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We use space-based observations of NO2 columns from the Global Ozone Monitoring

Experiment (GOME) to derive monthly top-down NOx emissions for 2000 via inverse

modeling with the GEOS-CHEM chemical transport model. Top-down NOx sources are

partitioned among fuel combustion (fossil fuel and biofuel), biomass burning and soils by

exploiting the spatio-temporal distribution of remotely sensed fires and a priori

information on the location of regions dominated by fuel combustion. The top-down

inventory is combined with an a priori inventory to obtain an optimized a posteriori

estimate of the relative roles of NOx sources. The resulting a posteriori fuel combustion

inventory (25.6 TgN year�1) agrees closely with the a priori (25.4 TgN year�1), and errors

are reduced by a factor of 2, from �80% to �40%. Regionally, the largest differences are

found over Japan and South Africa, where a posteriori estimates are 25% larger than

a priori. A posteriori fuel combustion emissions are aseasonal, with the exception of East

Asia and Europe where winter emissions are 30–40% larger relative to summer emissions,

consistent with increased energy use during winter for heating. Global a posteriori biomass

burning emissions in 2000 resulted in 5.8 TgN (compared to 5.9 TgN year�1 in the

a priori), with Africa accounting for half of this total. A posteriori biomass burning

emissions over Southeast Asia/India are decreased by 46% relative to a priori; but over

North equatorial Africa they are increased by 50%. A posteriori estimates of soil emissions

(8.9 TgN year�1) are 68% larger than a priori (5.3 TgN year�1). The a posteriori inventory

displays the largest soil emissions over tropical savanna/woodland ecosystems (Africa), as

well as over agricultural regions in the western U.S. (Great Plains), southern Europe

(Spain, Greece, Turkey), and Asia (North China Plain and North India), consistent with

field measurements. Emissions over these regions are highest during summer at mid-

latitudes and during the rainy season in the Tropics. We estimate that 2.5–4.5 TgN year�1

are emitted from N-fertilized soils, at the upper end of previous estimates. Soil and

biomass burning emissions account for 22% and 14% of global surface NOx emissions,

respectively. We infer a significant role for soil NOx emissions at northern mid-latitudes

during summer, where they account for nearly half that of the fuel combustion source, a
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doubling relative to the a priori. The contribution of soil emissions to background ozone is

thus likely to be underestimated by the current generation of chemical transport models.

1. Introduction

Human activities have led to a three- to six-fold increase in nitrogen oxides (NOx ¼ NO þ NO2)
emissions since pre-industrial times.1 These large anthropogenic emissions, mostly resulting from
fossil fuel combustion and biomass burning, are superimposed on natural sources of NOx, which
include microbial processes in soils, lightning and transport from the stratosphere.2 While the
contribution of fossil fuel combustion to the global NOx budget is relatively well known (20–24
TgN year�1), estimates of the other surface NOx sources remain highly uncertain: biomass burning
(3–13 TgN year�1) and soil-atmosphere exchange (4–21 TgN year�1).3

Improved estimates of NOx emissions are crucial to better understanding regional and global
ozone air pollution, acid deposition, and climate change. Current NOx inventories are based on
‘‘bottom-up’’ estimates which aggregate information from diverse sources: country-by-country
statistics on fuel and land use, agricultural data, estimates of burned areas, observations of NOx

emissions ratios in pollution plumes, and local measurements of soil fluxes.
Space-based observations of NO2 columns from the Global Ozone Monitoring Experiment

(GOME)4,5 on board the European Remote Sensing (ERS-2) satellite can provide independent
‘‘top-down’’ constraints on global surface NOx emissions.6 Martin et al.7 demonstrated how
GOME tropospheric NO2 columns can be related to surface NOx emissions via inverse modeling,
thus deriving a top-down emission inventory. When combined with a bottom-up inventory, these
top-down emissions can reduce significantly the uncertainties in NOx emissions.
In this study, we build on the work of Martin et al.,7 and demonstrate how added information

from satellite observations of fires and from the location of fossil fuel dominated regions can help to
partition GOME top-down NOx sources among fuel combustion (fossil fuel and biofuel), biomass
burning, and soil emissions. This allows us to examine the magnitude, geographical distribution and
seasonal variations of these individual sources and compare them to bottom-up estimates. We
previously applied this method to examine NOx sources over Africa.8 Here, we improve on this
method and apply it to the global NOx budget for the year 2000.
In section 2 we describe the bottom-up NOx emissions inventory used as the a priori in our

analysis. In section 3, we infer top-down surface NOx emissions from GOME NO2 column
observations, and describe a means for partitioning these emissions. The partitioned top-down
and a priori inventories are combined into an optimized a posteriori inventory in section 4. We
discuss our results in section 5, and compare our global a posteriori partitioning of surface NOx

sources to previous studies in section 6. Conclusions are given in section 7.

2. A priori NOx emission inventory

We use NOx emissions from the GEOS-CHEM global model of tropospheric chemistry9 as our
a priori global NOx inventory. This inventory was previously described7 and includes emissions
from fossil fuel (23.3 TgN year�1), biofuel10 (2.2 TgN year�1), biomass burning11,12 (5.9 TgN
year�1), soils (5.3 TgN year�1), aircraft (0.05 TgN year�1), stratosphere-troposphere exchange (0.1
TgN year�1), and lightning (3.5 TgN year�1). More specifically, anthropogenic emissions are from
the Global Emission Inventory Activity (GEIA),13 scaled to 1998 as described in Bey et al.9 The
biomass burning inventory includes interannual and seasonal variability as derived by Duncan
et al.,12 using satellite observations of fires from the Along Track Scanning Radiometer (ATSR) and
aerosols from the Total Ozone Monitoring Spectrometer (TOMS). The algorithm of Yienger and
Levy14 is applied to calculate soil emissions, with the canopy reduction factor described in Wang
et al.15 All emissions are on a 21 latitude by 2.51 longitude horizontal resolution. Tables 1–4
summarize the surface emission inventory for the individual regions shown in Fig. 1. In addition,
the middle column of Fig. 2 illustrates the spatial distribution of these surface sources. Here and in
the rest of the paper we combine fossil fuel and biofuel emissions into a single ‘‘fuel combustion’’
category.
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Following Martin et al.,7 we estimate the relative errors for the fuel combustion emissions as the
ratio of a priori to EDGAR v3.2 1995 emissions.16 For biomass burning and soils we use an estimate
of the relative error of a factor of 3, reflecting the range of global estimates for both sources.1 The
overall a priori error is smaller than 1.5 (�50%) over regions dominated by fuel combustion
emissions but increases to values above 2.5 (�150%) over the rest of the world (Table 1 and Fig. 2e).
On local and monthly scales, the actual a priori errors for soil and biomass burning emissions might
be higher than 3. However, because the top-down errors are generally smaller than a factor of 3
(section 3.4), our a posteriori will be dominated by the top-down constrains on soil and biomass
burning emissions (see section 4), and thus a more detailed evaluation of a priori errors is not
necessary for our analysis.
The a priori inventory is used to conduct a tropospheric O3–NOx–hydrocarbons simulation with

the GEOS-CHEM model (version 5.05, http://www-as.harvard.edu/chemistry/trop/geos) for the
year 2000. The model is driven by assimilated meteorological fields from the Goddard Earth
Observing System (GEOS) Global Modeling and Assimilation Office, with a 21 latitude by

Table 1 Annual surface NOx emissions and relative errors for 2000a

Total surface NOx emissions/TgN year�1

A priori GOME A posteriori M2003b

(a) United States 6.8 (1.4) 8.3 (1.5) 7.4 (1.3) 7.3

(b) Europe 5.5 (1.7) 6.2 (1.5) 6.2 (1.4) 6.3

(c) East Asia 5.3 (2.0) 6.6 (1.5) 6.3 (1.5) 6.0

(d) Japan 0.54 (1.5) 0.81 (1.5) 0.67 (1.3) 0.73

(e) Mideast 1.1 (2.1) 1.6 (1.5) 1.3 (1.4) 1.2

(f) S. Africa 0.36 (3.5) 0.56 (1.6) 0.48 (1.5) 0.41

(g) SE Asia/India 4.9 (1.8) 2.4 (2.0) 4.3 (1.6) 3.9

(h) N. equatorial Africa 2.2 (2.3) 3.7 (1.6) 3.3 (1.5) 2.7

(i) S. equatorial Africa 2.4 (2.6) 2.6 (1.7) 2.5 (1.6) 2.3

(j) Central America 1.7 (2.0) 1.3 (1.9) 1.5 (1.6) 1.4

(k) S. America 2.7 (2.1) 2.3 (1.9) 2.8 (1.7) 2.4

(l) Australia 1.0 (2.3) 0.94 (2.2) 1.2 (1.8) 0.94

Global 36.5 (2.0) 39.7 (1.6) 40.3 (1.5) 37.8

a Surface NOx emissions include fossil fuel combustion, biofuel combustion, biomass burning and soil emissions.

Relative errors are indicated in parentheses. b A posteriori emissions inventory from Martin et al.7 based on

GOME 1996–1997 NO2 columns.

Table 2 Annual fuel combustion NOx emissions for 2000

Fuel combustiona emissions/TgN year�1

A priori GOME A posteriori EDGAR 3.216

(a) United States 6.3 (1.4) 7.1 (1.5) 6.4 (1.2) 6.0

(b) Europe 4.9 (1.7) 4.6 (1.6) 4.9 (1.4) 6.7

(c) East Asia 4.8 (2.0) 5.3 (1.7) 5.2 (1.5) 4.7

(d) Japan 0.53 (1.6) 0.80 (1.5) 0.66 (1.3) 0.81

(e) Mideast 0.93 (2.1) 1.1 (1.6) 0.93 (1.4) 0.62

(f) S. Africa 0.27 (3.9) 0.39 (1.5) 0.33 (1.4) 0.38

(g) SE Asia/India 3.2 (1.6) 1.8 (2.0) 3.0 (1.4) 3.2

(h) N. equatorial Africa 0.40 (1.5) 0.39 (1.6) 0.39 (1.3) 0.44

(i) S. equatorial Africa 0.18 (1.8) 0.16 (1.9) 0.18 (1.5) 0.20

(j) Central America 1.0 (1.8) 0.78 (1.7) 0.89 (1.3) 0.85

(k) S. America 1.0 (1.5) 0.72 (1.8) 1.0 (1.4) 0.81

(l) Australia 0.31 (1.8) 0.19 (2.2) 0.31 (1.6) 0.38

Global 25.4 (1.8) 24.6 (1.6) 25.6 (1.4) 26.1

a Includes fossil fuel and biofuel emissions. Relative errors are indicated in parentheses.
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2.51 longitude horizontal resolution and 30 vertical levels. The resulting NO2 columns for four
months (January, April, June and August 2000), chosen for illustrative purpose, are displayed on
Fig. 3 (middle panels). These columns map onto surface NOx emissions because of the short lifetime
of NOx (less than a day) and the large NO2/NOx ratio in the boundary layer.

3. Top-down NOx emission inventory from GOME

3.1. The GOME instrument and retrieval

The GOME instrument is a nadir-viewing spectrometer, which detects absorption of atmospheric
NO2 in the visible by measuring backscattered solar radiation. Global coverage is achieved in 3 d
with a ground footprint of 320 km � 40 km (cross track � along track). Slant columns of NO2 are
retrieved for the year 2000 by non-linear least-square fitting of backscattered radiance spectra.17

Our conversion from slant columns to tropospheric NO2 columns takes into account the influence
of stratospheric columns and instrument biases, and includes scattering by the surface, clouds,
aerosols, and gases.7,18

We only consider scenes where clouds contribute to less than 50% of backscattered radiation,
corresponding to cloud or snow cover o40%. The monthly mean uncertainties for a 21 � 2.51 grid
box in the retrieved GOME tropospheric NO2 columns include a 30% relative error from the

Table 3 Annual biomass burning NOx emissions for 2000

Biomass burning emissions/TgN year�1

A priori GOME A posteriori GWEM 1.441

(a) United States 0.11 (3) 0.17 (1.5) 0.12 (1.7) 0.05

(b) Europe 0.09 (3) 0.30 (1.5) 0.19 (1.7) 0.10

(c) East Asia 0.13 (3) 0.20 (1.5) 0.18 (1.7) 0.28

(d) Japan 0.00 (3) 0.00 (1.5) 0.00 (1.8) 0.01

(e) Mideast 0.00 (3) 0.03 (1.5) 0.02 (1.5) 0.00

(f) S. Africa 0.03 (3) 0.07 (1.5) 0.05 (1.8) 0.10

(g) SE Asia/India 1.1 (3) 0.28 (1.7) 0.61 (2.5) 0.16

(h) N. equatorial Africa 0.77 (3) 1.3 (1.5) 1.2 (1.5) 1.4

(i) S. equatorial Africa 1.8 (3) 1.8 (1.6) 1.7 (1.5) 1.4

(j) Central America 0.37 (3) 0.25 (1.8) 0.30 (2.0) 0.04

(k) S. America 0.87 (3) 0.81 (1.7) 0.81 (1.9) 0.16

(l) Australia 0.33 (3) 0.38 (1.8) 0.40 (1.9) 0.43

Global 5.9 (3) 5.7 (1.6) 5.8 (1.8) 5.0

Table 4 Annual soil NOx emissions for 2000

Soil emissions/TgN year�1

A priori GOME A posteriori

(a) United States 0.41 (3) 1.0 (1.5) 0.86 (1.7)

(b) Europe 0.48 (3) 1.3 (1.5) 1.1 (1.7)

(c) East Asia 0.42 (3) 1.1 (1.6) 0.94 (1.7)

(d) Japan 0.01 (3) 0.0 (1.6) 0.01 (2.6)

(e) Mideast 0.17 (3) 0.53 (1.6) 0.40 (1.6)

(f) S. Africa 0.06 (3) 0.10 (2.0) 0.10 (2.0)

(g) SE Asia/India 0.59 (3) 0.32 (2.2) 0.65 (2.8)

(h) N. equatorial Africa 0.98 (3) 2.0 (1.7) 1.7 (1.6)

(i) S. equatorial Africa 0.41 (3) 0.65 (1.9) 0.64 (1.9)

(j) Central America 0.34 (3) 0.28 (2.0) 0.35 (2.2)

(k) S. America 0.77 (3) 0.81 (2.1) 1.0 (2.3)

(l) Australia 0.37 (3) 0.37 (2.5) 0.47 (2.3)

Global 5.3 (3) 9.4 (1.7) 8.9 (1.9)
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conversion of slant tropospheric columns to vertical tropospheric columns and a 5 � 1014 molecules
cm�2 absolute uncertainty due to spectral fitting. A detailed error analysis is provided by Martin
et al.18 Our relative error is slightly lower than the estimate given by Martin et al. because we have
assumed random errors in spectral fitting, surface reflectivity and clouds. We do not use NO2

columns poleward of 601 N, where the retrieval is sometimes more uncertain.

3.2. GOME NO2 columns

The retrieved GOME tropospheric NO2 columns are compared to modeled columns in Fig. 3.
Monthly mean observed and modeled NO2 columns are well correlated spatially and temporally
(r ¼ 0.75, n ¼ 149477). Observations and model display enhanced NO2 columns over the

Fig. 1 Regions used in Tables 1–4 and Figs. 5 and 6.

Fig. 2 Annual surface NOx emissions for 2000: GOME top-down (left panels), a priori (middle panels) and a
posteriori (right panels) inventories. Total surface NOx emissions, shown on the top panels (a), are partitioned
among: (b) fuel combustion, (c) biomass burning, and (d) soil emissions. All emissions are in 1010 atoms N cm�2

s�1 and the global annual emissions are indicated at the bottom left of each panel in TgN yr�1. The bottom
panels (e) display the relative errors (unitless) for total surface NOx emissions.
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industrialized regions of the eastern United States, Europe, India, East Asia, and South Africa
throughout the year. Seasonal NOx emissions from large-scale tropical fires can also be seen during
the dry seasons in North equatorial Africa (January), India and Southeast Asia (April), South
equatorial Africa (June and August), and to a smaller extent over South America (August). Note
the increased NO2 over Idaho and Montana in August 2000 due to unusually large wildfires.19 The
spatial location of these seasonal enhancements matches space-based active fire observations
(Fig. 3, right panels) from the Visible and Infrared Scanner (VIRS) on board the Tropical Rainfall
Measuring Mission satellite (TRMM).20 The geographical coverage of VIRS fires spans tropical
and subtropical latitudes (o401). At higher latitudes, we supplement them with nighttime
observations from the ATSR instrument21 on board ERS-2.
During summer (Fig. 3, June and August), the GOME columns show regions of enhanced NO2 in

areas not associated with fuel combustion or biomass burning: the western United States, southern
Europe, the Middle East, the African Sahel, and parts of East Asia. These enhancements are not
captured by the model, and are consistent with larger than expected NOx emissions from the
seasonally dry soils in these regions.7,8

3.3. Global top-down NOx inventory

The methodology to infer surface NOx emissions from GOME NO2 columns is based on inverse
modeling with GEOS-CHEM, as described by Martin et al.,7 linearly relating the observed NO2

columns to NOx emissions. The top-down emissions reflect surface NOx emissions: GOME columns
over land are relatively insensitive to lightning NO emissions because of the low densities and low
NO2/NO ratios in the upper troposphere.7,8 Recent studies have found evidence for lightning
signatures in GOME NO2 columns over the Atlantic Ocean.22–24 Transient lightning signals were
also observed over North America away from surface NOx sources.22

Fig. 3 Tropospheric NO2 columns for January, April, June, and August 2000. Left panels: GOME observa-
tions. White areas indicate regions with no observations, or with cloud/snow cover 440%. Middle panels:
GEOS-CHEM model results sampled at the GOME overpass time. Right panels: space-based observations of
fires from VIRS20 on board TRMM for the tropics (latitudes equatorward of 401) and ATSR21 on board ERS-2
at higher latitudes. All quantities are averaged over the GEOS-CHEM 21 � 2.51 horizontal grid.
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The main source of uncertainty in this inversion comes from the ability of the model to accurately
simulate the lifetime of NOx (i.e., to simulate the partitioning between NOx and total reactive
nitrogen). This source of uncertainty was assessed to be less than 30%.7 The overall uncertainty in
the top-down emission inventory is 42% (obtained by adding in quadrature a 30% error from the
model inversion and a 30% error from the NO2 columns retrieval) which is combined with the 5 �
1014 molecules cm�2 absolute error. Our GOME inventory (with a global total of 40.5 TgN year�1,
Table 1 and Fig. 2) underestimates actual top-down NOx emissions because of missing data caused
by incomplete satellite sampling (for example over India) and areas with large cloud or snow cover
(in particular during winter over eastern Europe, see Fig. 3). We assess this underestimate by
sampling the a priori inventory only where GOME data is available, and find that 7% of total
a priori emissions are thus missed. This observational undersampling will be corrected in the
a posteriori inventory (section 4).
The top-down African emissions (6.9 TgN year�1) are 10% lower than our previously published

results (7.8 TgN year�1), for the same GOME observations.8 The difference comes from using a new
GEOS-CHEM simulation for the inversion analysis, with improved isoprene emissions matching
the seasonality inferred by GOME HCHO observations over Africa (Jaeglé et al., manuscript
in preparation).

3.4. Global partitioning of GOME top-down emissions

We derive the monthly partitioning of the top-down NOx emissions (E) among fuel combustion
(EFF1BF), biomass burning (EBB) and soils (Esoil), by combining a priori information on the spatial
location of areas dominated by fuel combustion, together with space-based observations of fires.
The block diagram on Fig. 4 illustrates the two-step approach we apply to each month and each
21 � 2.51 grid box.
For grid boxes where a priori total emissions (E0) are dominated by fuel combustion (E 0FFþBF/

E0 4 0.9) or where a priori combustion emissions exceed top-down emissions (E 0FFþBF 4 E), we
assume that all top-down emissions are from fuel combustion (EFF1BF ¼ E, EBB ¼ 0, Esoil ¼ 0).
Elsewhere (E 0FFþBF/E

0r 0.9 and E 0FFþBFr E) we set the top-down fuel combustion emissions to be

Fig. 4 Block diagram of algorithm applied to partition top-down GOME NOx emissions (E) into: fuel
combustion (EFF1BF), biomass burning (EBB) and soil (Esoil) emissions. The method is applied to monthly top-
down NOx emissions in each 21 � 2.51 grid box, using information from the spatiotemporal distribution of
bottom-up fuel combustion emissions (E0FFþBF) and space-based fire count observations (Fire). See text (section
3.4) for detailed description.
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equal to the a priori fuel combustion emissions (EFF1BF ¼ E 0FFþBF). This step thus takes advantage
of the spatial separation between areas dominated by fuel combustion (northern hemisphere
industrialized regions) and those dominated by soil or biomass burning (generally in the tropics).
Despite our use of the a priori in this first step, the large majority (80%) of the resulting GOME

fuel combustion inventory is still determined by top-down emissions (EFF1BF ¼ E). This is because
fuel combustion emissions are concentrated over small geographical areas where they dominate
overall emissions; these regions are identified by our E 0FFþBF/E

0 4 0.9 condition and account for
76% of global GOME fuel combustion emissions. Regions where a priori combustion emissions
exceed top-down emissions (E 0FFþBF 4 E) account for only 4% of GOME fuel combustion
emissions and are located over SE Asia/India. The remaining 20% of top-down fuel combustion
emissions are directly determined by the a priori (EFF1BF ¼ E 0FFþBF); these are mostly tropical
regions with large soil or biomass burning emissions. We selected the E0FFþBF/E

04 0.9 threshold by
applying our algorithm to a synthetic inventory based on sampling the total a priori NOx inventory
only when GOME observations are available. With this threshold we were able to retrieve the
original monthly regional a priori fuel combustion emissions to better than 2%, while at the same
time minimizing the error from neglecting soil and biomass burning emissions in industrialized
regions, and maximizing the fraction of fuel combustion emissions determined by the top-down
inventory. Using the synthetic inventory we estimate that 7% (0.7%) of soil (biomass burning)
emissions are located in areas with E 0FFþBF/E

0 4 0.9. This underestimate of soil emissions is
corrected in the optimal combination of the a priori and top-down emissions inventories in section
4. Varying the threshold from 0.85 to 0.95 has a small effect our top-down retrieval of fuel
combustion (less than 5%).
In the second step, we use monthly fire observations (Fire) to separate biomass burning from soil

emissions. If no fires are detected in a grid box for a given month, we assign the residual top-down
emissions to soils (Esoil ¼ E � EFF1BF, EBB ¼ 0). For each grid box where fires are detected (Fire4
0), we need to separate background soil emissions from biomass burning emissions. From our
a priori inventory, we estimate that B20–30% of emissions over biomass burning regions come
from background soil emissions, which we thus need to take into account. This is achieved by
calculating the median soil emissions in grid boxes within Dlat ¼ 61 latitude and Dlon ¼ 101
longitude where there are no fires:

if Fire[x,y] 4 0 then Esoil[x,y] ¼Median(Esoil[x
0,y0]), for Fire[x0,y0] ¼ 0 and |x0 � x | r Dlon

and |y0 � y | r Dlat (1)

where x (x0) and y (y0) are the longitude and latitude coordinates of the grid boxes with (without)
fire. Once background soil emissions are determined, the residual is assigned to biomass burning
(EBB ¼ E � EFF1BF � Esoil).
The nighttime fire detection of ATSR likely undersamples tropical fires, which are characterized

by a marked diurnal cycle.25,26 In contrast, the orbit of TRMM permits the complete sampling of
the diurnal burning cycle each month by VIRS.20 In addition, the VIRS retrieval algorithm takes
into account multiple satellite overpasses and cloud masking. We thus use VIRS observations where
available (in the tropics and subtropics), and elsewhere we use ATSR observations. We eliminate
false detections in ATSR due to oil and gas flaring.27

In this second step, the separation between emissions from soils and biomass burning relies only
on the spatial distribution of observed fires and not on their intensity. This is an important point as
comparisons among different remotely sensed biomass burning datasets have shown good agree-
ment in identifying burning regions, but large disagreement in terms of the magnitude of the areas
affected.26,28–30 We test the sensitivity of our method to the choice of fire indicators by using ATSR
everywhere or the Global Burned Area 2000 (GBA-2000) dataset from the SPOT VEGETATION
sensor,31 and find that our results are affected by less than 10%.
As described above, the robustness of our algorithm is assessed by applying it to partition a

synthetic inventory based on the total a priori surface NOx emissions. The original monthly regional
a priori biomass burning and soil emissions are retrieved to within better than 10%, on average. We
thus estimate relative errors in the individual top-down fuel combustion, soil, and biomass burning
to be B45% (including a 42% error from the top-down retrieval, 10% error from the partitioning
algorithm, and 10% error from fire detection), which add to the absolute error.
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4. A posteriori NOx emissions

We combine the top-down NOx emission inventory, E and its relative error e, with a priori estimates
from the bottom-up inventory, E0 and its relative error e0, to obtain an a posteriori inventory, E 00. If
we assume a log-normal distribution of errors, the optimized inventory is obtained as7

lnE00 ¼ lnE0ðln eÞ2 þ lnEðln e0Þ2

ðln eÞ2 þ ðln e0Þ2
ð2Þ

with its relative error e00 expressed as

1

ðln e00Þ2
¼ 1

ðln eÞ2
þ 1

ðln e0Þ2
ð3Þ

We also apply eqns. (2) and (3) to the fuel combustion and soil emissions to derive optimized
a posteriori emissions, E 00FFþBF and E 00soil, and their respective relative errors, e00FFþBF and e00soil. Over
areas where there are no GOME observations (section 3.3) or where top-down emissions are zero
(Esoil ¼ 0 or EFF1BF ¼ 0), we use the a priori and its associated relative errors instead. The
optimized biomass burning inventory is inferred as the residual (E00BB ¼ E00 � E00FFþBF � E00soil).
The a priori and top-down relative errors for total NOx emissions are generally comparable over

source regions. The two inventories are thus given similar weights in the optimized inventory. The
resulting a posteriori error is a factor of two lower compared to the a priori (Table 1 and Fig. 2). A
similar reduction in the a posteriori error is found for the fuel combustion inventory. For soil and
biomass burning emissions, the a priori relative errors (3) are much larger than the top-down errors
(1.5–2), and thus the resulting a posteriori inventory is dominated by the top-down estimates of NOx

emissions. However, over areas where GOME observations are not available or top-down emissions
are equal to zero, the a posteriori directly reflects the bottom-up inventory. Thus over regions with a
significant fraction of missing data, a posteriori errors can sometimes be larger than the top-down
errors (Tables 3 and 4).

5. Results

5.1. Fuel combustion emissions

The top-down GOME fuel combustion inventory is well correlated with the a priori inventory (r ¼
0.85, n ¼ 35160), as shown in Fig. 2b. The GOME inventory (24.6 TgN year�1) is 3% lower
compared to the a priori (25.4 TgN year�1). Over the United States, Europe and East Asia the two
inventories agree to within 10%, lending confidence to our inversion and partitioning algorithm
(Fig. 5 and Table 2). More pronounced differences are noted elsewhere: the GOME inventory is
larger than the a priori over Japan (50%) and S. Africa (45%), but lower over SE Asia/India
(�45%), Central America (�20%), South America (�30%) and Australia (�40%).
While the annual a posteriori and a priori fuel combustion emissions are very close to each other

(25.6 TgN year�1 and 25.4 TgN year�1, respectively), information from GOME has helped reduce
the global annual errors by a factor of 2 (from �80% to �40%). The a priori and a posteriori fuel
combustion inventories are very well correlated (r ¼ 0.96, n ¼ 35 160). Regionally, the a posteriori is
within 10% of the a priori, with the exception of Japan and S. Africa where the a posteriori is larger
by 25%. Regions of disagreement where the top-down inventory was lower than the a priori were
caused by under sampling by GOME (section 3.3) and disappear in the a posteriori. The fuel
combustion inventory from EDGAR16 (26.1 TgN year�1) is also very similar to our a priori and
a posteriori inventories (Table 2 and Fig. 5). The largest differences are for Europe and the Middle
East, where EDGAR emissions are 37% larger and 33% lower than the a posteriori, respectively.
The monthly a posteriori fuel combustion emissions are aseasonal over most regions, with the

exception of Europe and East Asia (Fig. 6, grey bars). Our a priori fuel combustion inventory does
not include any seasonality over East Asia. However the a posteriori inventory suggests larger fuel
combustion emissions during the winter months. The ratio of monthly emissions in December
(maximum) to emissions in July (minimum) is 1.4. Streets et al.32 examined the potential seasonality
of Chinese NOx emissions due to heating in homes, assuming a dependence of stove operation on
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outdoor temperature, and estimated a 1.2 ratio between maximum and minimum fuel combustion
emissions. Their calculation neglected seasonality in power generation and industrial energy use,
which are also likely to vary seasonally. Over Europe we derive a ratio between maximum and
minimum emissions of 1.3, similar to seasonality in the a priori, which is due to wintertime heating.

Fig. 5 Regional GOME top-down (black), a priori (green), and a posteriori (red) annual NOx emissions in TgN
year�1 for 2000: (top panel) fuel combustion emissions, (middle panel) biomass burning, and (bottom panel) soil
emissions. The thin lines on top of each bar displays the absolute errors. Note that global emissions (rightmost
bars) are divided by a factor of 5. Also shown are the inventories from EDGAR16 for fuel combustion (blue bars
on top panel) and GWEM41 for biomass burning (blue bars on middle panel). The geographical definition of
each region is displayed on Fig. 1.
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5.2. Biomass burning emissions

The global annual biomass burning inventories for the a priori (5.9 TgN year�1), top-down (5.7
TgN year�1) and a posteriori (5.8 TgN year�1) are nearly identical, but the inclusion of GOME
observations greatly reduces errors, from �200% to �80%. There is good spatial and temporal
correlation among these inventories (r ¼ 0.69 for GOME vs. a priori; r ¼ 0.85 for a posteriori vs. a
priori, n ¼ 35 160). Regionally the largest differences are for SE Asia/India, where the a posteriori
(0.6 TgN year�1) is 46% lower than the a priori (1.1 TgN year�1), and for North equatorial Africa,
where the a posteriori (1.2 TgN year�1) is 50% larger than the a priori (0.77 TgN year�1) (Table 3
and Fig. 5). For North equatorial Africa, the underestimate of the a priori is likely a result of an
underestimate of the NO emission factor (EF ¼ 1.1 (g NO) (kg dry matter)�1) used in our inventory
for North African savannas.7,8 Over South equatorial Africa, where we use a higher EF (3.9 g
kg�1),33 there is closer agreement between the a priori (1.8 TgN year�1) and the a posteriori (1.7 TgN
year�1). Overall, fires over Africa account for half of the global biomass burning emissions.
Globally, biomass burning emissions contribute 14% of surface NOx emissions.

Fig. 6 Monthly regional a posteriori (bars) and a priori (lines) NOx emissions in 2000. We show total emissions
(light grey bars for a posteriori and black line for a priori) as well as their partitioning among fuel combustion
(dark grey), biomass burning (red), and soil emissions (blue). Note the change in scales for the panels on each
row.
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The a priori and a posteriori display similar seasonality over the major biomass burning regions,
with maximum emissions in February for North equatorial Africa, March for Central America,
April for SE Asia/India, July in South equatorial Africa, September in Australia and October in
South America (Fig. 6, compare red bars and red lines). This good agreement on the seasonal cycle
of burning validates the approach used by Duncan et al.12 to specify seasonal variations in the
a priori, via regional scaling of a bottom-up inventory with fire count and aerosol satellite
observations.

5.3. Soil emissions

Globally, our top-down soil emissions (9.4 TgN year�1) are 77% larger than the a priori (5.3 TgN
year�1); the a posteriori soil emissions (8.9 TgN year�1) are 68% larger than the a priori. The spatial
distribution of our inferred annual soil emissions corresponds well to the a priori (r ¼ 0.51, n ¼ 2349
for GOME vs. a priori; r ¼ 0.79, n ¼ 2741 for a posteriori vs. a priori). The large underestimate of
soil emissions by the a priori appears to be systematic for all regions (see Fig. 5, bottom panel, and
Table 4), and is especially strong during the summer over mid-latitude regions and during the wet
season in the Tropics (Fig. 6).
North equatorial Africa is identified as having large soil emissions (Fig. 2, Table 4). We

previously argued that these NOx emissions are due to rain-induced pulsing from soils over vast
areas of the Sahel.8 Many field and laboratory experiments have reported large pulses of biogenic
NO emissions following rain on dry soils of savannas and seasonally dry forests.34–38 We found that
the spatial and temporal distribution of the GOME NO2 enhancements over Africa is consistent
with soil NO emissions from ecosystem-dependent flux measurements39 and from surface measure-
ments of NO2 obtained by the IDAF (IGAC/DEBITS/Africa) network over West Africa. We
showed that lightning and clouds are unlikely to account for the enhanced GOME NO2 columns
and IDAF surface NO2 observations.
Here we see that the large inferred soil emissions are not restricted to the tropics, but extend to

mid-latitude regions as well. In particular, our a posteriori analysis indicates a factor of two increase
in soil emissions over Europe, the US and East Asia (Fig. 5, Table 4).

6. Comparison of a posteriori to previous studies

Table 1 compares our 2000 a posteriori inventory with the a posteriori inventory of Martin et al.,7

based on GOME observations for September 1996–August 1997. Our global a posteriori NOx

source is 7% larger than their 37.8 TgN year�1 a posteriori source. Most of the difference is for
Tropical regions and could reflect interannual variations in biomass burning.
Müller and Stavrakou40 used an adjoint modeling technique based on the IMAGES model to

derive an optimized NOx emission inventory using GOMENO2 columns for 1997, as well as surface
observations of CO. Their inversion resulted in a 38.7 TgN year�1 annual surface NOx emissions,
which is close to our a posteriori estimate of 40.3 TgN year�1. Their global fuel combustion source
(22.8 TgN year�1) and biomass burning source (4.4 TgN year�1) are 11% and 24% lower than our
a posteriori, respectively. In agreement with our results, they infer a strong role for soil NOx

emissions, with even larger global emissions (12.1 TgN year�1). Their NOx emissions over North
America, Europe and South Asia (8.3, 5, 5.2 TgN year�1) are similar to our results (7.8, 4.9, 5.6
TgN year�1 – using the same regional definitions). However, they infer larger sources over
S. America and Africa (6.1 and 8.8 TgN year�1) compared to our study (4.3 and 7 TgN year�1).
While our study generally agrees with the results of Müller and Stavrakou,40 some of the
discrepancies noted above are likely the results of differences in: a priori emissions (IMAGES uses
larger a priori fuel combustion and soil NOx emissions), years, retrieval approaches for the GOME
NO2 columns, and chemical mechanisms used in the inversions.

6.1. Biomass burning emissions

Table 3 and Fig. 5 compares our a posteriori biomass burning estimate with the Global Wildland
Fire Emission Model 1.4 (GWEM) inventory of Hoelzemann.41 This inventory is an improvement
of an earlier inventory (GWEM 1.21).42 It is based on the GBA-2000 burned area product (with the
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exception of S. America where GOES and AVHRR fire counts are used) and fuel loads from the
LPJ-DGVM model. These inventories are in broad agreement, with the GWEM global inventory
(5 TgN year�1) being 13% lower than our a posteriori (5.8 TgN year�1). We note that the GWEM
inventory does not include seasonal emissions from burning of agricultural residues in the field,
while our biomass burning inventories take this source into account. Open field agricultural residue
burning produces 0.2 TgN year�1, as derived in the inventory of Logan and Yevich10 (which is used
in our a priori), and is thus unlikely to fully account for the differences between GWEM and our
inventory.
Biomass burning estimates from GWEM and our a posteriori are lower than some of the earlier

studies. For example the climatological emission inventory of Galanter et al.43 yields 7.8 TgN
year�1. The Schultz27 inventory for 2000 yields 7.5 TgN year�1.
Both GWEM and a posteriori estimates display reduced emissions over SE Asia/India relative to

the a priori, by 86% and 46%, respectively. Similar conclusions were reached by previous studies
based on inverse modeling analyses of CO observations.44,45 Our a posteriori estimates for biomass
burning emissions of NOx over Asia (0.8 TgN year�1) agrees with estimates from a recent bottom-
up inventory by Streets et al.46 (0.85 TgN year�1). The convergence towards lower biomass burning
emissions over Asia is likely to be due to an overestimate in the amount of biomass burnt used in
early studies, especially over India.46

For the African continent (south of the Sahara), the GWEM inventory and our a posteriori both
estimate 2.9 TgN year�1 for NOx emissions. However, while in GWEM African emissions north
and south of the equator are nearly equal, in our a posteriori we find that burning south of the
equator is 40% larger than north of the equator. For comparison, Barbosa et al.47 estimate NOx

emissions from vegetation fires of 1.2–4.5 TgN year�1 over Africa during the 1980s, while Scholes
and Andreae48 find 2.8 TgN year�1, similar to our estimates.
The largest difference between GWEM and our a posteriori occurs over South and Central

America, which account for 0.2 TgN year�1 in GWEM compared to 1.1 TgN year�1 in the
a posteriori. Our a posteriori contains large uncertainties over this region because of the South
Atlantic anomaly.49 However, burned areas in South America are probably underestimated in
GWEM (J. Hoelzemann, personal communication), because with its 4 km resolution the GOES fire
product might not detect many tropical deforestation fires, which typically cover small areas (0.2–
1 km2).50 In comparison, Potter et al.51 find that deforestation fires over the Amazon in the early
1990s resulted in 1.6 TgN year�1.
In addition to the GWEM inventory, two other global studies (van der Werf et al.52 and Ito and

Penner53) have estimated trace gas emissions from biomass burning during 2000 based on remote
sensing of burned areas and active fires. NOx emissions have not been reported from these other two
inventories. However, comparisons of the carbon emissions for these three studies show significant
differences,28 with global emissions ranging from 1428 TgC to 2600 TgC, African emissions ranging
from 880 TgC to 1880 TgC, and South/Central American emissions ranging from 90 TgC year�1 to
760 TgC year�1. This range reflects highly different estimates of both burned areas29,54 and available
fuel loads.28 Given such difficulties in relating space-based observations of active fires and burned
areas to gas emissions, we propose that our a posteriori biomass burning inventory could provide a
way to independently validate the algorithms used in these recent studies for the year 2000.

6.2. Asian fuel combustion emissions

Our a posteriori estimate for fuel combustion over Asia (8.8 TgN year�1, including East Asia, SE
Asia/India and Japan) is 28% larger than the bottom-up inventory of Streets et al.32 (6.9 TgN
year�1). The largest discrepancies are for China and India, where our fuel combustion emissions
(4.4 TgN year�1 and 1.7 TgN year�1) are 38% and 43% higher than the Streets et al. inventory,
respectively. Modeling analyses based on CO observations by aircraft and satellite observations
during the TRACE-P field mission44,45,55,56 also found that the Streets et al. inventory significantly
underestimates anthropogenic emissions over China. Causes for this underestimate could include
under-reporting of domestic coal burning32,56 or inefficient industrial sources and power plants.57

In an inverse modeling study using NOy in situ observations, Wang et al.58 inferred a 47%
increase in Chinese NOx emissions, relative to the Streets et al. inventory. They estimate a 5 TgN
year�1 total NOx source for China, which is close to our total a posteriori source (5.3 TgN year�1).
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6.3. Soil emissions

The global magnitude of soil-atmospheric NOx exchange has been challenging to constrain because
of the large spatiotemporal variability of microbial soil processes,59,60 the influence of human
activities61 such as N-fertilization62 and burning37 in enhancing soil emissions, and the role of plant
canopies in recapturing a significant fraction of the emitted soil NOx.

63,64 The most recent global
soil inventories include the semi-empirical model of Yienger and Levy14 (used in our a priori), the
process-based land-vegetation biogeochemistry model of Potter et al.,65 and the inventory of
Davidson and Kingerlee66 based on global extrapolations of surface flux measurements. The above-
canopy soil emissions derived by Yienger and Levy and Potter et al. (5.5 and 5 TgN year�1,
respectively) are a factor of two lower than the results of Davidson and Kingerlee (13 TgN year�1).
The global soil NOx estimate from our a posteriori, with 8.9 TgN year�1, is in between these two
values. By construction, our a posteriori estimate depends on the a priori. We conducted a sensitivity
study where we doubled the a priori soil emissions, and derived an a posteriori value of 10.4 TgN
year�1 for soil emissions, closer to values obtained by Davidson and Kingerlee and by Müller and
Stavrakou40 in their inversion analysis.
The largest biogenic emissions of NOx have been measured from fertilized agriculture and

seasonally dry tropical ecosystems.66 These systems support rapid nitrogen cycling (via nitrification
and denitrification), high temperatures, and/or seasonally low moisture. Consistent with these field
measurements, our study highlights the role of tropical savanna/woodland ecosystems as a large
source of NOx. We also find large emissions from mid-latitude grassland and cropland areas during
summer, especially over the western US (Great Plains), southern Europe (Spain, Greece, Turkey),
China, and India (Fig. 2).
Africa accounts for nearly 30% of our global a posteriori soil emissions. These emissions peak at

the beginning of the rainy season, in June (Fig. 6h). The difference between our a posteriori and the
a priori during the rainy season suggests that the Yienger and Levy algorithm underestimates the
magnitude of rain-induced pulsing.8

Relative to the a priori inventory, we find a larger increase in northern mid-latitude soil emissions
(251 N–601 N: 1.7 TgN year�1 a priori, compared to 3.9 TgN year�1 in a posteriori) than in the
tropical emissions (251 S–251N: 3 TgN year�1 a priori, compared to 4.3 TgN year�1 in a posteriori).
This larger role for mid-latitude emissions could reflect a strong source of NOx from fertilized
agricultural soils. Global estimates of soil emissions from agricultural fields and the effect of
nitrogen fertilization vary widely, ranging from 0.5 to 3 TgN year�114,62,67,68 (not including canopy
recapture). Including the canopy recapture of Yienger and Levy, these numbers range from 0.4 to
2.25 TgN year�1. The main uncertainty in these estimates comes from assessing the fraction of
applied N-fertilizer released as NO, which vary from 0.3%62 at the low end, to 2.5%14 at the high
end of these compilations. By multiplying the area of cropland by an average annual emission flux
based on observations, Davidson and Kingerlee estimate an even larger source of 5.4 TgN year�1

(3.9 TgN year�1 with canopy recapture).
We estimate the role of emissions from agricultural fields by scaling our a posteriori soil emissions by

the fraction of emissions coming from agriculture. Yienger and Levy find that 75% of emissions from
temperate soils and 25% of emissions from tropical soils come from agriculture, while in Davidson and
Kingerlee these numbers are 21% and 28%. We thus find that, globally, 2.5–4.5 TgN year�1 are
emitted by N-fertilized soils: with 1.1–1.6 TgN year�1 in the Tropics and 0.9–3.4 TgN year�1 in the
extratropics. These numbers are at the upper end of the previous estimates listed above. Asia contains
one third of the world’s total cropland area and accounts for more than half of the global N-fertilizer
consumption,69 with China and India being the largest users. Indeed, our a posteriori soil emissions are
highest over the North China Plain and North India (Fig. 2), which are regions with extensive
croplands and where chemical N-fertilizers are heavily used. In their inversion study for Asia, Wang
et al.58 proposed that decomposition of organic wastes and extensive applications of chemical fertilizer
could account for 1.1 TgN year�1 over China alone. This is consistent with our a posteriori estimate of
B1 TgN year�1 from soil emissions over East Asia. In contrast, by using a bottom-up approach, Yan
et al.67 estimate that only 0.2 TgN year�1 are emitted from croplands in China. These discrepancies
clearly warrant a close re-examination of fertilizer-induced NOx release.
Globally, soil emissions account for 22% of NOx emissions in our a posteriori inventory, but only

14% of the a priori. The a posteriori indicates that in the Tropics, soil emissions (4.3 TgN year�1) are
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comparable to biomass burning emissions (4.7 TgN year�1), while in the a priori soil emissions
(3 TgN year�1) are 40% lower than biomass burning (5 TgN year�1). In addition, we infer a large
role for soil emissions at northern mid-latitudes during summer (June–August), where they account
for nearly half that of the fuel combustion source (compared to only 20% in the a priori). This
suggests that the current generation of global and regional chemical transport models (which
generally use low estimates of soil emissions) likely underestimate the role of biogenic emissions in
controlling background levels of ozone, especially during the rainy season in the Tropics and during
summer for northern mid-latitudes.

7. Conclusions

We have presented a simple method to partition global NOx emissions derived from the Global
Ozone Monitoring Experiment (GOME) into fuel combustion, biomass burning and soil emissions
for the year 2000. Our resulting a posteriori fuel combustion emissions (25.6 TgN year�1) are very
close to the GEIA-based a priori (25.4 TgN year�1), lending confidence to our separation method,
and errors are reduced by a factor of two from �80% to �40%. Fuel combustion emissions are
aseasonal, with the exception of Europe and East Asia.
The global a posteriori estimate of biomass burning emissions (5.8 TgN year�1) is similar to the

a priori (5.9 TgN year�1), with a significant decrease in the uncertainty from �200 to �80%. The
a posteriori estimate of NOx emissions from SE Asia/India is decreased by 46% relative to the
a priori, similar to the results of previous studies based on inverse modeling analyses of CO
observations. Over North equatorial Africa, a posteriori emissions are 50% larger than the a priori,
likely due to errors in the NOx emission factor used in the a priori. We propose that our a posteriori
biomass burning inventory can be used to validate independent bottom-up estimates of fire
emissions based on remote sensing of burned areas and active fires for 2000.
We find a 68% increase in soil emissions from 5.3 TgN year�1 to 8.9 TgN year�1. The a posteriori

inventory displays the largest soil emissions over tropical savanna/woodland ecosystems during the
wet season, as well as over agricultural regions in mid-latitudes during summer. We estimate that
2.5–4.5 TgN year�1 are emitted by N-fertilized soils, at the upper end of previous estimates. The
large underestimate of atmospheric-soil NOx exchange by the Yienger and Levy14 algorithm used in
our a priori, appears to reflect an underestimate of N-fertilized NO release from croplands as well as
an underestimate of rain-induced pulsing from semiarid soils. This points to a clear need to better
constrain these two effects, and re-evaluate the role of soil emissions in controlling background
ozone levels.
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