

Journal of Quantitative Spectroscopy & Radiative Transfer 76 (2003) 237–267

Journal of Quantitative Spectroscopy & Radiative Transfer

www.elsevier.com/locate/jqsrt

The spectrum of acetylene in the 5- μ m region from new line-parameter measurements

D. Jacquemart^a, J.-Y. Mandin^a, V. Dana^{a, *}, L. Régalia-Jarlot^b, J.-J. Plateaux^b, D. Décatoire^b, L.S. Rothman^c

^aLaboratoire de Physique Moléculaire et Applications, Université Pierre-et-Marie-Curie, CNRS, Case courrier 76, Tour 13, 4, place Jussieu, 75252 Paris Cedex 05, France

^bGroupe de Spectrométrie Moléculaire et Atmosphérique, Université de Reims-Champagne-Ardenne, CNRS, BP 347, 51062 Reims Cedex, France

^cHarvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, 60 Garden Street, 02138-1516 Cambridge, MA, USA

Received 23 January 2002; accepted 3 April 2002

Abstract

Using Fourier Transform spectra (unapodized FWHM: 0.002 cm^{-1}) of acetylene ${}^{12}\text{C}_2\text{H}_2$, absolute line positions have been obtained in the 5-µm region for about 490 lines belonging to 15 hot bands arising from the $v_4 = 1$ or $v_5 = 1$ lower vibrational level, improving the data available in this spectral region. Absolute line intensities have been measured for about 410 lines, from which vibrational transition dipole moments squared could be determined, as well as empirical Herman-Wallis coefficients when it was possible. The self-broadening coefficients of more than 370 lines have been measured at room temperature, showing that no vibrational dependence exists for the bands of acetylene already studied, and allowing a significant determination of their rotational dependence. Furthermore, about 120 measured values of self-shifting coefficients are tentatively proposed. Combining results published for other bands, and using the smoothed line-parameter values obtained in this work, a HITRAN-format line list of the acetylene molecule has been set up in this spectral region. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Acetylene; Infrared; Vibro-rotational transitions; Fourier transform spectroscopy; Transition dipole moment; Line parameters

1. Introduction

The present paper is dedicated to the study of acetylene FT spectra recorded with the Reims interferometer [1,2]. It is the continuation of a previous study [3] in which numerous absolute line

^{*} Corresponding author. Tel.: + 33-1-44-27-44-75; fax: + 33-1-44-27-70-33.

E-mail address: vdana@ccr.jussieu.fr (V. Dana).

parameters, i.e., line positions, self-shifting coefficients, intensities, and self-broadening coefficients, were measured for the cold bands of ${}^{12}C_{2}H_{2}$ absorbing in the 5-µm spectral region. This region was first studied by Plíva [4,5]. The set of bands arising in this region are important for theoretical calculations [6,7], since they involve energy levels affected by numerous anharmonic, Coriolis, and ℓ -type resonances. The goal of this effort was to complete the experimental quantitative spectroscopic information in this region, mainly as far as line intensities are concerned. A maximum of line parameters were measured for the 15 remaining hot bands, not studied in Ref. [3]. As a result, 406 intensities were obtained for lines belonging to 9 bands of ${}^{12}C_2H_2$ arising from the $v_4 = 1$ lower vibrational level, and to 6 bands arising from the $v_5=1$ level, allowing the determination of vibrational transition dipole moments squared and band intensities. As no significant vibrational dependence was observed for the self-broadening coefficients, the 371 new values obtained in this work were included in the set of values given in Ref. [3], in order to deduce a polynomial expansion describing the rotational dependence. A synthetic spectrum of the studied bands was generated, combining the line positions calculated by Plíva [4] and those smoothed in this work when it was possible. Line intensities were calculated from our measured values. To make these data more easily usable, we chose to put them in a HITRAN format line list. For that, the best available experimental data were chosen to update the air-broadening and air-shifting coefficients.

2. Experimental procedure and line-parameter measurements

The step-by-step interferometer [1,2] built at GSMA (Reims) was used under the experimental conditions described in Ref. [3]. The characteristics of the 15 recorded spectra can be found in Table 1. A portion of one of the spectra is given in Fig. 1. Let us recall that two filters were used to cover the whole $1800-2260 \text{ cm}^{-1}$ spectral region, and that the middle of the region was inaccessible to study, being on the edge of the two filters. A commercial gas sample, furnished by Air Liquide Alphagaz, with a stated purity of 99.55% in natural abundances, was used without further purification. Cross comparisons [3] with line intensities obtained by other authors in a different spectral region led to the conclusion that the amount of ${}^{12}C_2H_2$ in our cell is known with an uncertainty smaller than 2%.

As in Ref. [3], a multispectrum fitting procedure [8] (hereafter denoted as MSF) was used to retrieve line parameters from the spectra. This procedure was found very efficient to complete the previous results [3] when treating weak bands, or lines located in complicated regions of the spectrum. In this work, the MSF method was used in the same conditions as in Ref. [3]. First, the phase error and the effective iris radius needed to calculate an accurate apparatus function were determined for each spectrum. Second, an average self-collisional narrowing coefficient was obtained [3] to calculate an absorption coefficient that takes into account the collisional narrowing, this value being fixed in the final run of the MSF code. An absolute calibration of the wavenumber scales was also performed [3].

3. Results

The results of this work are given in Table 2. The wavenumber calibration allowed the determination of 486 absolute line positions, with a mean accuracy of $\pm 0.0002 \text{ cm}^{-1}$. As in Ref. [3],

Table 1

Even amine amtal	aanditiana	and	abanastanistias	of	the a	manandad	an a atma
Experimental	conditions	ana	characteristics	01	une	recorded	spectra

Commercial sample	e (Air Liquide Alphag	az) $07.7(00) = 6^{12}C$ H		
Stated purity of 1	natural C ₂ H ₂ :	97.760% of C ₂ H ₂ 99.55%	Region 1	Region 2
Maximum path diff	erence (cm)		301	261
Unapodized FWHM	1 resolution limit (10 ⁻	$^{-3} \mathrm{cm}^{-1}$)	1.7	1.9
Collimator focal ler	ngth (mm)		1040	1040
Useful spectral don	nain (cm^{-1})		1800-1950	1940-2260
Spectrum No.	Iris radius	Total pressure	Absorbing path	Temperature
(Region)	(mm)	$\pm 0.5\%$ (Torr) ^a	(cm)	±0.5 K
1 (2) ^b	2.0	20.68	31.19	295.75
2 (2)	2.05	4.007	816.6	294.45
3 (1)	2.02	4.004	816.6	294.35
4 (1)	2.17	4.013	1616.6	294.95
$5(2)^{c}$	2.0	4.016	1616.6	294.95
6 (2)	2.17	10.14	816.6	295.15
7(1)	2.16	10.13	816.6	295.05
8 (1)	2.25	4.043	2416.6	295.65
9 (2)	2.26	4.043	2416.6	295.65
10 (2)	2.17	10.20	1616.6	294.95
11 (1)	2.25	10.20	1616.6	294.95
12 (1)	2.2^{d}	49.9	416.6	295.45
13 (2)	2.2^{d}	49.9	416.6	292.25
14 (2)	2.29	10.12	2416.6	294.95
15 (1)	2.30	10.11	2416.6	294.85

^a1 Torr = 1.333 hPa.

^bThis preliminary spectrum, recorded with a weak optical depth, was not used in the final treatment.

^cThis spectrum could not be used in the final treatment, because of a small experimental defect.

^dAverage effective iris radius.

the line positions of each sub-band were adjusted, each time that it was possible, by polynomial expansions in order to check the assignments. For that, the *P* and *R* branches of each sub-band were fitted simultaneously, and the *Q* branch separately. (As they are effective, the coefficients obtained for these polynomial expansions are not given here.) Note that the line positions of the *Pee* and *Ree* sub-branches of the $(3v_4 + v_5)^2 II - v_4^1$ band cannot be adjusted simultaneously, because of strong interactions already pointed out by Plíva [4]. On the whole, the comparison with Plíva's experimental line positions [4] is quite good, and his extrapolations allowed the assignment of new lines for some of the bands.

Absolute line intensities were measured for 406 lines (see Table 2). The precision is between about ± 3 to $\pm 5\%$, and the accuracy in absolute values is on the average $\pm 5\%$ [3]. The formalism and the relation used to calculate the transition dipole moment squared from the line intensity are the same as those used in previous works (see Eqs. (1)–(6) of Ref. [9]), and the partition function was calculated using the polynomial expansion given by Gamache et al. [10]. The transition dipole

240 D. Jacquemart et al. | Journal of Quantitative Spectroscopy & Radiative Transfer 76 (2003) 237–267

Fig. 1. Portion of spectrum 14 of Table 1, showing the Q branch of the $4v_5^0 - v_5^1$ band, exhibiting a branch head at J = 19, around 2151.9 cm⁻¹. Note the intensity alternation of the ${}^{12}C_2H_2$ lines, and the presence of a few ${}^{12}C^{13}CH_2$ lines.

moments squared have been plotted in Figs. 2–11 for some bands. When it was possible, significant empirical Herman-Wallis coefficients were deduced, without taking into account the resonances. The Herman-Wallis factors were expanded as

$$F^{RP}(m) = [1 + A_1^{RP}m + A_2^{RP}m^2]$$
(1)

for P and R branches, m being equal to J + 1 in the R branch, and -J in the P branch; and for a Q branch, with m equal to J

$$F^{Q}(m) = [1 + A^{Q}_{2}m(m+1)].$$
⁽²⁾

Note that the terms between brackets are not squared. The band centers and Herman-Wallis coefficients are given in Table 3, together with the vibrational dipole moments squared, and band intensities calculated using Eq. (10) of Ref. [9]. In Table 3, the results obtained in Ref. [3] for the 3 cold bands have also been recalled. Note that for one band with ℓ -type doubling, the two sub-bands could be treated separately. For a few bands, the number of measured line intensities was too weak to allow the determination of Herman-Wallis coefficients, but we thought it useful to deduce, tentatively, values of vibrational transition dipole moments in order to perform predictive calculations of transition dipole moment squared values.

As can be seen in Fig. 10, the simultaneous adjustment of the *Pee*, *Ree*, and *Qef* branches of the $4v_5^0 - v_5^1$ band (see Fig. 1) is difficult, the *Qef* low-*J* lines leading to a vibrational transition dipole moment squared noticeably smaller than for *Pee* and *Ree* branches. We checked carefully that for

Table 2 Line parameters obtained for 15 hot bands of $^{12}C_2H_2$ in the 5- μm spectral region^a

Line	$\sigma_{ m obs}$	$k_{\sigma \ { m obs}}^N$	$k_{\sigma \ { m calc}}^N$	о-с%	$ R ^2_{ m obs}$	$\gamma_{self \ obs}^{0}$
$\frac{1}{(3v_4 + v_5)^0_+}$	$-v_{4}^{1}$					
Qef20	1951.49101	1.03D-23	1.02D-23	0.97	1.85D-05	0.1340
$(3v_4 + v_5)^0$	$-v_{4}^{1}$					
Ofe 4	1972.30691	1.74D-24	1.67D-24	4.02	4.26D-06	
Ofe 5	1972.37238	5.69D - 24	5.87D - 24	-3.16	4.02D-06	0.1611
Qfe 6	1972.44668	2.28D - 24	2.19D - 24	3.95	4.38D - 06	0.1605
Qfe 7	1972 52825	6.65D - 24	7.13D - 24	-7.22	4 00D-06	0 1471
Ofe 9	1972.32623	8.08D - 24	7.13D - 21 7 74D-24	4 21	4.66D - 06	0.1537
Qfe^{10}	1972 79556	2 79D_24	2.60D - 24	6.81	4 90D-06	0.1411
Qfe10	1972.88785	8 31D-24	7.73D - 24	6.98	5.03D - 06	0.155
Qfe11	1972.00705	2.24D - 24	2 51D-24	-12.05	4 29D-06	
Qfe12 Qfe13	1973 07157	6.97D - 24	7.20D - 24	-3.30	4.29D = 00 4 78D - 06	0 1391
QJUIJ	1975.07157	0.9710 24	7.200 24	5.50	4.76D 00	0.1371
Rff 6	1988.76038	1.77D-24	2.09D - 24	-18.08	2.44D-06	0.1547
<i>Rff</i> 10	1998.16100	1.17D-24	1.02D-24	12.82	1.42D-06	0.1450
$(3v_4 + v_5)^2$	$II - v_4^1$					
Pee 9	1924.43559	1.01D-23	1.13D-23	-11.88	3.65D-05	0.1438
Pee11	1919.93952	1.15D-23	1.21D-23	-5.22	4.04D-05	0.1538
Pee13	1915.44460	1.17D-23	1.18D-23	-0.85	4.41D-05	0.1505
Pee15	1910.93702	1.08D-23	1.06D-23	1.85	4.74D-05	0.1441
Pee17	1906.40816	9.19D-24	8.78D-24	4.46	5.06D-05	0.1390
Pee19	1901.85420	7.14D-24	6.85D-24	4.06	5.27D-05	0.1283
Pee21	1897.27439	5.17D-24	5.03D-24	2.71	5.44D-05	0.1196
Pee23	1892.66951	3.55D-24	3.49D-24	1.69	5.63D-05	0.1143
Pee27	1883.38747	1.37D-24	1.42D-24	-3.65	5.83D-05	0.1021
Dec 2	1054 65251	1.45D 22	1.60D 22	16.55	2.74D 05	0 1000
Ree 5	1954.05251	1.43D - 23	1.09D - 23	-10.55	2.74D - 03	0.1000
Ree 3	1959.50405	1.02D - 23	1.04D-23	-13.38	2.72D - 05	0.1740
Ree 9	1909.28797	1.82D-23	1.70D-23	5.50	3.02D - 03	0.1758
Reels Deel7	19/9.005/4	1.33D-23	1.31D - 23	1.50	2.8/D - 05	0.1457
Ree1/	1988./4504	7.83D-24	7.70D-24	0.89	2.77D - 05	0.1303
Reel9	1995.55792	3.37D - 24	3.34D - 24	0.34	2.74D-03	0.1288
Ree21	1998.29918	3.60D-24	3.7/D-24	-4.72	2.59D-05	0.1185
Ree22	2000.66805	9.80D-25	1.02D - 24	-4.08	2.62D - 05	0.1213
Ree23	2003.02909	2.34D-24	2.44D-24	-4.27	2.61D-05	0.1133
Ree24	2005.38241	5./ID-25	6.44D-25	-12.78	2.41D-05	0.1023
Pff 8	1926.35236	7.54D-24	7.72D-24	-2.39	2.91D-05	0.1647
<i>Pff</i> 12	1917.09168	8.67D-24	8.59D-24	0.92	3.12D-05	0.1547
<i>Pff</i> 14	1912.48543	7.83D-24	7.78D-24	0.64	3.17D-05	0.1492
<i>Pff</i> 18	1903.31092	5.26D-24	5.08D-24	3.42	3.36D-05	0.1355
<i>Pff</i> 20	1898.73723	3.72D-24	3.72D-24	0.00	3.29D-05	0.1194
<i>Pff</i> 26	1885.03289	1.01D-24	1.03D-24	-1.98	3.35D-05	0.1043
Rff 4	1956.97997	1.43D-23	1.46D-23	-2.10	2.52D-05	0.1730
Rff 9	1968.96809	4.77D-24	4.77D-24	0.00	2.39D-05	0.1587

Table	2	(continued)

Lina	_	1-N	1-N	o	$ \mathbf{n} ^2$	0
Line	$\sigma_{ m obs}$	$\kappa_{\sigma \text{ obs}}$	$\kappa_{\sigma \text{ calc}}$	0-0%	$ \kappa _{\rm obs}$	Vself obs
<i>Rff</i> 10	1971.37664	1.35D-23	1.35D-23	0.00	2.35D-05	0.1500
<i>Rff</i> 12	1976.20223	1.15D-23	1.15D-23	0.00	2.29D-05	0.1433
<i>Rff</i> 14	1981.03696	8.96D-24	9.12D-24	-1.79	2.15D-05	0.1397
<i>Rff</i> 16	1985.87757	7.05D-24	6.85D-24	2.84	2.17D-05	0.1332
<i>Rff</i> 18	1990.72098	4.85D-24	4.85D-24	0.00	2.02D-05	0.1267
<i>Rff</i> 20	1995.56303	3.21D-24	3.24D-24	-0.93	1.92D-05	0.1224
<i>Rff</i> 21	1997.98229	8.66D-25	8.67D-25	-0.12	1.89D-05	0.1218
<i>Rff</i> 22	2000.39978	2.01D-24	2.05D-24	-1.99	1.81D-05	0.1095
<i>Rff</i> 24	2005.22692	1.26D-24	1.23D-24	2.38	1.81D-05	0.1173
$(3v_4 + v_5)^2$	${}^{2}I - v_{4}^{1}$					
Ree 9	1997.49134	1.76D-24	1.66D-24	5.68	2.88D-06	0.1547
Ree10	1999,97071	4.19D-25	4.47D-25	-6.68	2.15D - 06	
D# 0	1007 18103	1 100 24	1 12D 24	2 72	5 42D 06	0 1622
NJ 9 D#10	1997.10193	1.10D - 24	1.13D - 24	-2.73	5.43D - 00	0.1023
NJ 10 D#11	2002 05801	3.34D - 24	3.30D - 24	-0.00	5.75D - 00	0.1311
NJ	2002.03801	1.09D-24	1.09D-24	0.00	5.95D-00	0.1470
1	1					
$v_2 + v_5^1 - v_5^1$	v ₄					
Pee 2	2085.50461	5.93D-25	5.60D-25	5.56	7.61D-06	0.2030
Pee 3	2083.13324	2.90D-24	2.89D-24	0.34	7.22D-06	0.1896
Pee 4	2080.75264	1.30D-24	1.30D-24	0.00	7.25D-06	0.1838
Pee 5	2078.36110	4.89D-24	4.70D-24	3.89	7.51D-06	0.1866
Pee 6	2075.95998	1.75D-24	1.78D-24	-1.71	7.11D-06	0.1553
Pee 8	2071.12740	2.05D-24	2.03D-24	0.98	7.37D-06	0.1546
Pee 9	2068.69628	6.21D-24	6.20D-24	0.16	7.30D-06	0.1563
Pee10	2066.25520	2.04D-24	2.05D-24	-0.49	7.26D-06	0.1509
Pee11	2063.80453	6.01D-24	5.99D-24	0.33	7.33D-06	0.1463
Pee12	2061.34402	1.93D-24	1.90D-24	1.55	7.44D-06	0.1481
Pee13	2058.87347	5.36D-24	5.34D-24	0.37	7.36D-06	0.1452
Pee14	2056.39336	1.70D-24	1.64D-24	3.53	7.64D-06	0.1422
Pee15	2053.90375	4.41D-24	4.44D-24	-0.68	7.31D-06	0.1375
Pee16	2051.40431	1.28D-24	1.32D-24	-3.13	7.17D-06	0.1314
Pee17	2048.89545	3.36D-24	3.46D-24	-2.98	7.19D-06	0.1287
Pee18	2046.37692	9.92D-25	9.95D-25	-0.30	7.39D-06	0.1346
Pee19	2043.84896	2.53D-24	2.54D-24	-0.40	7.38D-06	0.1245
Pee21	2038.76448	1.71D-24	1.76D-24	-2.92	7.23D-06	0.1133
Ree 2	2097.20612	—	9.92D-25		—	—
Ree13	2122.03232	5.68D-24	5.63D-24	0.88	7.02D-06	0.1407
Ree14	2124.22547	—	1.71D-24			
Ree15	2126.40764	4.67D-24	4.62D-24	1.07	7.01D-06	0.1335
Ree16	2128.57914	1.35D-24	1.36D-24	-0.74	6.87D-06	0.1330
Ree18	2132.88897	1.05D-24	1.02D-24	2.86	7.08D-06	
Pff 2	2085.48245	1.69D-24	1.68D-24	0.59	7.21D-06	0.1987
Pff 3	2083.09866	9.37D-25	9.64D-25	-2.88	7.01D-06	0.1851
Pff 4	2080.70395	3.88D-24	3.89D-24	-0.26	7.20D-06	0.1786
~~						

Table 2 (continued)

Line	$\sigma_{ m obs}$	$k_{\sigma m \ obs}^N$	$k_{\sigma \ calc}^N$	o-c%	$ R ^2_{\rm obs}$	$\gamma^0_{self obs}$
Pff 6	2075.88097	5.29D-24	5.35D-24	-1.13	7.19D-06	0.1623
P_{ff} 7	2073.45290	1.93D-24	1.94D-24	-0.52	7.26D-06	0.1595
Pff 8	2071.01380	6.12D-24	6.09D-24	0.49	7.33D-06	0.1580
Pff 9	2068.56370	2.09D-24	2.07D-24	0.96	7.40D-06	0.1560
<i>Pff</i> 10	2066.10263	6.27D-24	6.17D-24	1.59	7.45D-06	0.1561
\tilde{Pff} 11	2063.63080	1.97D-24	2.00D-24	-1.52	7.25D-06	0.1455
<i>Pff</i> 12	2061.14798	5.74D-24	5.72D-24	0.35	7.39D-06	0.1476
\tilde{Pff} 14	2056.15000	4.92D-24	4.92D-24	0.00	7.40D-06	0.1414
<i>Pff</i> 15	2053.63583		1.48D-24		_	
<i>Pff</i> 16	2051.10914	3.93D-24	3.95D-24	-0.51	7.40D-06	0.1355
\tilde{Pff} 17	2048.57299		1.15D-24		_	
<i>Pff</i> 18	2046.02567	2.96D-24	2.98D-24	-0.68	7.41D-06	0.1296
<i>Pff</i> 19	2043.46785	8.54D-25	8.46D-25	0.94	7.56D-06	0.1248
<i>Pff</i> 20	2040.90001	2.11D-24	2.13D-24	-0.95	7.44D-06	0.1221
<i>Pff</i> 21	2038.32139		5.86D-25		_	
55						
Rff 2	2097.23112	3.04D-24	2.97D-24	2.30	7.28D-06	0.1940
Rff 4	2101.85096	4.90D-24	4.92D-24	-0.41	7.04D-06	0.1700
R_{ff} 7	2108.69426	2.21D-24	2.18D-24	1.36	7.11D-06	0.1554
<i>Rff</i> 13	2122.06591	1.83D-24	1.86D-24	-1.64	6.83D-06	0.1379
<i>Rff</i> 14	2124.25333	5.09D-24	5.08D-24	0.20	6.91D-06	0.1408
<i>Rff</i> 15	2126.42868	1.52D-24	1.52D-24	0.00	6.89D-06	0.1301
<i>Rff</i> 16	2128.59227	3.98D-24	4.02D-24	-1.01	6.78D-06	0.1320
<i>Rff</i> 18	2132.88475		3.00D-24		_	
55						
$(v_4 + 3v_5)^0_+ -$	v_4^1					
Pee 1	2143.75278		1.35D-24		_	
Pee11	2121.26792	4.34D-24	4.43D-24	-2.07	4.68D-06	0.1427
Pee12	2119.10248	_	1.43D-24		_	
Pee13	2116.94732	3.98D-24	4.08D-24	-2.51	4.91D-06	0.1402
Pee14	2114.80007	_	1.27D-24		_	
Pee15	2112.65948	3.52D-24	3.53D-24	-0.28	5.30D-06	0.1373
Pee16	2110.52345	1.07D-24	1.07D-24	0.00	5.45D-06	0.1336
Pee17	2108.39073	2.89D-24	2.89D-24	0.00	5.65D-06	0.1338
Qef 1	2146.11288	_	6.74D-25		_	_
Qef 2	2146.13234	3.20D-24	3.28D-24	-2.50	3.99D-06	0.1898
Qef 3	2146.15979	1.46D-24	1.46D-24	0.00	4.02D-06	0.1793
Qef 4	2146.19594	5.24D-24	5.34D-24	-1.91	3.93D-06	0.1678
Qef 5	2146.24009	_	2.02D-24		_	_
Qef 6	2146.29050	6.51D-24	6.59D-24	-1.23	3.83D-06	0.1584
Qef 8	2146.40888	6.93D-24	6.94D-24	-0.14	3.71D-06	0.1520
Qef 9	2146.47400	2.37D-24	2.27D-24	4.22	3.77D-06	0.1652
Qef10	2146.54134	6.56D-24	6.50D-24	0.91	3.53D-06	0.1521
<i>Qef</i> 11	2146.60920	1.99D-24	2.02D-24	-1.51	3.33D-06	0.1462
<i>Qef</i> 12	2146.67628	5.34D-24	5.50D-24	-3.00	3.14D-06	0.1383
<i>Qef</i> 13	2146.74032	_	1.63D-24	_	_	
<i>Qef</i> 15	2146.85428	_	1.20D-24	_	_	

1 able 2 (commute	Table	2	(continued)
-------------------	-------	---	-------------

Line	$\sigma_{ m obs}$	$k_{\sigma \ { m obs}}^N$	$k_{\sigma \; { m calc}}^N$	o–c%	$ R ^2_{ m obs}$	$\gamma_{self \ obs}^{0}$
Qef16	2146.89942	3.04D-24	2.99D-24	1.64	2.64D-06	0.1510
Qef17	2146.93422	_	8.05D-25		_	_
<i>Qef</i> 18	2146.96058	—	1.90D-24		—	—
Ree 3	2155 70253		1 95D-24			
Ree J	2158 14893	_	8 36D-25		_	_
Ree 7	2165 58698	3 84D-24	3.73D - 24	2.86	4 51D-06	0 1573
Rec 7 Rec 8	2168.00/12	5.04D 24	1.32D - 24	2.00	4.51D 00	0.1575
Rec 0 Rec10	2103.09412		1.32D - 24 1 30D - 24			
Dec12	21/3.14/17	2 97D 24	1.37D - 24	0.00	4.09D 06	0.1210
Dec15	2180.78803	3.87D - 24	3.87D - 24	0.00	4.98D-00	0.1319
Reels Deel7	2103.90288	3.32D - 24	3.39D - 24	5.09	5.4/D = 00	0.15/1
Ree1/ Dec19	2191.01849	2.08D - 24	2.81D-24	-4.85	5.55D - 06	0.1115
Reel8	2195.57284	8.40D-25	8.32D-23	1.05	5.85D - 06	0.1240
Ree19	2196.12315	2.30D-24	2.19D-24	4.78	6.23D - 06	0.1080
Ree20	2198.66847	6.04D-25	6.33D-25	-4.80	5.86D-06	0.1186
$(v_4 + 3v_5)^6$	$\frac{0}{2} - v_4^1$					
Pff 7	2155.58657	2.15D-24	2.27D-24	-5.58	6.66D-06	
Pff 9	2150.97231	2.39D-24	2.40D-24	-0.42	7.21D-06	0.1476
Pff14	2139.52538	6.54D-24	5.86D-24	10.40	8.78D-06	0.1524
Pff18	2130.41564	3.79D-24	3.77D-24	0.53	8.61D-06	0.1265
<i>Pff</i> 19	2128.13883	1.10D - 24	1.09D-24	0.91	8.83D-06	0.1260
Pff20	2125.86112	2.79D - 24	2.78D - 24	0.36	8.98D-06	0.1379
Pff21	2123.58147	7.62D - 25	7.82D - 25	-2.62	8.94D-06	0.1140
Pff22	2121 29928	1.96D - 24	1.95D - 24	0.51	944D-06	0 1007
Pff24	2116.72697	1.27D-24	1.30D - 24	-2.36	9.69D-06	0.1074
<i>Pff</i> 26	2112.14035	8.15D-25	8.21D-25	-0.74	1.03D-05	0.1114
06.4	2172 12/04	2.250 .24	2000 24	0.02	7.000 00	
Qfe 4	21/2.13684	3.25D - 24	2.96D-24	8.92	/.23D-06	
Qje 6	21/2.33160	3.63D-24	3.68D - 24	-1.38	6.33D-06	0.1606
Qje /	21/2.45459	1.14D-23	1.16D-23	-1.75	6.24D-06	0.1547
Qfe 9	2172.74866	1.19D - 23	1.17D - 23	1.68	6.20D-06	0.1708
Qfe10	2172.91866	3.99D-24	3.74D-24	6.27	6.36D-06	0.1694
Qfell	2173.10322	1.01D - 23	1.06D-23	-4.95	5.55D-06	0.1410
Qfe14	2173.73697		2.59D-24			
Qfe15	2173.97157	6.37D-24	6.73D-24	-5.65	4.81D-06	0.1230
Qfe18	2174.73790	1.25D-24	1.29D-24	-3.20	4.24D-06	0.1166
Qfe19	2175.01153	3.20D-24	3.10D-24	3.13	4.26D-06	0.1332
Qfe20	2175.29265	7.31D-25	8.08D-25	-10.53	3.49D-06	0.0974
Qfe21	2175.58083		2.00D - 24			
Qfe22	2175.87561	5.27D-25	5.43D-25	-3.04	3.75D-06	0.1225
Rff 3	2181.47562	9.94D-25	1.06D-24	-6.64	6.31D-06	0.1646
Rff 4	2183.87312	3.99D-24	4.07D-24	-2.01	6.63D-06	0.1731
Rff 5	2186.27704	1.58D - 24	1.61D - 24	-1.90	6.67D-06	0.1594
Rff 6	2188.68727	5.33D-24	5.47D-24	-2.63	6.68D-06	0.1510
Rff 8	2193 52333	6.46D - 24	6.27D - 24	2.03	7 18D-06	0 1609
- 9J 0	2195.52555	2.170 24	2.15D 24	5.20	7.47D 06	0.1620

Table 2 (continued)

Line	$\sigma_{ m obs}$	$k_{\sigma m \ obs}^N$	$k_{\sigma \ { m calc}}^N$	о-с%	$ R ^2_{\rm obs}$	$\gamma^0_{self obs}$
<i>Rff</i> 10	2198.37662	6.54D-24	6.47D-24	1.07	7.23D-06	0.1549
<i>Rff</i> 12	2203.24185	6.25D-24	6.15D-24	1.60	7.47D-06	0.1437
<i>Rff</i> 13	2205.67688	1.94D-24	1.95D-24	-0.52	7.43D-06	0.1351
<i>Rff</i> 14	2208.11250	5.63D-24	5.45D-24	3.20	7.85D-06	0.1388
<i>Rff</i> 15	2210.54797	1.68D-24	1.67D-24	0.60	7.77D-06	0.1386
<i>Rff</i> 17	2215.41442	1.37D-24	1.35D-24	1.46	8.18D-06	0.1296
<i>Rff</i> 19	2220.27109	1.02D-24	1.03D-24	-0.98	8.29D-06	0.1178
<i>Rff</i> 20	2222.69356	2.65D-24	2.65D-24	0.00	8.55D-06	0.1179
<i>Rff</i> 21	2225.11162	7.21D-25	7.48D-25	-3.74	8.47D-06	0.1082
<i>Rff</i> 22	2227.52454	1.81D-24	1.87D-24	-3.31	8.69D-06	0.1108
<i>Rff</i> 23	2229.93214	5.34D-25	5.14D-25	3.75	9.56D-06	0.1139
<i>Rff</i> 24	2232.33222		1.25D-24		_	
55						
$(v_4 + 3v_5)^2 II$	$-v_{4}^{1}$					
Pee 5	2145.19522	8.47D-25	9.30D-25	-9.80	5.05D-06	0.1719
Pee 7	2140.71162	1.42D-24	1.36D-24	4.23	5.50D-06	_
Pee 9	2136.31818	1.58D-24	1.52D-24	3.80	5.12D-06	_
Pee15	2123.75708	7.88D-25	8.56D-25	-8.63	3.11D-06	0.1427
Qfe 3	2156.86984	2.60D-24	2.64D-24	-1.54	5.72D-06	0.1985
Qfe 5	2157.03975	4.08D-24	4.20D-24	-2.94	5.66D-06	0.1781
Qfe 6	2157.15237		1.58D-24			
Qfe 9	2157.60177	5.29D-24	5.39D-24	-1.89	5.70D-06	0.1618
Qfe10	2157.78734	1.85D-24	1.78D-24	3.78	6.06D-06	0.1508
Qfe11	2157.99124	4.92D-24	5.17D-24	-5.08	5.53D-06	0.1430
Qfe12	2158.21234	1.55D-24	1.64D-24	-5.81	5.52D-06	0.1336
Qfe13	2158.45079	4.87D-24	4.59D-24	5.75	6.18D-06	0.1354
Qfe14	2158.70606	_	1.40D-24	_	_	
Qfe15	2158.97866	3.70D-24	3.79D-24	-2.43	5.68D-06	0.1325
Qfe16	2159.26748		1.12D-24	_	_	_
Qfe20	2160.57872	6.68D-25	6.01D-25	10.03	6.46D-06	0.1420
\widetilde{Q} fe21	2160.94237		1.49D-24		_	_
Ree 9	2181.36715	3.02D-24	3.15D-24	-4.30	4.53D-06	0.1561
Ree10	2183.95424	9.65D-25	9.60D-25	0.52	4.53D-06	0.1694
Ree11	2186.56900	2.35D-24	2.57D-24	-9.36	3.89D-06	0.1475
Ree13	2191.88594	1.86D-24	1.90D-24	-2.15	3.62D-06	0.1516
Ree14	2194.59014	—	5.23D-25	—	—	—
Ree15	2197.32838	1.23D-24	1.26D-24	-2.44	2.97D-06	0.1449
Ree16	2200.10029	3.30D-25	3.25D-25	1.52	2.73D-06	0.1285
Ree17	2202.90701	8.67D-25	7.24D-25	16.49	2.76D-06	0.1486
Ree18	2205.74827		1.70D-25		—	—
Ree21	2214.49958	_	8.92D-26	_	_	
DHO	2128 10200		1.600 24			
FJJ 8 D#10	2130.10390	1 200 24	1.00D - 24	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
rjj 10 p#12	2133.32091	1.89D-24	1.72D - 24	8.99	5.90D-06	0.1704
rjj 12 D((14	2128.98000	1.02D - 24	1.05D - 24	-0.02	5.24D-06	0.1380
<i>Pff</i> 14	2124.46331	1.45D-24	1.40D - 24	3.45	5.2/D-06	0.1404

Table 2	(continued)	1
---------	-------------	---

Line	$\sigma_{ m obs}$	$k_{\sigma ext{ obs}}^N$	$k_{\sigma ext{ calc}}^{N}$	oc%	$ R ^2_{ m obs}$	$\gamma^0_{self obs}$
Pff20	2111.07756	_	5.49D-25			
55						
Oaf 2	2156 78218	1 58D_24	1 58D_24	0.00	5.88D_06	0 1956
$Qef \Delta$	2156.84337	1.38D - 24 3.47D - 24	1.58D - 24 3.61D - 24	-4.03	5.88D = 00 5.75D = 06	0.1930
Qef = 0	2156.88868	3.47D - 24 1 50D - 24	1.46D - 24	-4.03	5.75D = 00 6.24D = 06	0.1840
Qef 8	2157.09123	5.74D - 24	5.89D - 24	-2.61	6.24D = 00	0.1559
Qef 9	2157.18433	J.74D 24	2.04D - 24	2.01	0.250 00	0.1557
Qef10	2157 29236	6.04D - 24	6.23D - 24	-3.15	6.60D - 06	0 1376
Qef12	2157 55739	6.00D - 24	6.07D - 24	-1.17	7.13D - 06	0.1451
Qef12	2157 71763		1.95D-24		—	
Qef15	2158 10016	1.65D - 24	1.55D - 21 1.72D-24	_4 24	7.66D - 06	0 1278
Qef16	2158 32514	4.79D - 24	4.72D - 24	1.21	8 33D-06	0.1270
Qef17	2158 57523		1.71D - 21 1 43D-24			
Oef18	2158 84953	3.65D - 24	3.84D - 24	-5.21	843D - 06	0 1253
Qef19	2159 15019	1.15D - 24	1.13D - 24	1 74	9.38D - 06	0.1295
2011	2139.13019	1.150 21	1.150 21	1.71	9.50D 00	0.1290
Rff 3	2166.28463		1.13D-24			
<i>Rff</i> 7	2175.94330	1.38D-24	1.28D-24	7.25	6.04D-06	0.1850
Rff 8	2178.37623	3.47D-24	3.76D-24	-8.36	5.08D-06	0.1579
Rff 9	2180.81719	1.14D-24	1.21D-24	-6.14	5.16D-06	0.1540
<i>Rff</i> 13	2190.64703	8.06D-25	8.71D-25	-8.06	4.73D-06	0.1419
<i>Rff</i> 14	2193.11961	2.31D-24	2.31D-24	0.00	5.01D-06	0.1445
<i>Rff</i> 15	2195.59698		6.69D-25			
<i>Rff</i> 16	2198.08092	1.75D-24	1.72D-24	1.71	4.87D-06	0.1447
<i>Rff</i> 17	2200.56769	4.88D-25	4.81D-25	1.43	4.71D-06	
<i>Rff</i> 19	2205.55717	3.20D-25	3.25D-25	-1.56	4.30D-06	
<i>Rff</i> 21	2210.56865	—	2.06D-25		_	
$(v_4 + 3v_5)$	${}^{2}I - v_{4}^{1}$					
Pee 7	2162.98253	1.51D-24	1.52D-24	-0.66	5.81D-06	0.1795
Pee 9	2158.54474	_	1.79D-24			
Pee11	2154.17754	_	1.82D-24			
Pee13	2149.88209	1.67D-24	1.66D-24	0.60	5.58D-06	0.1433
Pee15	2145.65806	1.50D-24	1.39D-24	7.33	5.86D-06	
Of_{2}	2170 12226		5 420 25			
Qje Z	2179.12330	_	5.42D - 25	_	_	_
Qje 4	2179.24403	 4.47D24	1.24D-24	1.57		0.1714
Q_{fe} s	2179.55202	4.4/D - 24	4.34D-24	-1.57	0.12D - 00	0.1/14
Q_{fe} 0	21/9.43912	1.84D - 24	1.74D-24	5.45	0.72D - 00	 0.1500
Qje /	21/9.30449	3.01D - 24	3.73D - 24	-2.14	0.33D - 00	0.1390
QJE 8	21/9./0894	2.00D - 24	2.04D - 24	-2.00	0.40D - 00	0.1510
QJe 9	21/9.8/300	0.23D-24	0.3/D - 24	-1.92	0.0/D-00	0.1315
QJe15	2180./3800		0.12D - 24	1.62		0.1446
QJe15	2181.30391	3.32D - 24	5.45D - 24	1.03	8.3/D - 00	0.1241
QJe10	2181.02028	1.08D - 24	1.0/D - 24	0.60	8.00D - 00	0.1341
QJe1/	2181.9/148	4./8D-24	4.34D-24	5.02	9.33D-00	0.1418
QJe18	2182.34272		1.35D-24			

Table 2 (continued)

Line	$\sigma_{ m obs}$	$k_{\sigma m obs}^N$	$k_{\sigma \ calc}^N$	о-с%	$ R ^2_{\rm obs}$	$\gamma^0_{self obs}$
Qfe19	2182.74079	3.67D-24	3.59D-24	2.18	9.80D-06	0.1292
\tilde{Q} fe20	2183.16673	_	1.04D-24	_	_	
\tilde{Q} fe21	2183.61912	2.73D-24	2.68D-24	1.83	1.05D-05	0.1261
\tilde{Q} fe22	2184.10089	_	7.59D-25		_	
Qfe23	2184.61067	1.86D-24	1.90D-24	-2.15	1.10D-05	0.1185
\widetilde{Q} fe24	2185.14992	5.10D-25	5.24D-25	-2.75	1.14D-05	0.1182
~						
Ree 4	2191.08281		1.24D-24	_	_	
Ree 5	2193.53756	_	3.91D-24			
Ree 6	2196.00879	_	1.33D-24		_	
Ree 7	2198,49740	3.86D-24	4.02D-24	-4.15	5.55D-06	0.1620
Ree 8	2201.00310	1.26D - 24	1.32D - 24	-4.76	5.49D-06	0.1582
Ree 9	2203.52593	3.71D-24	3.84D - 24	-3.50	5.51D-06	0.1561
Ree10	2206.06560	1.18D - 24	1.22D-24	-3.39	5.47D-06	0.1546
Reel2	2211.19617	1.03D-24	1.05D-24	-1.94	5.44D - 06	0.1499
Ree13	2213.78692		2.85D - 24		_	
Ree15	2219.01833	2.21D-24	2.03D - 24	-0.90	5.30D-06	0.1388
Ree?1	2235 08707		7 52D-25			
10021	2233.00707		1.020 20			
Pff 8	2160.38525		1.79D-24		_	_
Pff 9	2158.08737	6.18D-25	6.36D-25	-2.91	5.98D-06	
<i>Pff</i> 10	2155.79874	1.95D-24	1.96D-24	-0.51	6.11D-06	
<i>Pff</i> 14	2146.75086	_	1.64D-24		_	
Oef 3	2179.11103		9.08D-25	_	_	
Oef 4	2179.13882	3.49D-24	3.61D-24	-3.44	5.72D-06	
Oef 6	2179.21514	4.90D - 24	4.87D-24	0.61	5.98D - 06	0.1696
Oef 7	2179.26351	_	1.75D-24			
Oef 8	2179.31925		5.47D-24	_	_	
Oef 9	2179.38164	1.81D-24	1.85D-24	-2.21	5.80D-06	
Oef10	2179.45104	5.42D-24	5.49D-24	-1.29	5.86D-06	
Oef11	2179.52752	1.78D-24	1.77D-24	0.56	5.96D-06	0.1489
Oef12	2179.61091	5.01D-24	5.05D-24	-0.80	5.89D-06	0.1452
Oef13	2179.70135	_	1.57D-24		_	
Oef14	2179.79877	4.48D-24	4.31D-24	3.79	6.17D-06	
Oef15	2179.90330	1.27D-24	1.29D - 24	-1.57	5.81D-06	
Oef16	2180.01500	3.51D-24	3.44D-24	1.99	6.05D - 06	0.1346
Qef17	2180,13359	1.04D - 24	1.00D-24	3.85	6.16D-06	
Oef20	2180.53273		1.84D - 24			
Qef22	2180.83519	_	1.23D-24			
Qef24	2181.16509	_	7.84D - 25			
Qef25	2181 34158		2.04D - 25			
20,20 Oef26	2181.52519	5.15D-25	4.73D - 25	8.16	6.46D-06	
20,20 Oef27	2181.71774	1.22D - 25	1.20D-25	1.64	6.02D - 06	
20/21				1.01	0.020 00	
Rff 2	2186.19459	3.11D-24	3.10D-24	0.32	5.70D-06	0.1965
Rff 3	2188.58454	9.86D-25	1.10D - 24	-11.56	4.99D - 06	0.1911
<u>9</u> 9 -						

Line σ_{obs} $k_{\sigma obs}^N$ $k_{\sigma calc}^N$ o-c% $ R _{obs}^2$	$\gamma^0_{self obs}$
<i>Rff</i> 4 2190.98043 3.45D-24 3.47D-24 -0.58 5.43D-06	0.1735
<i>R</i> ff 6 2195.79712 3.62D-24 3.57D-24 1.38 5.26D-06	0.1651
<i>Rff</i> 7 2198.21814 1.19D-24 1.17D-24 1.68 5.13D-06	0.1682
<i>Rff</i> 8 2200.64772 3.41D-24 3.37D-24 1.17 4.95D-06	0.1591
<i>Rff</i> 10 2205.53626 2.83D-24 2.94D-24 -3.89 4.40D-06	0.1493
<i>Rff</i> 11 2207.99600 8.67D-25 8.86D-25 -2.19 4.28D-06	_
<i>Rff</i> 14 2215.44683 1.65D-24 1.75D-24 -6.06 3.55D-06	0.1475
<i>Rff</i> 17 2223.01882 3.49D-25 3.19D-25 8.60 3.33D-06	
$v_{2} + v_{1}^{1} - v_{1}^{1}$	
$P_{22} + V_4 + V_5$ $P_{22} = 2$ 1839 66051 3 55D-24 3 32D-24 6 48 3 04D-05	0 2213
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2213
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1536
P_{ee} 7 1827 60323 3 76D - 24 3 78D - 24 -0.53 2 83D - 05	0.1643
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1045
$P_{oo} = 10$ 1822.07887 4.00D-24 4.02D-24 0.777 2.08D-05 $P_{oo} = 10$ 1820.19458 1.20D-23 1.20D-23 0.00 2.86D-05	0.1578
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1577
P_{oo}	0.1377
P_{ac12} 1812.65647 3.04D-24 3.44D-24 -13.16 2.52D-05	0.14/7
P_{ac14} 1810.11/05 $9.20D-24$ $9.44D-24$ -15.10 $2.32D-05$ P_{ac14} 1810.11/05 $9.20D-24$ $9.45D-24$ -2.72 $2.77D-05$	0.1203
1 certa 1810.11495 9.20D-24 9.45D-24 -2.72 2.77D-05	0.1408
<i>Ree</i> 2 1851.35101 6.01D-24 5.94D-24 1.16 2.88D-05	0.1933
<i>Ree</i> 3 1853.64461 2.68D-24 2.69D-24 -0.37 2.84D-05	0.1792
<i>Ree</i> 4 1855.92328 9.88D-24 9.90D-24 -0.20 2.84D-05	0.1703
<i>Ree</i> 5 1858.18694 3.80D-24 3.79D-24 0.26 2.85D-05	0.1650
<i>Ree</i> 6 1860.43566 1.25D-23 1.25D-23 0.00 2.85D-05	0.1590
<i>Ree</i> 7 1862.66929 4.45D-24 4.42D-24 0.67 2.87D-05	0.1564
<i>Ree</i> 8 1864.88778 1.42D-23 1.37D-23 3.52 2.97D-05	0.1639
<i>Ree</i> 9 1867.09122 4.59D-24 4.59D-24 0.00 2.85D-05	0.1499
Ree11 1871.45259 4.35D-24 4.35D-24 0.00 2.85D-05	0.1469
<i>Ree</i> 12 1873.61034 1.24D-23 1.24D-23 0.00 2.86D-05	0.1434
Ree13 1875.75279 3.79D-24 3.83D-24 -1.06 2.82D-05	0.1393
Ree14 1877.88003 1.06D-23 1.05D-23 0.94 2.88D-05	0.1391
Ree15 1879.99174 3.15D-24 3.16D-24 -0.32 2.85D-05	0.1340
Ree16 1882.08813 8.46D-24 8.39D-24 0.83 2.87D-05	0.1315
Ree18 1886.23440 6.25D-24 6.30D-24 -0.80 2.82D-05	0.1222
<i>Pff</i> 2 1839 64291 1 02D-24 1 11D-24 -8.82 2 62D-05	0 1883
Pff 3 1837 25376 554D-24 574D-24 -3.61 2.77D-05	0.1862
Pff 1834 85060 2 65D - 24 2 57D - 24 3 02 2 97D - 05	0 1912
Pff 5 1832 (3413) 9 38D - 24 9 35D - 24 0.32 2.07D - 05	0 1759
Pff 7 1827 56090 1 11D - 23 1 15D - 23 -3 60 2 80D - 05	0 1581
Pff 9 = 182263412 = 1.23D - 23 = 1.15D - 23 = -5.00 = 2.00D - 05	0 1536
Pff10 1820 15082 4 31D - 24 4 09D - 24 5 10 3 08D - 05	0 1533
Pff11 1817 65410 1 21D -23 1 10D -23 1 65 2 08D -05	0.1563
Pff12 1815.14426 3.87D-24 3.79D-24 2.07 3.00D-05	0.1590

Table 2 (continued)
-----------	------------

Line	$\sigma_{ m obs}$	$k_{\sigma ext{ obs}}^{N}$	$k_{\sigma \ calc}^N$	oc%	$ R ^2_{ m obs}$	$\gamma^0_{self obs}$
<i>Pff</i> 13	1812.62128	1.04D-23	1.06D-23	-1.92	2.89D-05	0.1443
<i>Pff</i> 14	1810.08489	3.22D-24	3.25D-24	-0.93	2.93D-05	0.1393
Rff 2	1851.38595	1.89D - 24	1.96D - 24	-3.70	2.73D-05	0.1781
Rff 3	1853.69334	8.03D-24	8.00D-24	0.37	2.83D-05	0.1839
Rff 4	1855.98694	3.31D-24	3.25D-24	1.81	2.86D-05	0.1778
Rff 5	1858.26666	1.12D-23	1.12D-23	0.00	2.80D-05	0.1673
Rff 6	1860.53248	4.03D-24	4.08D-24	-1.24	2.76D-05	0.1603
Rff 8	1865.02235	4.46D-24	4.44D-24	0.45	2.79D-05	0.1545
Rff 9	1867.24626	1.32D-23	1.34D-23	-1.52	2.73D-05	0.1524
<i>Rff</i> 11	1871.65185	1.26D-23	1.26D-23	0.00	2.75D-05	0.1472
<i>Rff</i> 12	1873.83335	4.11D-24	3.96D-24	3.65	2.85D-05	0.1587
<i>Rff</i> 13	1876.00074	1.09D-23	1.10D-23	-0.92	2.72D-05	0.1439
<i>Rff</i> 14	1878.15390	3.26D-24	3.35D-24	-2.76	2.66D-05	0.1364
<i>Rff</i> 15	1880.29274	8.75D-24	9.01D-24	-2.97	2.65D-05	0.1325
<i>Rff</i> 16	1882.41726	2.74D-24	2.65D-24	3.28	2.81D-05	0.1436
<i>Rff</i> 19	1888.70451	4.31D-24	5.02D-24	-16.47	2.32D-05	0.0916
<i>Rff</i> 21	1892.82342	3.49D-24	3.44D-24	1.43	2.72D-05	0.1191
$(2v_4 + 2v_5)$	$^{0}_{+}\text{II} - v_{5}^{1}$					
Pee 6	1904.98093	2.81D-24	3.29D-24	-17.08	6.12D-06	
Pee 8	1900.47404	3.88D-24	3.74D-24	3.61	7.84D-06	0.1548
Pee10	1896.01826	3.98D-24	3.88D-24	2.51	8.18D-06	0.1519
Pee14	1887.22406	3.45D-24	3.38D-24	2.03	9.25D-06	0.1403
Pee15	1885.04210	1.05D-24	1.05D-24	0.00	9.45D-06	0.1316
Pee16	1882.86408	2.94D-24	2.87D-24	2.38	9.94D-06	0.1343
Pee18	1878.51283	2.32D-24	2.31D-24	0.43	1.05D-05	0.1264
Pee20	1874.15802	1.69D-24	1.75D-24	-3.55	1.08D-05	0.1158
Oef 5	1918.95566	5.32D-24	4.85D-24	8.83	6.85D-06	
$\tilde{O}ef$ 7	1919.03095	5.45D-24	5.54D-24	-1.65	5.97D-06	
Qef 9	1919.11811	5.17D-24	5.56D-24	-7.54	5.44D-06	
Qef11	1919.20882	4.54D-24	5.04D-24	-11.01	5.02D-06	
Qef12	1919.25256	1.37D-24	1.54D-24	-12.41	4.81D-06	_
Qef13	1919.29273	4.39D-24	4.17D-24	5.01	5.51D-06	
Qef21	1919.31952	9.74D-25	8.61D-25	11.60	3.82D-06	_
$(2v_4 + 2v_5)$	$v_{-}^{0} - v_{5}^{1}$					
<i>Pff</i> 9	1910.96858	4.24D-24	4.26D-24	-0.47	8.51D-06	0.1527
$(2v_4 + 2v_5)$	$^{2}\text{II} - v_{5}^{1}$					
<i>Pff</i> 17	1892.95282	3.02D-24	3.28D-24	-8.61	2.99D-05	0.1221
<i>Pff</i> 21	1883.95462	1.63D-24	1.71D-24	-4.91	3.10D-05	0.1157
<i>Pff</i> 23	1879.47637	1.21D-24	1.13D-24	6.61	3.47D-05	—
. 0 1						
$4v_5^0 - v_5^1$						
Pee 1	2148.71309	—	1.43D-24			_

1 able 2 (commute	Table 2	(continued)
-------------------	---------	------------	---

Line	$\sigma_{ m obs}$	$k_{\sigma m \ obs}^N$	$k_{\sigma \ calc}^N$	o-c%	$ R ^2_{\rm obs}$	$\gamma^0_{self \ obs}$
Pee 2	2146.37971	_	6.32D-24			_
Pee 5	2139.48877	3.73D-24	3.75D-24	-0.54	2.37D-05	0.1858
Pee 9	2130.53558	4.35D-24	4.65D-24	-6.90	2.34D-05	0.1504
Pee11	2126.14004	4.55D-24	4.53D-24	0.44	2.60D-05	0.1618
Pee21	2104.45773	1.62D-24	1.57D-24	3.09	3.36D-05	0.1216
Pee22	2102.28038	4.01D-24	3.92D-24	2.24	3.42D-05	0.1232
Pee23	2100.09761	1.08D-24	1.07D-24	0.93	3.44D-05	0.1124
Pee24	2097.90888	2.60D-24	2.62D-24	-0.77	3.49D-05	0.1045
Pee25	2095.71381	7.09D-25	7.01D-25	1.13	3.66D-05	0.1151
Pee28	2089.09248	_	9.28D-25		_	
Qef 1	2151.07562	5.92D-24	6.40D-24	-8.11	2.12D-05	0.1880
Qef 2	2151.09436	3.23D-24	3.45D-24	-6.81	2.14D-05	0.1861
Qef 3	2151.12206	1.29D-23	1.38D-23	-6.98	2.11D-05	0.1773
Qef 5	2151.20178	1.76D-23	1.89D-23	-7.39	2.02D-05	0.1630
$\tilde{O}ef 8$	2151.36853	6.68D-24	6.97D-24	-4.34	1.89D-05	0.1504
$\tilde{O}ef11$	2151.56090	1.83D-23	1.73D-23	5.46	1.80D-05	0.1540
Õef24	2151.63712		5.97D-25		_	
23						
Ree 2	2158.23697	4.25D-24	4.20D-24	1.18	2.33D-05	0.1932
Ree 5	2165.56530	3.05D-24	3.11D-24	-1.97	2.30D-05	0.1616
Ree 6	2168.03917	1.03D-23	1.05D-23	-1.94	2.31D-05	0.1593
Ree 7	2170.52633	3.87D-24	3.82D-24	1.29	2.41D-05	0.1562
Ree 9	2175.53532	4.27D-24	4.15D-24	2.81	2.50D-05	0.1502
Ree11	2180.57846	4.38D-24	4.12D-24	5.94	2.66D-05	0.1414
Ree12	2183.10886	1.27D-23	1.20D-23	5.51	2.71D-05	0.1464
Ree16	2193.24267	9.68D-24	8.90D-24	8.06	2.99D-05	0.1329
Ree17	2195.77111	2.90D-24	2.66D-24	8.28	3.07D-05	0.1315
Ree20	2203.32428	5.59D-24	5.26D-24	5.90	3.20D-05	0.1183
Ree21	2205.82828	1.47D-24	1.49D-24	-1.36	3.06D-05	0.1045
Ree22	2208.32469	3.82D-24	3.73D-24	2.36	3.24D-05	0.1096
Ree23	2210.81323	1.01D-24	1.03D-24	-1.98	3.18D-05	0.1047
Ree24	2213.29368	2.45D-24	2.51D-24	-2.45	3.25D-05	0.1192
Ree25	2215.76663	6.65D-25	6.74D-25	-1.35	3.38D-05	0.1182
Ree26	2218.22924	1.57D-24	1.61D-24	-2.55	3.44D-05	0.1001
Ree27	2220.68531	4.02D-25	4.20D-25	-4.48	3.46D-05	0.1045
. 2 1						
$4v_5^2 - v_5^1$	0146 000 15			2.02	2 0 0 2 0	0.1545
Pee 6	2146.32946	3.66D-24	3.80D-24	-3.83	2.98D-05	0.1743
Pee 9	2139.68063	1.56D-24	1.62D-24	-3.85	2.69D-05	0.1556
Pee10	2137.51066	4.71D-24	4.81D-24	-2.12	2.63D-05	0.1574
Pee11	2135.36597	1.42D-24	1.52D-24	-7.04	2.37D-05	0.1547
Pee13	2131.15930	1.22D-24	1.25D-24	-2.46	2.19D-05	0.1467
Pee14	2129.09999	3.19D-24	3.23D-24	-1.25	2.04D - 05	0.1533
Pee15	2127.07214	8.87D-25	8.98D-25	-1.24	1.86D-05	0.1520
Pee18	2121.19211	1.42D-24	1.24D-24	12.68	1.43D-05	0.1400
Pee23	2112.12098	_	1.65D-25	_	—	_

Table 2 (continued)

Line	$\sigma_{ m obs}$	$k^N_{\sigma \ { m obs}}$	$k^N_{\sigma \ { m calc}}$	o–c%	$ R ^2_{ m obs}$	$\gamma^0_{self obs}$
Qfe 3	2160.27763	2.94D-24	2.84D-24	3.40	3.43D-05	0.2140
Qfe 4	2160.34950	1.09D-23	1.13D-23	-3.67	3.20D-05	0.1798
Qfe 6	2160.54644	1.48D-23	1.53D-23	-3.38	3.22D-05	0.1692
Qfe 9	2160.97255	_	5.80D-24			_
Qfe11	2161.34274	5.48D-24	5.56D-24	-1.46	3.27D-05	0.1552
Qfe13	2161.77859	4.68D-24	4.93D-24	-5.34	3.15D-05	0.1389
Õfe14	2162.02059	1.38D-23	1.36D-23	1.45	3.37D-05	
\widetilde{O} fe15	2162.27829	3.91D-24	4.07D-24	-4.09	3.18D-05	0.1406
\widetilde{O} fe17	2162.83916	3.12D-24	3.16D-24	-1.28	3.27D-05	0.1390
\widetilde{O} fe18	2163.14167	7.49D-24	8.17D-24	-9.08	3.04D-05	0.1106
\widetilde{O} fe21	2164.13252	1.56D-24	1.60D-24	-2.56	3.25D-05	0.1251
Ofe25	2165.63063	6.66D-25	6.49D-25	2.55	3.40D-05	0.1172
Ofe26	2166.03385		1.50D - 24		_	
£J = =						
Ree 5	2174.67493	4.05D-24	3.85D-24	4.94	3.25D-05	0.1915
Ree 8	2182.20411	1.03D-23	1.08D-23	-4.85	2.66D-05	0.1604
Ree 9	2184.76203	—	3.37D-24	—		
Ree10	2187.34484	8.77D-24	9.20D-24	-4.90	2.43D-05	0.1560
Ree11	2189.95568	2.52D-24	2.73D-24	-8.33	2.22D-05	0.1490
Ree12	2192.59562	6.71D-24	7.11D-24	-5.96	2.11D-05	0.1494
Ree13	2195.26632	1.93D-24	2.00D-24	-3.63	1.99D-05	0.1308
Ree14	2197.96816	4.73D-24	4.94D-24	-4.44	1.80D-05	0.1443
Ree15	2200.70350	1.28D-24	1.31D-24	-2.34	1.64D-05	0.1350
Ree17	2206.27761	7.92D-25	7.40D-25	6.57	1.34D-05	0.1294
Ree18	2209.11776	1.81D-24	1.54D-24	14.92	1.20D-05	0.1312
Ree20	2214.90738	_	1.11D-24			
Ree21	2217.85844	_	3.02D-25			
Pff 5	2148.44490	_	3.22D-24			
Pff 6	2146.12499	_	1.39D-24			
Pff11	2134.65687	5.96D-24	6.22D-24	-4.36	3.33D-05	0.1550
<i>Pff</i> 13	2130.12554	5.60D-24	5.83D-24	-4.11	3.37D-05	0.1505
Pff17	2121.14959		4.03D-24		_	
Pff19	2116.70179	3.23D - 24	3.03D - 24	6.19	3.84D - 05	0.1404
Pff22	2110.07123		5.86D - 25			
Pff25	2103.48010	_	8.98D - 25			
1,)) =0	2100110010		0000 20			
Qef 2	2160.19570	_	1.70D-24	_	_	
Qef 4	2160.25817	4.03D-24	3.88D-24	3.72	3.55D-05	0.1911
Qef 5	2160.30456	1.40D-23	1.41D-23	-0.71	3.42D-05	0.1748
Qef 6	2160.36191	5.89D-24	5.39D-24	8.49	3.84D-05	0.1896
Qef 8	2160.51367	6.19D-24	6.31D-24	-1.94	3.60D-05	0.1551
Qef12	2161.00038	7.11D-24	6.47D-24	9.00	4.48D-05	0.1575
Qef14	2161.35851	6.44D-24	5.88D-24	8.70	4.75D-05	0.1502
Qef15	2161.57148	1.76D-23	1.64D-23	6.82	4.80D-05	0.1449
Qef16	2161.80887	5.30D-24	5.03D-24	5.09	4.89D-05	0.1365

Line	$\sigma_{ m obs}$	$k_{\sigma \ { m obs}}^N$	$k_{\sigma \ m calc}^N$	o–c%	$ R ^2_{\rm obs}$	$\gamma^0_{self obs}$
Qef20	2163.02239	3.26D-24	3.10D-24	4.91	5.63D-05	0.1330
Qef21	2163.39486	8.17D-24	7.96D-24	2.57	5.72D-05	0.1260
Qef23	2164.22392	5.54D-24	5.61D-24	-1.26	5.93D-05	0.1218
Qef24	2164.67925	1.41D-24	1.54D-24	-9.22	5.72D-05	_
Qef25	2165.16218	3.62D-24	3.75D-24	-3.59	6.27D-05	0.0938
Qef26	2165.67057	9.79D-25	1.00D-24	-2.15	6.58D-05	0.1093
Rff 4	2172.10875	3.61D-24	3.84D-24	-6.37	3.04D-05	0.1685
Rff 5	2174.52138	1.13D-23	1.21D-23	-7.08	3.02D-05	0.1633
Rff 6	2176.94173	3.92D-24	4.12D-24	-5.10	3.06D-05	0.1571
<i>Rff</i> 7	2179.37028	1.21D-23	1.24D-23	-2.48	3.11D-05	0.1601
<i>Rff</i> 9	2184.24923	1.18D-23	1.19D-23	-0.85	3.15D-05	0.1588
<i>Rff</i> 10	2186.69935	3.70D-24	3.79D-24	-2.43	3.08D-05	0.1572
<i>Rff</i> 11	2189.15630	1.07D-23	1.07D-23	0.00	3.16D-05	0.1615
<i>Rff</i> 12	2191.61990	3.27D-24	3.29D-24	-0.61	3.11D-05	0.1486
<i>Rff</i> 14	2196.56353	—	2.69D-24	—	—	
<i>Rff</i> 15	2199.04526	6.90D-24	7.15D-24	-3.62	2.98D-05	0.1376
<i>Rff</i> 16	2201.53102	2.03D-24	2.08D-24	-2.46	2.99D-05	0.1362
<i>Rff</i> 17	2204.02143	5.28D-24	5.36D-24	-1.52	3.00D-05	0.1347
<i>Rff</i> 18	2206.51619	1.50D-24	1.52D-24	-1.33	3.00D-05	0.1317
<i>Rff</i> 19	2209.01440	3.76D-24	3.81D-24	-1.33	2.98D-05	0.1296
<i>Rff</i> 20	2211.51604	1.06D-24	1.05D-24	0.94	3.03D-05	0.1302
<i>Rff</i> 21	2214.02056	2.57D-24	2.57D-24	0.00	3.00D-05	0.1222
<i>Rff</i> 22	2216.52761	_	6.89D-25		_	
<i>Rff</i> 23	2219.03592	_	1.64D-24		_	
<i>Rff</i> 24	2221.54600	—	4.29D-25		—	

Table 2 (continued)

^aOnly lines whose position at least could be significantly determined by the multispectrum fitting procedure have been reported; for other lines, the adjustment could not converge, e.g., because of blendings. The lines are given band per band, and by increasing J values inside each branch. In the assignment, the first quoted e or f character concerns the upper level, and the second concerns the lower level. σ_{obs} is the measured zero pressure line position in cm⁻¹. $k_{\sigma obs}^N$ is the measured line intensity in cm molecule⁻¹, for pure ${}^{12}C_2H_2$ at 296 K. $k_{\sigma calc}^N$ is the calculated line intensity in the same units. o-c% is the percentage ratio $100 \times (k_{\sigma obs}^N - k_{\sigma calc}^N)/k_{\sigma obs}^N \cdot |R|_{obs}^2$ is the transition dipole moment squared in D² (1D = 3.33546 $\times 10^{-30}$ C m) deduced from $k_{\sigma obs}^N$. $\gamma_{self obs}^0$ is the measured self-broadening coefficient in cm⁻¹ at 296 K.

this band our multispectrum fitting procedure led to correct line parameters and adjustment of the experimental spectra, so that we do not suspect systematic errors due to the measurement process. This effect could be explained by Coriolis interactions affecting differently the *e* and *f* sub-levels of the $v_5 = 1$ vibrational level, but it is difficult to confirm, considering the set of experimental data available at the present time, as far as intensities of transitions involving the $v_5 = 1$ vibrational level are concerned. Note that, despite very regular rotational dependences, the line intensities of the *Peee* and *Ree* sub-branches of the $(3v_4 + v_5)^2 II - v_4^1$ band (see Fig. 2) cannot be adjusted by Eq. (1), because of strong interactions which also perturb the line positions as stated above.

Self-broadening coefficients γ_{self}^0 have been measured for 371 lines. In Ref. [3], we saw that there does not exist any significant vibrational dependence. In Fig. 12, we have gathered all the self-broadening coefficients obtained in this work and in Ref. [3]. Adjusting these values by a

Fig. 2. Variation of the transition dipole moment squared $|R|^2$ (in D², 1D = 3.33546 × 10⁻³⁰ C m), vs. *m*, for the $(3v_4 + v_5)^2 II - v_4^1$ band of ${}^{12}C_2H_2$. Open triangles are for *Pee* and *Ree* lines, and black triangles for *Pff* and *Rff* lines. The curves have been calculated using the constants found in this work (see Table 3).

Fig. 3. Variation of the transition dipole moment squared $|R|^2$ (in D², $1D=3.33546 \times 10^{-30}$ C m), vs. *m*, for the $v_2 + v_5^1 - v_4^1$ band of ${}^{12}C_2H_2$. Open triangles are for *Pee* and *Ree* lines, and black triangles for *Pff* and *Rff* lines. The curves have been calculated using the constants found in this work (see Table 3): the dashed straight line is for the *ee* sub-band, and the continuous straight line for the *ff* sub-band.

polynomial expansion vs. |m|, we found

$$\gamma_{\text{self}}^{0}(T) = [0.2031(19) - 0.00642(45)|m| + 0.000181(29)m^{2} - 2.93(58) \times 10^{-6}|m|^{3}] \times (T_{0}/T)^{0.75}$$
(3)

Fig. 4. Variation of the transition dipole moment squared $|R|^2$ (in D², 1D = 3.33546 × 10⁻³⁰ C m), vs. *m*, for the $(v_4 + 3v_5)^0_+ - v^1_4$ band of ${}^{12}C_2H_2$. Open triangles are for *Pee* and *Ree* lines, and black squares for *Qef* lines. The curves have been calculated using the constants found in this work (see Table 3).

Fig. 5. Variation of the transition dipole moment squared $|R|^2$ (in D², 1D = 3.33546 × 10⁻³⁰ C m), vs. *m*, for the $(v_4 + 3v_5)^0_- - v_4^1$ band of ${}^{12}C_2H_2$. Black triangles are for *Pff* and *Rff* lines, and open squares for *Qfe* lines. The curves have been calculated using the constants found in this work (see Table 3).

with, between parenthesis, 1 SD in unit of the last digit, T_0 being equal to 296 K. The exponent 0.75 comes from Varanasi et al. [11]. Note that Eq. (5) of Ref. [3], obtained from a set of data smaller than in the present work, leads to very similar results. Thus, we propose

Fig. 6. Variation of the transition dipole moment squared $|R|^2$ (in D², 1D = 3.33546 × 10⁻³⁰ C m), vs. *m*, for the $(v_4 + 3v_5)^2 II - v_4^1$ band of ${}^{12}C_2H_2$. Open triangles are for *Pee* and *Ree* lines, black triangles for *Pff* and *Rff* lines, open squares for *Qfe* lines, and black squares for *Qef* lines. The curves have been calculated using the constants found in this work (see Table 3).

Fig. 7. Variation of the transition dipole moment squared $|R|^2$ (in D², 1D = 3.33546 × 10⁻³⁰ C m), vs. *m*, for the $(v_4 + 3v_5)^2 I - v_4^1$ band of ${}^{12}C_2H_2$. Open triangles are for *Pee* and *Ree* lines, black triangles for *Pff* and *Rff* lines, open squares for *Qfe* lines, and black squares for *Qef* lines. The curves have been calculated using the constants found in this work (see Table 3).

Eq. (3) for calculating the self-broadening coefficient of all lines in all bands of acetylene, up to |m| equal to 33, and with $\gamma_{\text{self}}^0 = 0.0812 \text{ cm}^{-1} \text{ atm}^{-1}$ for |m| greater than or equal to 34. The rotational dependence of γ_{self}^0 given by this formula can be considered as

Fig. 8. Variation of the transition dipole moment squared $|R|^2$ (in D², 1D=3.33546×10⁻³⁰ C m), vs. *m*, for the $v_2 + v_4^1 - v_5^1$ band of ${}^{12}C_2H_2$. Open triangles are for *Pee* and *Ree* lines, and black triangles for *Pff* and *Rff* lines. The curves have been calculated using the constants found in this work (see Table 3): the dashed straight line is for the *ee* sub-band, and the continuous straight line for the *ff* sub-band.

Fig. 9. Variation of the transition dipole moment squared $|R|^2$ (in D², 1D = 3.33546 × 10⁻³⁰ C m), vs. *m*, for the $(2v_4 + 2v_5)^0_+ II - v^1_5$ band of ${}^{12}C_2H_2$. Open triangles are for *Pee* lines, and black squares for *Qef* lines. The curves have been calculated using the constants found in this work (see Table 3).

accurate within an uncertainty of $\pm 3\%$, with the assumption that it is applied to bands for which there is no vibrational dependence, not too high J lines, and inside a temperature range close to room temperature.

Fig. 10. Variation of the transition dipole moment squared $|R|^2$ (in D², 1D = 3.33546 × 10⁻³⁰ C m), vs. *m*, for the $4v_5^0 - v_5^1$ band of ${}^{12}C_2H_2$. Open triangles are for *Pee* and *Ree* lines, and black squares for *Qef* lines. The curves have been calculated using the constants found in this work (see Table 3).

Fig. 11. Variation of the transition dipole moment squared $|R|^2$ (in D², 1D=3.33546 × 10⁻³⁰ C m), vs. *m*, for the $4v_5^2 - v_5^1$ band of ${}^{12}C_2H_2$. Open triangles are for *Pee* and *Ree* lines, black triangles for *Pff* and *Rff* lines, open squares for *Qfe* lines, and black squares for *Qef* lines. The curves have been calculated using the constants found in this work (see Table 3).

Self-shifting coefficients δ_{self}^0 are tentatively given for 122 lines (see Table 4). They have been plotted in Figs. 13–15 for some interesting bands. The confidence intervals (1 SD) of the retained δ_{self}^0 values are around $\pm 0.002 \text{ cm}^{-1} \text{ atm}^{-1}$, but they can attain about $\pm 0.006 \text{ cm}^{-1} \text{ atm}^{-1}$ for some

Table 3

Summary of ¹²C₂H₂ vibrational transition dipole moments squared, Herman-Wallis coefficients, and band intensities, obtained for 3 cold bands [3] and 15 hot bands in the 5-µm spectral region (this work)^a

Band	Center	$ R_0 ^2$	A_1^{RP}	A_2^{RP} A_2^Q	S_V	
$3v_5^1$	2169.166	10.828(67)	-3.54(19)	-0.29(10)	-0.66(20)	810
$(2v_4 + v_5)^1$ II	1940.003	7.685(69)	-15.11(35)	-0.53(19)	1.26(58)	514
$(2v_4 + v_5)^1$ I	1959.697	2.060(34)	-2.60(70)	2.66(59)	-6.07(90)	142
$(3v_4 + v_5)^0_+ - v_4^1$	1948.906	$18_3(-)^{b}$				61.9
$(3v_4 + v_5)^0 v_4^1$	1972.151	3.99(47)	0	-57(14)	13(11)	13.9
$(3v_4 + v_5)^2 II - v_4^1$ ee	1945.126	34.0(34)	-18.0(34)	4.0(28)		58.5
ff	1945.126	27.36(47)	-11.96(57)	-0.91(47)	_	46.9
$(3v_4 + v_5)^2 I - v_4^1$ ee	1973.283	$4.7_8(12_0)$	0	-43(13)	_	16.7
ff			0	17(26)		
$v_2 + v_5^1 - v_4^1$ ee	2090.213	7.157(51)	-1.92(73)	0	_	26.4
ff			-2.41(81)	0		
$(v_4 + 3v_5)^0_+ - v_4^1$	2146.104	4.12(12)	-1.6(14)	11.9(16)	-13.6(24)	15.6
$(v_4 + 3v_5)^0 v_4^1$	2171.957	6.71(17)	-2.11(99)	7.33(92)	-10.1(11)	25.7
$(v_4 + 3v_5)^2 II - v_4^1$ ee	2156.792	5.81(14)	0	-18.6(19) fe	0	22.1
ff			0	-6.2(17) ef	15.4(20)	
$(v_4 + 3v_5)^2 I - v_4^1 ee$	2179.100	5.934(96)	0	-3.8(19) fe	16.19(94)	22.8
ff			-11.7(33)	-8.5(26) ef	0	
$v_2 + v_4^1 - v_5^1$ ee	1844.372	28.49(23)	0	0	_	52.4
ff			-2.7(10)	0	—	
$(2v_4 + 2v_5)^0_+ II - v_5^1$	1918.863	6.44(82)	-11(37)	13(19)	-10.3(60)	12.3
$(2v_4 + 2v_5)^0 v_5^1$	1932.033	$8.5_4(-)^{b}$	_	—	_	16.47
$(2v_4 + 2v_5)^2 II - v_5^1 ff$	° 1932.289	$32.5(2_5)^{c}$	_	_		62.6 ^c
$4v_5^0 - v_5^1$	2151.065	23.03(74)	-2.5(12)	8.14(98)	-19.7(77)	49.4
$4v_5^2 - v_5^1$ ee	2160.208	33.15(68)	0	-19.2(15) fe	0	71.3
ff			-4.4(19)	0 <i>ef</i>	14.7(11)	

^aThe quoted band centers, in cm⁻¹, are from Plíva [4]. The vibrational transition dipole moments squared $|R_0|^2$ are in 10^{-6} D² (1D = 3.33546 × 10^{-30} C m). The Herman-Wallis coefficients are defined by Eqs. (1) and (2). The A_1^{RP} coefficients have to be multiplied by 10^{-3} , and the A_2^{RP} and A_2^Q coefficients have to be multiplied by 10^{-4} ; when a zero value is reported, the corresponding coefficient was fixed to zero in the fit. Between parentheses, the quoted 95% statistical confidence intervals are 2 SD in units of the last digit. The band intensities S_V are in 10^{-23} cm⁻¹/(molecule cm⁻²) at 296 K and in natural abundances. In case of ℓ -type doubling, and if the two sub-bands were fitted simultaneously, $|R_0|^2$ is reported once, and the quoted S_V value is the whole intensity of the band (not to be confused with the intensities reported for each sub-band, when the two sub-bands could be fitted separately).

^bValue of $|R_0|^2$ obtained from only one line. ^cValue of $|R_0|^2$ obtained from only three *Pff* lines. S_V is the total band intensity.

lines. Note that the measurement of pressure-shifts is particularly difficult when the lines are weak because of the noise level (as is the case for many lines in the present work), and taking into account the fact that the maximum pressure of our spectra is only 50 Torr (our spectra were not especially recorded with the aim of deducing pressure-shifting coefficients). A discussion is necessary about the effect of the uncertainty of the pressure-shifting coefficient determination, on the deduced zero-pressure line position. In the "general" version [8] of the multispectrum fitting procedure (MSF), in which all the line parameters (including the zero-pressure line position and the

Fig. 12. Self-broadening coefficients γ_{self}^0 of ${}^{12}C_2H_2$ vs. |m|, in cm⁻¹ atm⁻¹ at 296 K. Plotted are all our results concerning the 3 cold bands studied in Ref. [3] and the 15 hot bands studied in the present work: one sees that these values are well gathered around an adjusted polynomial expansion (continuous line); cf. Eq. (3).

self-shifting coefficient) are common to all spectra, the information allowing the determination of the zero-pressure line position comes from the low-pressure spectra, whereas the information leading to the pressure-shifting coefficient comes from the high-pressure spectra. In our case, an accurate adjustment of the zero-pressure line position is forced by the numerous low-pressure spectra taken into account, since even a noticeable error in the pressure-shifting coefficient, for which the information comes mainly from the 50-Torr spectrum, has a totally negligible consequence in the final zero-pressure line position. The previous conclusion would no longer be valid if our set of spectra contained much more high-pressure spectra than low-pressure spectra (by "high" pressure, we mean a pressure high enough to induce non-negligible pressure-shifts, but too low to lead to a very accurate determination of these pressure-shifts). However, even in this case, this drawback can be avoided by using a "reduced" version [8] of the MSF procedure, in which the line positions are not constrained in each spectrum (consequently, pressure-shifting coefficients cannot be deduced), other line parameters remaining common to all spectra. Then, zero-pressure line positions can be obtained considering only the line positions adjusted for the low-pressure spectra. Let us discuss a typical example. The tests we performed on a weak line (poor SNR), for which a significant and relatively large self-shifting coefficient of $0.012 \text{ cm}^{-1} \text{ atm}^{-1}$ was found (confidence interval: $0.014 \text{ cm}^{-1} \text{ atm}^{-1}$), led to conclusions that we checked with other similar lines:

• First, the "general" MSF procedure applied to all spectra (i.e., including the 50-Torr spectrum) gave a zero-pressure line position identical to that obtained by the same method, but disregarding

Table 4

Self-shifting coefficients measured at room temperature, for hot bands of ${}^{12}C_2H_2$ in the 5-µm spectral region^a

Line	$\sigma_{ m obs}$	$\delta^0_{ m self\ obs}$	SD	Line	$\sigma_{ m obs}$	$\delta^0_{ m self\ obs}$	SD
$(3v_4 + v_5)^0$	$v_{-}^{1} - v_{4}^{1}$						
Qef20	1951.49101	-5.49	3.38				
$(3v_4 + v_5)^0$	$-v_{4}^{1}$						
Qfe 9	1972.70409	-2.55	2.21	Qfe11	1972.88785	-1.08	2.57
$(3v_4 + v_5)^2$	$II - v_4^1$						
Pee11	1919.93952	-2.24	0.90	Pff 8	1926.35236	-2.23	2.92
Pee13	1915.44460	-2.19	0.93	<i>Pff</i> 12	1917.09168	1.05	0.89
Pee15	1910.93702	-0.54	0.55	<i>Pff</i> 14	1912.48543	-1.08	0.81
Pee19	1901.85420	-1.35	0.74	<i>Pff</i> 18	1903.31092	1.93	0.81
Pee21	1897.27439	0.74	0.97				
Pee23	1892.66951	-1.35	1.59				
Ree 3	1954.65251	-4.70	4.17	<i>Rff</i> 9	1968.96809	-6.25	5.16
Ree 5	1959.50405	-6.73	2.56	<i>Rff</i> 14	1981.03696	-8.62	2.59
Ree 9	1969.28797	-5.25	3.82	<i>Rff</i> 16	1985.87757	-6.30	3.20
Ree13	1979.06574	-8.60	2.17	<i>Rff</i> 18	1990.72098	-8.38	2.19
Ree17	1988.74504	-7.93	2.21	<i>Rff</i> 20	1995.56303	-6.57	2.30
Ree19	1993.53792	-6.56	2.82				
Ree21	1998.29918	-6.34	2.10				
Ree23	2003.02909	-4.92	2.37				
$(3v_4 + v_5)^2$	$I - v_4^1$						
<i>Rff</i> 10	1999.61650	-1.65	2.02				
$v_2 + v_5^1 - v_5^1$,1						
Pee11	2063.80453	-2.60	0.91	<i>Pff</i> 4	2080.70395	-1.60	1.48
Pee12	2061.34402	-2.37	1.94	Pff 6	2075.88097	0.84	2.14
Pee15	2053.90375	0.20	0.84	<i>Pff</i> 7	2073.45290	-2.25	2.19
Pee17	2048.89545	-3.66	3.04	Pff 8	2071.01380	-2.83	0.78
Pee19	2043.84896	-4.19	6.40	<i>Pff</i> 9	2068.56370	0.68	1.79
Pee21	2038.76448	-0.96	1.73	<i>Pff</i> 12	2061.14798	-0.94	0.71
				<i>Pff</i> 14	2056.15000	0.97	1.12
				<i>Pff</i> 16	2051.10914	0.91	0.84
				<i>Pff</i> 20	2040.90001	-0.17	1.36
Ree13	2122.03232	0.02	1.26	Rff 4	2101.85096	-4.13	1.85
Ree15	2126.40764	-1.00	0.87	<i>Rff</i> 13	2122.06591	-0.42	3.15
				<i>Rff</i> 15	2126.42868	-0.77	2.56
				<i>Rff</i> 16	2128.59227	-2.32	1.56
$(v_4 + 3v_5)^0_4$	$v_{+}^{0} - v_{4}^{1}$						
Pee11	2121.26792	0.68	0.90	Ree15	2185.90288	-0.13	1.70
Pee13	2116.94732	1.63	1.17				
Pee15	2112.65948	0.89	1.12				
Pee17	2108.39073	-0.96	1.29				

Table 4	(continuea	l)
---------	------------	----

Line	$\sigma_{ m obs}$	$\delta^0_{ m self \ obs}$	SD	Line	$\sigma_{ m obs}$	$\delta^0_{ m self \ obs}$	SD	
$(v_4 + 3v_5)^0_{-}$ -	$-v_{4}^{1}$							
<i>Pff</i> 18	2130.41564	-1.45	1.32	<i>Rff</i> 10	2198.37662	-2.90	1.08	
				<i>Rff</i> 12	2203.24185	-4.71	0.86	
Rff 4	2183.87312	-1.22	2.15	<i>Rff</i> 14	2208.11250	-3.53	1.27	
Rff 6	2188.68727	-2.90	5.34	<i>Rff</i> 20	2222.69356	-1.71	2.15	
Rff 9	2195.94818	-3.95	4.13	<i>Rff</i> 22	2227.52454	-1.94	2.82	
$(v_4 + 3v_5)^2$ II	$-v_4^1$							
Ree 9	2181.36715	-4.19	1.61	Rff 8	2178.37623	-7.73	2.49	
Ree11	2186.56900	-5.80	4.50	<i>Rff</i> 14	2193.11961	-3.79	1.70	
				Rff16	2198.08092	-0.41	3.59	
<i>Pff</i> 14	2124.46331	-3.12	3.58	- 55 - 4				
$(y_1 + 2y_1)^2 \mathbf{I} = y_1^1$								
$(v_4 + 3v_5) = 0$	- _{v4} 2182 74079	-1.64	1 16	Rea 7	2108 40740	_1.67	1 11	
0/019	2102.74079	-1.04	1.10	Ree /	2196.49740	-1.07	2.00	
				Reels	2219.01855	0.91	2.09	
$v_2 + v_4 - v_5$	1855 02328	5 27	0.03	Dff 3	1853 60334	3 55	1 10	
Ree 4 Pag 6	1855.92528	J.27 4 01	0.93	NJJ 5 Dff 5	1858 26666	J.JJ 1 88	0.87	
Ree 0	1860.45500	4.01	1.27	NJJ J DH O	1858.20000	7.60	0.87	
Ree /	1002.00929	0.72	1.27	NJ 9 D#11	1007.24020	2.04	0.55	
Ree o	1004.00770	-3.08	1.32	$\Lambda j j 1 1$ $D \mathcal{H} 1 2$	1876.00074	-0.43	0.00	
Ree 9	1807.09122	4.07	1.20	KJJ 15 D#14	1870.00074	-0.78	0.03	
Reel1	18/1.45259	-1.29	1.00	<i>KJJ</i> 14	18/8.15390	0.39	1.62	
Ree12	18/3.61034	-1.27	0.42	Rjj 15	1880.29274	-2.79	0.78	
Reel3	18/5./52/9	0.85	1.16	<i>Rjj</i> 16	1882.41/26	-0.82	4.20	
Ree14	18//.88003	-4.14	0.41					
Ree15	1879.99174	0.10	1.29					
Ree16	1882.08813	-3.54	0.51					
Ree18	1886.23440	-6.68	0.83					
$(2v_4 + 2v_5)^0_+$	$II - v_5^1$							
Pee10	1896.01826	0.84	1.70	Pee14	1887.22406	-1.47	1.17	
0								
$(2v_4 + 2v_5)^0$	$-v_{5}^{1}$							
Pff 9	1910.96858	-3.08	1.75					
4.0 y ¹								
$4v_5 - v_5$								
Pee24	2097.90888	-1.55	1.43	Ree16	2193.24267	-4.00	0.52	
				Ree20	2203.32428	-3.19	0.70	
Ree 6	2168.03917	-1.93	1.05	Ree22	2208.32469	-2.49	2.86	
Ree12	2183.10886	-3.91	0.61	Ree26	2218.22924	-3.04	1.92	
						(continued on	next page)	

Tab	le	4	(continued))
-----	----	---	-------------	---

Line	$\sigma_{ m obs}$	$\delta^0_{ m self \ obs}$	SD	Line	$\sigma_{ m obs}$	$\delta^0_{ m self \ obs}$	SD
$4v_5^2 - v_5^1$							
Pee10	2137.51066	-1.76	1.24	<i>Pff</i> 13	2130.12554	1.94	1.71
Pee13	2131.15930	-1.40	3.97	<i>Pff</i> 19	2116.70179	0.04	0.79
Pee14	2129.09999	6.19	2.11				
				Qef23	2164.22392	-0.42	1.46
Qfe21	2164.13252	-2.90	3.93				
				<i>Rff</i> 9	2184.24923	-0.29	0.54
Ree 8	2182.20411	-3.44	0.73	<i>Rff</i> 10	2186.69935	-2.45	1.09
Ree10	2187.34484	-1.99	1.53	<i>Rff</i> 11	2189.15630	-3.43	1.54
Ree11	2189.95568	1.05	2.02	<i>Rff</i> 15	2199.04526	-5.34	0.95
Ree12	2192.59562	-2.26	1.47	<i>Rff</i> 16	2201.53102	-3.78	1.76
Ree14	2197.96816	-4.43	0.82	<i>Rff</i> 17	2204.02143	-5.76	0.78
Ree18	2209.11776	2.58	2.34	<i>Rff</i> 19	2209.01440	-2.50	1.02
				<i>Rff</i> 21	2214.02056	-3.96	1.66

^aThe lines are given band per band, and by increasing J values inside each branch. In the assignment, the first quoted e or f character concerns the upper level, and the second concerns the lower level. σ_{obs} is the measured zero-pressure line position in cm⁻¹. $\delta_{self obs}^{0}$ is the measured self-shifting coefficient in 10^{-3} cm⁻¹ atm⁻¹ at about 296 K. SD, is the 68% confidence interval, i.e., 1 SD, of $\delta_{self obs}^{0}$, in 10^{-3} cm⁻¹ atm⁻¹.

Fig. 13. Self-shifting coefficients δ_{self}^0 of ${}^{12}C_2H_2$ vs. *m* in cm⁻¹ atm⁻¹ at about 296 K, for the $(3\nu_4 + \nu_5)^2II - \nu_4^1$ band. Open triangles are for *Pee* and *Ree* lines, and black triangles for *Pff* and *Rff* lines. The error bars are a ± 1 SD statistical uncertainty.

the 50-Torr spectrum (discrepancy smaller than 10^{-6} cm⁻¹), showing that taking into account the 50-Torr spectrum does not worsen the zero-pressure line position, even in the case where the retrieved self-shifting coefficient has an anomalously large value.

Fig. 14. Self-shifting coefficients δ_{self}^0 of ${}^{12}C_2H_2$ vs. *m* in cm⁻¹ atm⁻¹ at about 296 K, for the $v_2 + v_5^1 - v_4^1$ band. Open triangles are for *Pee* and *Ree* lines, and black triangles for *Pff* and *Rff* lines. The error bars are a ± 1 SD statistical uncertainty.

Fig. 15. Self-shifting coefficients δ_{self}^0 of ${}^{12}C_2H_2$ vs. *m* in cm⁻¹ atm⁻¹ at about 296 K, for the $4v_5^2 - v_5^1$ band. Open triangles are for *Pee* and *Ree* lines, black triangles for *Pff* and *Rff* lines, the black square for a *Qef* line, and the open square for a *Qfe* line. The error bars are a ± 1 SD statistical uncertainty.

• Second, the "reduced" MSF procedure (with or without the 50-Torr spectrum) gave line positions in low-pressure spectra very close together (discrepancies smaller than 5×10^{-5} cm¹), showing that the relative calibration of the wavenumber scales of the involved spectra is correct.

Fig. 16. Self-shifting coefficients δ_{self}^0 of ${}^{12}\text{C}_2\text{H}_2$ vs. *m* in cm⁻¹ atm⁻¹ at about 296 K, for all the 5-µm region bands studied in Ref. [3] and in the present work.

- Third, these line positions obtained by the "reduced" MSF procedure do not differ from the zero-pressure line positions obtained from the "general" MSF procedure by more than 10^4 cm^{-1} , a discrepancy well inside our stated $2 \times 10^{-4} \text{ cm}^{-1}$ mean accuracy.
- Fourth, the self-shifting coefficient determined from the "reduced" MSF line positions in the low-pressure spectra and in the 50-Torr spectrum is very close to the value deduced by the "general" MSF procedure (0.011 vs. $0.012 \text{ cm}^{-1} \text{ atm}^{-1}$). This shows the coherence of the method: the information allowing the determination of δ_{self}^0 comes from the 50-Torr spectrum and leads to very similar results whatever the method is, but, as this information is very poor, those results can be erroneous, showing that the uncertainty in the absolute values of δ_{self}^0 is certainly larger than the confidence intervals.

For all these reasons, few significant values were finally retained (see Table 4). Fig. 16 contains all the results obtained in the present work, together with the results obtained in Ref. [3]. Taking into account the uncertainties, neither vibrational dependence nor rotational dependence could be observed. As estimations of self-shifting coefficients can be useful for wavenumber calibration purposes, it is interesting to give the average value calculated from our results: $-0.0022 \text{ cm}^{-1} \text{ atm}^{-1}$ at about 296 K.

4. Synthetic spectrum

The bands occurring in the studied spectral region involve energy levels coupled by anharmonic resonances, and vibrational or rotational essential ℓ -type resonances, so that they are interesting for further theoretical calculations, using effective operator models enabling the calculation of the whole

spectrum of acetylene [6,7]. The concerned anharmonic interactions are due to the 44/55 and ${}^{\ell}44/55$ accidental vibrational resonances (see, e.g., Refs. [5,6]), i.e., the so-called bending-bending second order Darling-Dennison type interactions, which occur between levels with $\Delta v_1 = \Delta v_2 = \Delta v_3 = 0$, $\Delta v_4 = \pm 2$, $\Delta v_5 = \mp 2$. Thus we thought it useful to gather all the data concerning this region, and available at the present time, in a HITRAN-format line list. This file¹ is of course evolving and will be updated as soon as new computations become available. Between 1810 and 2255 cm⁻¹, the ${}^{12}C_2H_2$ bands taken into account to set up this file are the 3 cold bands studied in Ref. [3] and the 15 hot bands studied in the present paper. At the present time, no resonance was taken into account in the calculation of the line positions and line intensities.

The line positions have been calculated as explained in Section 3, and no extrapolation was performed for the final list: the last line in each branch corresponds to the larger J value observed either by Plíva or by us. In the case where the maximum J value observed by Plíva is greater than ours, Plíva's calculated line positions (possibly slightly shifted) have sometimes been chosen rather than ours for the lines we could not analyze. For the bands for which no adjustment was possible, Plíva's calculated line positions were chosen. Note that because of strong interactions mentioned in Ref. [4], only the *Pff* and *Rff* sub-branches of the $(2v_4 + 2v_5)^2 II - v_5^1$ band are observable and consequently were calculated. Conversely, it is worth noticing that we observed many P lines in the $v_2 + v_5^1 - v_4^1$ and $v_2 + v_4^1 - v_5^1$ bands, whereas none of them is present in Ref. [4]. The lower-state energy values, E'', were taken from HITRAN [12].

The line intensities have been calculated, in cm molecule⁻¹ at 296 K, and in natural abundances as is usual for HITRAN (97.760% for ${}^{12}C_2H_2$), using the constants listed in Table 3. For J greater than the J value corresponding to our last measured intensity, namely J_{max} , the line intensities were calculated extrapolating Eqs. (1) and (2), but for some bands, they were calculated fixing the transition dipole moment squared at its value calculated for J_{max} . The self-broadening coefficients have been calculated using Eq. (3). Among the experimental results available for air-broadening effects (see bibliography in Table 1 of Ref. [3]), we have chosen the results of Lambot et al. [13] and Bouanich et al. [14] concerning v_5^1 lines. The temperature-dependence exponent, n = 0.75, of the air-broadening coefficient is a mean value obtained from Refs. [14-16] which showed that n is noticeably J-dependent, since its experimental values vary from about 0.85 to 0.60 according to J between 1 and 30. Despite this variation, the same rough mean value 0.75 was incorporated for all the lines involved in the 5-µm region. The air-broadening coefficients are smoothed values obtained from Refs. [13,14] for |m| between 1 and 34; they are given in Table 5, at $T_0 = 296$ K. For |m| greater or equal to 34, γ_{air}^0 is fixed to 0.0450 cm⁻¹ atm⁻¹ at 296 K. The value of γ_{air}^0 for m=0 was extrapolated. Note that recent measurements from Sun and Varanasi [17] should allow the improvement of these data. As far as air-shifting coefficients are concerned, we are only aware of the N₂-shifting coefficients measured by Babay et al. [18] for v_5^1 lines at room temperature (between 290 and 295 K). Although these values are noticeably J-dependent, we chose a rough mean value $-0.001 \text{ cm}^{-1} \text{ atm}^{-1}$ for all lines.

The accuracy codes follow the HITRAN convention and are: 3 for calculated line positions (error range between 0.001 and 0.01 cm⁻¹), 6 for calculated line intensities and broadening coefficients (between 2% and 5%). Note that the intensity accuracy code has been degraded (code 4, i.e.,

¹Available upon request to the authors. This file can be down-loaded from the web-site http://CfA-www.Harvard.edu/HITRAN/updates.html.

Table 5

Air-broadening coefficients γ_{air}^0 of ${}^{12}C_2H_2$ lines, obtained from the smoothed values published by Lambot et al. [13] and Bouanich et al. [14]. The unit is 10^{-3} cm⁻¹ atm⁻¹ at 296 K

<i>m</i>	$\gamma^0_{ m air}$	<i>m</i>	$\gamma^0_{\rm air}$
0	117.7	18	71.9
1	111.4	19	70.4
2	104.3	20	68.8
3	98.5	21	67.1
4	94.0	22	65.3
5	90.3	23	63.5
6	87.5	24	61.6
7	85.2	25	59.7
8	83.4	26	57.8
9	82.0	27	56.0
10	80.8	28	54.1
11	79.6	29	52.4
12	78.7	30	50.7
13	77.7	31	49.1
14	76.8	32	47.7
15	75.6	33	46.3
16	74.6	34	45.0
17	73.3		

between 10% and 20%, or code 5, i.e., between 5% and 10%) for a strongly perturbed sub-band (*Pee, Ree,* and *Qfe* sub-branches of the $(3v_4+v_5)^2 II - v_4^1$ band), and for some bands $((3v_4+v_5)^0_+ - v_4^1, (3v_4+v_5)^0_- - v_4^1, (3v_4+v_5)^0_- - v_5^1, and (2v_4+2v_5)^2 II - v_5^1)$, whose intensity is known only from a few individual line intensities.

To conclude this paper, let us recall that a large number of line parameters have been obtained in this work for 18 bands of acetylene in the 5-µm region, using a multispectrum fitting procedure. Particularly, together with improved absolute line positions, absolute intensities have been measured for 540 lines (mean accuracy $\pm 5\%$). These data will be useful for further theoretical calculations. Numerous self-broadening and self-shifting coefficients have also been measured, and an approximate value of the self-collisional narrowing coefficient, namely $\beta^0 = 0.064 \pm 0.015$ (1SD) cm⁻¹ atm⁻¹ at about 296 K [3], has been determined, improving noticeably the knowledge of pressure effects on C₂H₂ lines belonging to various bands.

Acknowledgements

The authors acknowledge Pr. A. Barbe, Dr. M.-R. De Backer-Barilly, Mrs. X. Thomas and P. Von der Heyden for their contribution to this work.

References

 Plateaux JJ, Barbe A, Delahaigue A. Reims high resolution Fourier transform spectrometer. Data reduction for ozone. Spectrochim Acta 1995;51A:1153–69.

- [2] Régalia L. Mesures à l'aide d'un spectromètre par transformation de Fourier, des intensités et coefficients d'élargissement de molécules d'intérêt atmosphérique. Étude des précisions: application à N₂O, H₂O, O₃. Thèse, Université de Reims-Champagne-Ardenne, Reims, France, 1996.
- [3] Jacquemart D, Mandin JY, Dana V, Régalia-Jarlot L, Thomas X, Von der Heyden P. Multispectrum fitting measurements of line parameters for 5 µm cold bands of acetylene. JQSRT 2002;75:397–422.
- [4] Plíva J. Spectrum of acetylene in the 5-micron region. J Mol Spectrosc 1972;44:145-64.
- [5] Plíva J. Molecular constants for the bending modes of acetylene ${}^{12}C_2H_2$. J Mol Spectrosc 1972;44:165–82.
- [6] Perevalov VI, Lobodenko EI, Teffo JL. Reduced effective hamiltonian for global fitting of C₂H₂ rovibrational lines. In Proceedings of the XIIth Symposium and School on High-Resolution Molecular Spectroscopy. Saint Petersburg, Russia, 1–5 July 1996. SPIE 1997; 3090: 143–9.
- [7] Teffo JL, Lyulin OM, Perevalov VI, Lobodenko EI. Application of the effective operator approach to the calculation of ${}^{12}C^{16}O_2$ line intensities. J Mol Spectrosc 1998;187:28–41.
- [8] Jacquemart D, Mandin JY, Dana V, Picqué N, Guelachvili G. A multispectrum fitting procedure to deduce molecular line parameters. Application to the 3-0 band of ¹²C¹⁶O. Eur Phys J D 2001;14:55–69.
- [9] Jacquemart D, Claveau C, Mandin JY, Dana V. Line intensities of hot bands in the 13.6 μm spectral region of acetylene ¹²C₂H₂. JQSRT 2001;69:81–101.
- [10] Gamache RR, Kennedy S, Hawkins RL, Rothman LS. Total internal partition sums for molecules in the terrestrial atmosphere. J Mol Struct 2000;517–518:407–25.
- [11] Varanasi P, Giver LP, Valero FPJ. Infrared absorption by acetylene in the 12–14 μm region at low temperatures. JQSRT 1983;30:497–504.
- [12] Rothman LS, Rinsland CP, Goldman A, Massie ST, Edwards DP, Flaud JM, Perrin A, Camy-Peyret C, Dana V, Mandin JY, Schroder J, McCann A, Gamache RR, Wattson RB, Yoshino K, Chance KV, Jucks KW, Brown LR, Nemtchinov V, Varanasi P. The HITRAN molecular spectroscopic database and HAWKS (Hitran Atmospheric Workstation): 1996 edition JQSRT 1998;60:665–710.
- [13] Lambot D, Blanquet G, Bouanich JP. Diode laser measurements of collisional broadening in the v₅ band of C₂H₂ perturbed by O₂ and N₂. J Mol Spectrosc 1989;136:86–92.
- [14] Bouanich JP, Lambot D, Blanquet G, Walrand J. N₂- and O₂-broadening coefficients of C₂H₂ IR lines. J Mol Spectrosc 1990;140:195–213.
- [15] Bouanich JP, Blanquet G, Populaire JC, Walrand J. Nitrogen broadening of acetylene lines in the v₅ band at low temperature. J Mol Spectrosc 1998;190:7–14.
- [16] Bouanich JP, Blanquet G, Walrand J. Oxygen broadening of acetylene lines in the v₅ band at low temperature. J Mol Spectrosc 1999;194:269–77.
- [17] Sun C, Varanasi P. JQSRT, in press.
- [18] Babay A, Ibrahimi M, Lemaire V, Lemoine B, Rohart F, Bouanich JP. Line frequency shifting in the v_5 band of C_2H_2 . JQSRT 1998;59:195–202.