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A dipole moment function (DMF) for hydrogen chloride (HCl) has been obtained using a

direct fit approach that fits the best available and appropriately weighted experimental

data for individual ro-vibrational transitions. Combining wavefunctions derived from

the Rydberg–Klein–Rees (RKR) numerical method and a semi-empirical DMF, line

intensities were calculated numerically for bands with Dv¼0, 1, 2, 3, 4, 5, 6, 7 up to

v0 ¼7. The results have demonstrated the effectiveness of inclusion of rotational dipole

moment matrix elements and appropriate weighting of the experimental data in the

DMF fitting. The new method is shown to be superior to the common method of fitting

only the rotationless dipole moment elements, while at the same time being simple to

implement.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The knowledge of accurate spectroscopic line para-
meters of hydrogen chloride (HCl) is important in model-
ing and interpreting spectra of stellar [1] and planetary
[2] atmospheres. It is also required for the remote sensing
of the Earth atmosphere [3,4], laser physics [5,6] and
precision measurements. Due to their importance, spec-
tral parameters of HCl have been included in the HITRAN
spectroscopic database [7] for three decades [8]. In the
most recent HITRAN compilation [7] (with the exception
of the pure rotational band) the line positions were
calculated using the potential-energy surface of Coxon
and Hajigeorgiou [9], while the intensities were based on
the dipole moment function (DMF) of Ogilvie et al. [10],
slightly modified to incorporate high-accuracy measure-
ments of the fundamental band by Pine et al. [11].

We have recently embarked on the task of updating
and extending the existing HITRAN data for all hydrogen
ll rights reserved.
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halides by improving existing line parameters and includ-
ing more lines, bands and isotopologues [12]. During the
evaluation of the existing intensity data for HCl, we have
found significant discrepancies between most commonly
used semi-empirical dipole moment functions [10,13–17].
It is unfortunate that almost none of these DMFs has been
used for intensity calculations that can be compared with
experimental values. In the evaluation process, it was
found that the use of the dipole moment function derived
by Kiriyama et al. [17] leads to severe discrepancies in line
intensities (up to 40% even for low vibrational levels)
when compared with the best available experimental
data. Moreover, being considered as the most recent and
extensive semi-empirical work, Ref. [17] was used to con-
struct a piecewise dipole moment function at near-equili-
brium internuclear distances by Buldakov and Cherepanov
[18]. It was also used as an ‘‘experimental’’ function in order
to evaluate recent theoretical calculations by Harrison [19]
and in the calculation of the Einstein A-coefficients for
vibrational transitions in the HCl laser [20].

In 1955, Herman and Wallis derived a methodology to
describe the influence of the vibration–rotation interaction
on line intensities of ro-vibrational bands of diatomic
molecules [21]. Subsequently, their approach was modified
ro-vibrational intensities to the dipole moment function:
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and widely used as a standard method of determining the
rotationless dipole moment matrix element for the ro-vibra-
tional bands by fitting the existing experimental data. These
rotationless dipole moment matrix elements are employed in
a second step to determine the power series (or Padé
approximants) coefficients of the electronic dipole moment
function [10,13,14]. However this method cannot be applied
to a single line-intensity measurement since Herman–Wallis
fitting is basically a polynomial fit of measurements of many
lines within one ro-vibrational band.

There have been several new line-intensity measure-
ments of HCl. Although these measurements are quite
precise, they often only contain information for one or
two lines of an entire vibrational band [22,23]. In order to
utilize the individual high-quality measurements for inten-
sity calculations, a direct fit approach was developed in this
work. Furthermore, because the intensity measurements in
the literature are often inconsistent, careful selection and
appropriate weighting of the data were carried out. Ulti-
mately, a new DMF for HCl was derived, fitted to the best
available (and appropriately weighted) experimental data
using this direct fit approach. The ro-vibrational line
intensities derived from our function were compared with
the ones based on previously reported DMF’s, HITRAN, and
experimental data.

2. Methodology and previous results

Traditionally the DMF of a diatomic molecule as a
function of the internuclear distance, r, is given by the
power series

MðrÞ ¼
X

i

Mix
i, ð1Þ

where x¼(r�re)/re, re is the equilibrium separation and i¼0,
1, 2y. Some of the previous works (Refs. [10,16] for
instance) employed the accepted approach developed by
Tipping and Herman [24] of using only pure vibrational
matrix elements to determine the DMF. In order to obtain
pure vibrational matrix elements, one can take available
measurements and fit them separately for every band (in
the case of HCl the measured bands used in this work have
n¼0 as a lower state) to the Herman–Wallis expression

9/vJ09MðxÞ90J00S92
¼ 9Rv0ð0Þ9

2
ð1þCvmþDvm2þ . . .Þ, ð2Þ

where Rv0(0) is a rotationless part, Cv and Dv are the
Herman–Wallis coefficients, with m¼� J for the P-branch
and Jþ1 for the R-branch. In order to derive the Mi
Table 1
Dipole moment function coefficients of HCl in units of Debye. The number

given value.

Present study

M0 1.093164(86)

M1 1.23679(135)

M2 0.01518(375)

M3 �1.5377(96)

M4 �0.8729(342)

M5 �0.4066(639)

M6 �0.7531(3011)

M7 1.9268(8062)

Please cite this article as: Li G, et al. Direct fit of experimental
Application to HCl. JQSRT (2011), doi:10.1016/j.jqsrt.2011.03.
coefficients from Eq. (1), these obtained rotationless matrix
elements Rv0(0) are then fit to

Rv0ð0Þ ¼
X

i

Mi/v9xi90S, ð3Þ

where the expectation values /v9xi90S can be determined
from the potential energy function. In the case of the HCl
molecule, bands with v0 0 ¼0 and v0 ¼0–7 are available in the
literature, and in Eq. (3) i is usually taken to run from 0 to 7.
The double and single primes correspond to lower and
upper state, respectively.

In 2001, Kiriyama et al. [17] had suggested that
inclusion of rotational components into the fit can allow
for a better determination of the Mi coefficients through
fitting to a larger number of points

/vJ09MðxÞ90J00S¼
Xn

i ¼ 1

Mi/vJ09xi90J00S: ð4Þ

They had chosen experimental values from Pine et al.
[11] for the fundamental band, Toth et al. [13] for the first
overtone, Ogilvie and Lee [16] for the second overtone,
and Zughul [25] for bands 4-0 through 7-0. These experi-
mental values were fitted (in Herman–Wallis-type man-
ner) to Eq. (5) (reproduced exactly from Eq. (3.6) in the
Ph.D. thesis [26]) with the order of the polynomial being
determined using the Gauss criterion [17,26]

/vJ09MðxÞ90J00S¼
Xn

i ¼ 1

cim
i: ð5Þ

Note that Eq. (5) is different from Eq. (2), where
squares of transition dipole moments are fitted rather
than the actual values. Although this probably does not
have a dramatic impact, it is more physically correct to
follow the traditional approach of fitting the squares, i.e.,
it is more correct to use Eq. (2).

The polynomials were then used to calculate ro-vibra-
tional matrix elements, from which the Mi coefficients
were determined using Eq. (4). The Mi coefficients deter-
mined in Ref. [17] are given in Table 1. Unfortunately, if
one uses these coefficients to calculate ro-vibrational
transition dipole moments, the results drastically differ
from experimental values including those that were used
as input in Ref. [17]. Moreover, if one compares the
rotationless matrix elements from Ref. [17] with
those determined in the original experimental works
[11,13,16,27] one can notice significant differences even
in these parameters, especially in the fundamental and
listed in parentheses is the standard deviation in the last digits of a

Ogilvie and Lee [16] Kiriyama et al. [17]

1.093004(75) 1.095056(1)

1.23614(44) 1.076259(152)

0.02063(530) �0.001429(155)

�1.5318(131) �1.252768(94)

�0.9188(264) �0.383620(52)

�0.3519(425) 0.104152(100)

�0.4367(725) �0.223482(1828)

0.3513(2068) 2.024332(4263)

ro-vibrational intensities to the dipole moment function:
014
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first overtone bands. The source of the discrepancy
becomes obvious if one takes the ratios of the squares of
the Kiriyama et al. [17] rotationless matrix elements to
the ones determined in the original work of Pine et al. [11]
and Toth et al. [13]. Both ratios are very close to 0.76,
a value matching the isotopic abundance of H35Cl
(0.757587), which mistakenly was not accounted for in
the Kiriyama et al. [17] analysis of the intensities directly
measured in Refs. [11,13]. In Refs. [16,27] the reported
experimental intensities are at 100% abundance (i.e. the
actual experimental intensities were already divided by
natural abundance), and therefore for the second through
sixth overtones there is no error made by Kiriyama et al.
[17].

In order to derive the new DMF, we identified the best
available experimental results for each band and fitted
them with proper weights. In general we used the Pine
et al. [11] results for the fundamental band, Toth et al.
[13] for the 2-0 band, Ogilvie and Lee [16] for the second
overtone, and Gelfand et al. [27] for bands 4-0 through
7-0. We also added several individual ro-vibrational
transition dipole moments that were measured with
lower uncertainty (for instance the R(3) line in the first
overtone measured by Ortwein et al. [23]). The rotation-
less value in the pure rotational band was taken as
1.10857 according to the recommendation of Ogilvie
and Tipping [28]. We then used an overdetermined
system of linear equations (Eq. (4)), that were solved
using a weighted least squares method [29].
Table 2
Matrix elements Mv0(m) of electric dipole moment of HCl in units of debye. Th

and the ground vibrational level, respectively. Pine et al. [11] results were used f

[16] for the second overtone, and Zughul [25] for bands 4-0 through 7-0. Estim

m M10(m)�102 M20(m)�103 M30(m)�104 M40(m)

�10 8.25672 2%

�9 8.16347 2%

�8 8.05362 2% �8.46115 15%

�7 7.96856 2% �8.32351 15% 5.75723 25% �2.882

�6 7.88346 2% �8.25410 15% �2.865

�5 7.77839 2% 5.74559 25% �2.858

�4 7.67912 2% �8.03939 15% 5.62528 25% �2.870

�4 �8.07161b 4%

�3 7.58356 2% 5.62737 25% �2.905

�3 5.52761c 8%

�2 7.48244 2% �8.19298 15% 5.55171 25% �2.963

�1 7.38562 2% �8.09780 15% 5.69102 25% �3.053

1 7.19426 2% �7.88354 15% 5.53129 25% �3.158

2 7.10403 2% 5.67157 25% �3.160

3 7.02272 2% 5.89590 25% �3.199

4 6.94008 2% �7.99267a 1% 5.68341 25% �3.235

4 �8.01496b 4%

5 6.84209 2% �7.75373 15% 6.24240 25% �3.282

6 6.76418 2% �7.98751 15% 6.37095 25% �3.346

7 6.66449 2% �7.73836 15% �3.410

8 6.56930 2% �7.92135 15% 6.13255 25% �3.474

9 6.45739 2% �7.72395 15% 6.40364 25% �3.537

10 6.39033 2% �7.95144 15% �3.605

11 6.29444 2%

a Value calculated from line intensity reported by Ortwein et al.[23].
b Value calculated from line intensity reported by De Rosa et al.[22].
c Value calculated from line intensity reported by Stanton et al.[33].

Please cite this article as: Li G, et al. Direct fit of experimental
Application to HCl. JQSRT (2011), doi:10.1016/j.jqsrt.2011.03.
3. Details of the calculations and the results

To begin with, a potential energy function for H35Cl was
constructed using the purely numerical RKR method [30]
with the Dunham coefficients from Parekunnel et al. [31].
This RKR potential was then employed to calculate the
transition wavenumbers, lower-state energies and the expec-
tation values /uJ09xi90J00S using Le Roy’s LEVEL program [32].
Then the dipole moment matrix elements were evaluated
from the measured line intensities. A sequence of signs of the
dipole moment matrix elements (þ�þ��þ�) was
adopted as in the previous studies [14,16]. Table 2 lists the
dipole moment matrix elements derived in this study from
the experimental intensities and their experimental uncer-
tainties. A grand fit of all listed dipole moment matrix
elements to the system of linear equations (Eq. (4), eighth
order) was carried out using a weighted least squares fit
program [29] that was modified for the present study. Eight
coefficients of dipole moment function, M0, M1, M2, y, M7,
were subsequently determined and their values are listed in
Table 1. For comparison, the coefficients of the dipole
moment function coefficients determined by Ogilvie and
Lee [16] and Kiriyama et al. [17] are included in Table 1.
Finally, the three dipole moment functions listed in Table 1
are plotted against internuclear distance in Fig. 1. While the
dipole moment function derived in this work does not differ
drastically from the one derived in Ref. [16], it clearly differs
from the one derived in Ref. [17]. Although, the coefficients of
Mi in Table 1 were derived using slightly different potentials
e subscripts v and 0 of Mv0(m) represent the vth upper vibrational level

or the fundamental band, Toth et al. [13] for the 2-0 band, Ogilvie and Lee

ated uncertainties (in percents) are given after each value.

�105 M50(m)�106 M60(m)�106 M70(m)�106

34 10% �8.08881 20% 5.90593 25%

67 10% �7.99619 20% 5.96547 25% �2.80935 30%

96 10% �7.95635 20% 6.03207 25% �2.89648 30%

52 10% �7.97178 20% 6.11274 25% �3.01341 30%

52 10% �8.05581 20% 6.23252 25% �3.24595 30%

18 10% �8.20179 20% 6.39073 25% �3.07238 30%

64 10% �8.42494 20% 6.60576 25% �3.15826 30%

01 10% �8.64716 20% 6.84937 25% �3.28765 30%

65 10% �8.62136 20% 6.86504 25% �3.39395 30%

73 10% �8.62304 20% 6.92039 25% �3.49778 30%

65 10% �8.68729 20% 7.00533 25%

03 10% �8.74468 20% 7.11035 25%

24 10% �8.82735 20% 7.23259 25% �3.62641 30%

58 10% �8.91616 20% 7.36529 25% �3.76753 30%

90 10% �8.99751 20% 7.50939 25% �3.80380 30%

54 10% �9.10332 20% 7.65756 25% �3.80741 30%

97 10% �9.21302 20% 7.78105 25%

ro-vibrational intensities to the dipole moment function:
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and value of re, this cannot account for such a large difference.
In the mean time we are confident in the quality of the RKR
potential which is discussed in the last section of our paper.
The reason for the discrepancy is an incorrect treatment of
experimental intensities by Kiriyama et al. [17].

It was found that adoption of the experimental uncer-
tainties reported in the original publications (when avail-
able) did not offer the best fit to all the data. Thus
adjustments were made (generally by increasing reported
uncertainties) with the aim of reducing the overall devia-
tion of the fitting. The uncertainties adopted for each line
in our final fit are listed in Table 2.

The inner and outer classical turning points on the RKR
potential for v¼7 were found to be approximately 0.986
and 1.925 Å, which suggests that the present DMF is valid
within this range.

By combining the wavefunctions and the dipole moment
function, the Einstein A-coefficients were calculated for
Dv¼0, 1, 2, 3, 4, 5, 6, 7 up to v0 ¼7, and were then converted
to line intensities in HITRAN units. The corresponding file is
given in the Supplementary material. The file contains only
the H35Cl lines, but the intensities for H37Cl, D35Cl and D37Cl
isotopologues will be included in the global line list [12].
With the purpose of evaluating the influence of the DMF on
reproducing line intensities, the line intensities calculated
using LEVEL with the same wavefunctions but different DMFs
were compared with experimental line intensities for the
fundamental band and overtone bands up to v0 ¼7. HITRAN
intensities were also included in the comparisons. The results
of the comparisons are plotted in Figs. 2–7.
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Fig. 3. Comparison of the line-intensities of the H35Cl 2-0 band compar-

ison with present study as a reference.
3.1. Line intensity of the fundamental band

In Fig. 2, all the calculated line intensities for the funda-
mental band of H35Cl, including HITRAN, are compared with
measurements of Pine et al. [11] and the percentage differ-
ences were plotted against m-values. The results clearly
show that the line intensities calculated in present study,
Ref. [16], and HITRAN, are all within the 1% experimental
Please cite this article as: Li G, et al. Direct fit of experimental ro-vibrational intensities to the dipole moment function:
Application to HCl. JQSRT (2011), doi:10.1016/j.jqsrt.2011.03.014
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error limit claimed by Pine et al. [11]. Furthermore, all three
calculations agree well with each other in a unique pattern.

3.2. Line intensity of the first overtone band

In Fig. 3, measurements by Toth et al. [13], intensities
derived from the DMF of Ogilvie and Lee [16], and HITRAN
intensities for the 2-0 band of H35Cl were compared with
the present study. Additionally, the latest high-precision
measurements by Ortwein et al. [23] and De Rosa et al.
[22] were also compared with present study. From Fig. 3, it
is apparent that both our DMF and the DMF by Ogilvie and
Lee [16] reproduced the line intensities of the 2-0 band
very well. However, HITRAN line intensities appear to be
underestimated by about 7%. The intensity of the R(3) line
calculated from our DMF has shown slightly better agree-
ment to the measurement by Ortwein et al. [23] (�0.2%)
than the intensity derived from the DMF by Ogilvie and Lee
(�1%). However the differences are insignificant and both
are within experimental uncertainties.

3.3. Line intensity of the second overtone band

A similar comparison was carried out for the 3-0 band
(see Fig. 4). The HITRAN line intensities seem to be
systematically underestimated by 17.5%. The reason for
this is that in the semi-empirical DMF used for calculating
HITRAN intensities, outdated low-resolution measure-
ments by Benedict et al. [33] were used as an input. The
values from Ref. [33] have shown large differences from
more recent measurements by Ogilvie and Lee [16] and
Stanton et al. [34] that were used as input parameters in
this work. Interestingly, for the 3-0 band of H35Cl, our
calculation has shown better agreement with measure-
ments by Ogilvie and Lee than the intensities derived from
the semi-empirical DMF derived in the same work [16].

3.4. Line intensity of the 4-0, 5-0, 6-0 and 7-0 bands

Three papers have been published by Zughul et al. on
the line intensity measurements of the 4-0 to 7-0 overtone
ro-vibrational intensities to the dipole moment function:
014
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bands of HCl [25,27,35] which report analysis of the same
spectra recorded at Kitt Peak Observatory with a Fourier
transform spectrometer (FTS). However, the reported line
intensities are inconsistent in Refs. [35 and 27]. Although
Refs. [27 and 25] have reported the same line intensities
for the 4-0, 5-0 and 6-0 overtone bands, the published
dipole moment matrix elements derived from these inten-
sities are different. No explanations for these discrepancies
are offered in any of the three papers [25,27,35]. The only
other intensity measurements for the 5-0 and 6-0 overtone
bands were carried out by Reddy using the photoacoustic
method [36] with much larger reported uncertainty. The
discrepancies between line intensities reported by Reddy
[36] and Ref. [27] are about 10–25%. Taking into account
the reported uncertainty of their measurements, the line
intensities reported in Ref. [27] were adopted. A sequence
of uncertainties, 10%, 20%, 25% and 30% were employed for
the 4-0, 5-0, 6-0 and 7-0 bands in our direct DMF fitting as
relative weightings.

As shown in Figs. 5–8, line intensities calculated with
the DMF derived here are in a better agreement with
measurements from Ref. [27] for the 4-0 to 7-0 bands
compared with both the intensities calculated from the
DMF derived by Ogilvie and Lee [16] (that also used data
from Ref. [27] as an input) and HITRAN intensities [7]. For
the 5-0 and 6-0 bands, photoacoustic measurements by
Reddy [36] were also included in the comparison and
show a rather large discrepancy of þ10% to þ25%.
Strangely, the difference between our calculations and
intensity measurements from Ref. [27] shows a quadratic
dependence on the rotational quantum number. The
source of this unusual behavior is unclear. Additional
experiments in these high overtones are desirable in order
to confirm the values reported in Ref. [37].
4. Conclusion

The coefficients of a power series expansion of the dipole
moment function of HCl valid for an internuclear range
of 0.986–1.925 Å have been determined using a direct fit
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approach using the best available and appropriately weighted
experimental data. Using wavefunctions derived from the
Rydberg–Klein–Rees method and our DMF, line intensities
were calculated numerically for Dn¼0, 1, 2, 3, 4, 5, 6, 7 up to
n0 ¼7 bands using the LEVEL program [32]. Calculation of the
exact vibration-rotational matrix elements can involve com-
plex algebra (see Refs. [38,39], for instance), but the use of
LEVEL significantly simplifies the entire procedure. Compar-
isons were made between line intensities from the present
study, the Ogilvie and Lee DMF [16], HITRAN, and experi-
mental measurements. The results have clearly shown that
the DMF can be constructed directly from the experimental
ro-vibrational dipole moment matrix elements, thereby
avoiding Herman–Wallis fits of the individual bands. Our
method also allows inclusion of sparse data in the individual
bands. Moreover, the inclusion of rotational dipole moment
matrix elements gave a better prediction of line intensities
for the high-J lines. Appropriate weighting of the data in the
fit is important and can be easily implemented. We would
like to emphasize that the inclusion of experimental uncer-
tainties is crucial in the construction of semi-empirical
models.

5. Future work

The methodology developed in this work will be
applied to recalculate intensities of all hydrogen halides
in the HITRAN database. In addition, intensities for the
deuterated species, not presently available in HITRAN [7]
will be produced [12]. Although the RKR potential used in
this work seems to reproduce the experimental line
positions quite accurately, it will be interesting to evalu-
ate the effect on the result when using the exact experi-
mental potential. We performed such an evaluation using
an empirical potential provided to us by John Coxon and
Photos Hajigeorgiou and inserted into LEVEL by Robert Le
Roy [40]. This potential is an improved version over the
one these authors published previously in Ref. [9].

Fig. 9 shows the comparison between transition dipole
moments calculated using the RKR potential and the
Coxon & Hajigeorgiou potential [40] with the experi-
mental values from Table 2. It is apparent from this figure
that the difference is marginal. This fact has clearly
demonstrated that, for the purpose of calculating line
intensities, the RKR potential is sufficient as long as it is
based on an accurate set of spectroscopic constants. Based
on this fact, even supposing Ref [17] had used a different
potential from the current study, its influence on the
intensity calculation is insignificant.

While the DMF in the polynomial form derived in this
work is valid within the range of internuclear separations
probed by experiments, a method of extrapolating the DMF
will need to be developed. In particular, it is known that the
fit of the data to Padé approximants rather than polynomials
provides better predictions [10] beyond the range of experi-
mental data. Alternatively, theoretical calculations, such as
those in Ref. [19] need to be evaluated, as they can be used
outside the range of validity of semi-empirical DMFs. In
general, the idea of implementing piecewise a semi-empiri-
cal DMF as proposed by Buldakov and Cherepanov [18]
seems to be attractive. Unfortunately, when constructing
ro-vibrational intensities to the dipole moment function:
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their piecewise DMF, Buldakov and Cherepanov used the
erroneous values of Kiriyama et al. [17], which undermined
their results.
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