is

determined whether the Slmllarlty tranSformationﬁp has easy to show tha€ remains unitary_ The Cay|ey-Hami|ton
reintroduced peaks from the transformation ma@ixitself,  replacement is

+PBp

{ ) z( 'aR
where the tilde is used to denote the similarity transformatio

A=C!AcC,.

however.
To this end, let us again consider a two-channel problem AR
since isolated crossings in even the most complicated prob- | =P—-
lem can be profitably pictured two channels at a time. We e*PAR:ﬁﬂL O(AR?®),
have, then, a transformation matrix as in Etf) except that | +Pp—
the rotation angle is now defined fronP,, and 2
0 P4(R) whi<_:h, with a little algebr_a, can also be shown to b_e unitary.
P,= ( ) A slight rearrangement gives the Crank-Nicholson-like equa-
Pl =PgR) 0 tion for the transformation matrix propagation:

Note that the crossing occurs @t 7/4 where the channels
are equally mixed; any peak due @, should also occur at
this point. Explicitly evaluating the transformd?}; gives

AR AR
I+P7) C(R+AR)=(|—P7) C(R). (15

The set ofN linear equations are propagated using efficient

- 0 (coS 6—siro)P, numerical routines for several right-hand sides, to obtain the
B~ — (co26—sirf0) Ps 0 : transformation matrixC(R). It might alsp be possible to take
advantage of the fact that the matrix often has many

Thus, the similarity transformation does not reintroduce s#eros—this is especially true fé, in the present scheme. In
peak in the nonadiabatic coupling at the crossiigm/4. It ~ Practice, the step siz&R should be chosen with an adaptive
does, however, force thﬁﬁ matrix element to zero at the _schtlame for "?‘Ccurﬁcy near av0|d?ed crossllngls. In 'ghe simplest
crossing over a distance on the order of the width of theMP ementat|o.n, thé> matrix would t.)e calculated .'”depe’?‘
original coupling peak profile. While this is still a rapid dgntly, trﬁn |r;1terpolateldbas requrllred for the |r_1|te%raf[|on
change, it is less problematic sing only includes the re- above, although more elaborate schemes can easily be imag-

sidual coupling which is small by construction. When more'ned'
channels are included, it is likely that the off-diagonals

would no longer vanish, but there should still be no peak. V. APPLICATIONS: NUMERICAL EXAMPLES

To illustrate the split diabatic representation proposed
IV. NUMERICAL METHOD here, we proceed with three examples in atomic and molecu-
lar collisions. The first application is to the hyperspherical

: X potential-energy curves of the hydrogen negative ion. Next,
diabatic approach has been the need to solvatheoupled |0 "conider the mass-scaled antiproton-hydrogen hyper-

equations, Eq(8), for C whereN is the number of channels. gherical potentials, and the last example is a model alkali

By extension, the present split diabatic method will share thggne agiabatic hyperspherical potential-energy calculation
same drawback. We have, however, found a particularly con- ypersp P 9y '

venient method for solving the differential equations. The
essential observation is that EqS8) and (13) share many

properties with the time-dependent Satirmer equation. In In Fig. 1, we show the adiabatic hyperspherical potential
particular, it is a system of first-order equations whose solueurves for the excitation of the hydrogen negative ion in the
tion obeys a unitarity condition. Simply using a straightfor- 1P° symmetry[14]. The three curves shown converge to the

Traditionally, one of the impediments to using the strict

A.H™
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FIG. 1. Adiabatic hyperspherical potential-energy curves for H (a-u)

1po — i i - ~
P" symmery near the H(=2) threshold. The nonadiabatic cou FIG. 3. The residual nonadiabatic coupliRg among all of the

pling between thet+ and — curves is also showilong dashed H(n=1) and Hn=2) channels(heavy lines. The dashed line
line). Note that it has a relatively sharp, locally Lorentzian peak at

the avoided crossing. shows that Pg),3 is zero(compared to the origindP,; shown as a

thin solid line.

H(ZI) threShold and can be labeled by the so-called “near'ebrated H Shape resonand:é_6]_ By design, the curve |a-

exact” radial quantum number#y=+, —, and O, respec- peled 0 and the curve converging to Hj1(off the scale of

tively [15]. The curve converging to HE) is also in the  the graph are identical to the adiabatic potentials since no

figure, but the threshold is off the scale of the figure. The twos|ements coupling to these states were includedPjn

+ and— curves strongly repel each other n&ar13 a.u. so  physically, an avoided crossing signals a change in the

that theP-matrix element coupling thertalso shown in the  character—shape, nodal pattern, etc.—of the channel func-

figure) peaks there. tion. The transformation to this diabatic representation thus
Probably the simplest splitting of thfé matrix uses only  can be thought of as preserving such properties of the chan-

the couplingP,3 between thet and — curves to define the nel functions.

diabatic transformation. The resulting diabatic potential- The diabatic coupling),; is also shown in Fig. 2. This

energy curves shown in Fig. 2 follow their adiabatic Coun'coupling is smooth and slowly varying through the crossing
terparts closely ar_1d Cross each other a_t _the crosstg, region as desired. All of the remaining coupling resides in
~13 a.u. The+ diabatic curve has a minimum ne& diabatic terr®. sh in Fig. 3. B f
~8.5 a.u. and becomes repulsive after the crossing regiorrli“? ngna |?Pa|c deFr> Bﬂf ow.n.lnl Igﬁ .I ecauksedo our
(not shown. It supports a single resonance above th& H( Z? Ectl_on 0 ci an | B rfts onginal, T tarlp)': peaf e noclth1a-
=2) threshold E=—0.125 a.u.) that coincides with the cel- !a a !C coup |.ng CIEMEITtas 1S F:omp etely .rar.15 ormed to
diabatic coupling. Thus,Rj),; is zero as indicated by a
dashed line in Fig. 3. The- and — channels are directly

-0.08 0.5 e
coupled only by the diabatic couplind,; shown in Fig. 2.
04 For the present purposes, the relevant point to notice about
the remaining nonadiabatic coupling is that it passes
= 03 3 smoothly through the region of the crossing of theand
< ) — curves.
—= 012 =
N S B. Mass-scaledp+H
01 Figure 4 shows the adiabatic and diabatic hyperspherical
. potential curves for another Coulomb system. In this case,
016 Uzs . 00 we examine a mass-scaled version of pheH system[17].
0 10 20 30 In this model, the masses of theandp have been scaled to
R (a.u) 17 times the electron mass in order to reduce the number of

FIG. 2. Adiabatic and split diabatic hyperspherical potentiaI-Channels' F_or the realls“? system, the B(1hreshold lies
energy curves for A *P° symmetry near the H(=2) threshold. ~above thepp(n=30) manifold. Here, the analogous H1
The + diabatic curve is shown with a heavy dashed line; the threshold lies instead just above the=3 manifold which
diabatic curve, with a heavy solid line. The adiabatic curves fromgreatly simplifies the calculation, making it a suitable ex-
Fig. 1 are shown as thin solid lines for comparison. The circlesample for diabatization.
mark the off-diagonal diabatic coupling element between+thend To obtain the diabatic curves in Fig(b}, P, was chosen
— states. to include only the nonadiabatic coupling between the high-
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R (au) R (a.w) ~0.05 . . ' \
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FIG. 4. The(a) adiabatic andb) diabatic hyperspherical poten- R (au.)

tial curves for a moquJr H system for thed"=0" symmetry. The

masses of the andahave been rescaled te17m, . FIG. 6. The residual nonadiabatic couplind3s];7 and Pg)16

(heavy line compared to the original nonadiabatic couplif®s

est three states shown in Fig(a# In the pure adiabatic and Py (thin lines.

curves, the potential that we would like to draw correlatingure, ranging from 6 to 70 a.u. If only the nearest-neighbor
to the H(1s) threshold undergoes three avoided crossinggouplings are included iR, , the transformed nonadiabatic

with the upper two potentials of thep(n=3) manifold. The couplingsTDﬁ display sharp peaks, as shown in Fi)5The
transformation produces a diabatic curve that traces througmagnitude of these peaks is, however, reduced by more than
these crossings, giving a physically reasonable curve repren order of magnitude from the original couplings. If all the
senting thep+H(1s) channel. couplings between the three states are included, the residual
It turns out that the diabatic curves in Fig(o# are not coupling between them vanishes. In all cases, the diabatic

sensitive to the exact choice Bf,. For instance, the curves couplingU between the curves remains smooth and qualita-
are identical if all of the couplings between the three curvedively the same as shown in Fig. 2.~ _
are included or if only the nearest-neighbor couplings among !N Fig. 6, we show the original nonadiabatic coupling be-

these three states are included. The residual nonadiabafizéen thev=1 channel and=6 andv=7 (thin lines. So,
even thoughv=1 has no sharp crossings with any state, the

CﬁUpl'n?ﬁ‘PB’ hO\(/jvle\t/)ert,. do depl)_endbor:htht;sfchmce.dF|g¥turetﬁcrossmgs among the higher excited channels lead to abrupt
Z. Ot\)NS. € nor;a labalic coupiing bo h € Ori and al erl ‘éhanges in the rest of the couplings as illustrated by the thin
iabatic transformation. Figure (& shows the original  jines “The heavy lines in the figure indicate the transformed
P-matrix elements between the three curves in question, L~ . -
. . couplingP; . The relatively slow variation of these new cou-
Note that the two nearest-neighbor couplings are extremel

sharply peaked—the peak values are off the scale of the fi _I|ngs 'S a fortunat_e by-product of the d|abat|zat|ci1.
It has been conjecturgd 7] that only the lowespp state

. in eachn manifold couples strongly to thp+H(1s) en-

0.25
020 1 trance channel. With the split diabatic representation, we can
) more clearly test this idea by looking at the residual nona-
0.15 ] diabatic coupling to thg@+ H(1s) entrance channétashed
0.10 A ) line in Fig. 4. Figure 7 shows all of the coupling—both
. - diabatic and nonadiabatic—with this channel<7). We
0.05 ' ] can in fact see that the largest coupling seems to be with the
0.00 - lowestpp(3l) state ¢=4). Furthermore, the couplings with
008 ] the lowest states in the=1 andn=2 manifolds ¢=1 and
’ v=2) are larger than the couplings with the highes2
-0.10 T (v=23) state. To produce this figure, we included all of the
o015 i coupling between the highest three states in Fig. 4, so there is
no residual nonadiabatic coupling between them. Instead, the
~020 (b) - coupling is all in the off-diagonal elements of the diabatic
025 . potential matrix. These couplings show the same trend—the
0 10 10 energetically lower of the two channels£5) has a stron-

5 5
R(au) R(au) ger coupling with the entrance channel.

FIG. 5. The nonadiabatic coupling between the highest three
states—labeled 5, 6, and 7—shown in Fig. 4.(&), the original
nonadiabatic coupling is shown, and(ls) the residual couplin@ﬁ For our final example, we examine a model for three in-
if P, includes onlyPsg and Pg;. teracting neutral alkali-metal atoms, which has been used in

C. Model Rb trimers
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FIG. 7. The residual nonadiabatic coupling~%ﬁ117 and 05[;)16 FIG. 9 The original nearest-neighbor_nongdiabatic coupling
(heavy line$ compared to the original nonadiabatic coupli®s (heavy .Ilne$ beMeen the Iowest. four adlabat.lc ch-annels:.AIso
and P (thin lines. shown is the residual nearest-neighbor nonadiabatic coupling
(thin lines between the lowest four diabatic channels.

the calculation of ultracold three-body recombination rates
[18]. In particular, the quartet Born-Oppenheimer potentialchanges in the geometry of the molecular sysfa8j. The
surface for three interacting Rb atoms has been approximategbep well, for example, is due to nearly equilateral configu-
as a pairwise sum of realistic Rb-Rb interactions. This aprations while the shoulder represents a local energy mini-
proximate potential was then scaled by an overall factor tQu,m for more closely linear configurations.
reduce the number of channels to a more manageable size. 1, generate the diabatic curves shown in Figh)B8we
F'lgure ga) shows the lowest ad|aba'g|c.hyperspher'|cal POincluded the nearest-neighbor coupling between the lowest
tential curves for the case that the realistic potential is scaleg2 adiabatic channels. If only the coupling between the four
%yughfﬁf)?; Oc;fo?r?slilga(t)é?jlt.hgwsthneeuthr)?Jllsr;Obms;zsitseemlg g(l)enasril owest adiabatic channels were included, then the diabatic
ered above. There are many more broad avoided crossings Igamtnels V\r/]ould Itc))ok vetry different ;?an 'g tk;e .f'%Ltjrer'] Thel
well as a few sharp ones. With only a little imagination, oneStructure snown began 1o emerge after about eight channels
ere included. The original nearest-neighbor nonadiabatic

can begin tracing diabatic curves through these crossings.~ ~ R
For instance, the lowest potential shows a deep well with £°UPlings among the four lowest channels are shown in Fig.

small shoulder. The higher curves undergo avoided crossings @S heavy lines. These are, in fact, somewhat simpler than
that suggest the deep well could continue upwards smoothl{’€ couplings between higher channels. Note that they typi-
while another diabatic potential comes down with a wellcally have larger magnitudes than the couplings in the Cou-
sitting right on the shoulder. It has been shown that suctomb systems shown above as well as more complicated

shoulders in adiabatic hyperspherical curves correspond tiructure. Nevertheless, reasonable diabatic curves can be
generated. In this case, however, the broad avoided crossings

in the adiabatic curves lead to more mixing between the di-
abatic channels so that they do not as closely resemble the
adiabatic potentials as before. Finally, we show in Fig. 9
the residual nonadiabatic couplirfgg (thin lines between

the lowest four diabatic channels. While the magnitude of the
coupling has been reduced by a factor of roughly 3,
the structure is as complicated as for the original coupling.

|
—_
T

VI. SUMMARY

UR) (10~ a.u.)

Curve crossings are a recurring problem in adiabatic treat-
-2 F T T ments of nonseparable systems. Accurate calculations be-
. . C come difficult in the vicinity of such crossings, but must be
(a) Adiabatic (b) Diabatic carried out since essentially all inelastic processes occur at
- L - - - - these points. Unfortunately, adiabatic solutions are generally
10 20 R (;Ou) 40 20 R (;Ou) w0 the most straightforward to obtain and typically have sub-
o h stantial physical content away from the crossings. A common

FIG. 8. The(a) adiabatic andb) diabatic hyperspherical poten- goal, then, is to simply “correct” the adiabatic potentials
tial curves for a model Rb system for td€=0" symmetry. near the crossings. More often than not, such corrections are
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applied manually rather than in a rigorous, systematicallyabout a diabatic state is that it follows a particular physical
improvable manner. configuration through the evolution of the adiabatic param-

We have presented a scheme to rigorously generate poteeter. Enforcing boundary conditions or using basis functions
tial curves that coincide with the adiabatic curves away fronthat represent only this configuration would generate diabatic
crossings, but trace through the crossings diabatically. Thpotentials. Another way that might profitably be used to gen-
resulting representation—which we label the “split diabaticerate a diabatic state is to enforce a symmetry that is only
representation”—is a mixed adiabatic-diabatic representaapproximately good in the full problem. In the"Hexample,
tion with radial coupling in both the kinetic- and potential- the + and — labels might be enforced somehow from the
energy terms. Both types of coupling, though, vary slowlystart as good quantum numbers. Once the diabatic states are
with R in this representation. found, their coupling can, of course, be calculated.

We have also presented a numerical scheme to integrate
the transformation equation, E¢B), that exactly preserves
unitarity. When coupled with an adaptive step-size scheme,
the method is efficient and accurate. Moreover, it can be used This work was supported in part by a National Science
independently of the split diabatic scheme. Foundation grant to the Institute for Theoretical Atomic and

While the present method does produce diabatic potenMolecular Physics at the Harvard-Smithsonian Center for
tials, it has the disadvantage of requiring the adiabatic soluAstrophysics. B.D.E. acknowledges support from the Chemi-
tion and nonadiabatic couplings as input. A better schemeal Sciences, Geosciences, and Biosciences Division, Office
would take advantage of some physical insight to generatef Basic Energy Sciences, Office of Science, U.S. Depart-
the diabatic states directly. For instance, one way to thinkment of Energy.
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