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Abstract

The radiative transfer forward model simulation of intensities and associated parameter derivatives
(weighting functions) is a vital part of the retrieval of earth atmospheric constituent information
from measurements of backscattered light. The discrete ordinate method is the most commonly used
approach for the determination of solutions to the radiative transfer equation. In this paper, we carry
out an internal perturbation analysis of the complete discrete ordinate solution in a plane parallel
multi-layered multiple-scattering atmosphere. Perturbations in layer atmospheric quantities will trans-
late into small changes in the single-scatter albedos and optical depth values. In addition, we consider
perturbations in layer thermal emission source terms and in the surface albedo. It is shown that the solu-
tion of the boundary value problem for the perturbed intensity "eld leads in a natural way to the weighting
function associated with the parameter causing the perturbation. We have developed a numerical model
LIDORT (linearized discrete ordinate radiative transfer) for the simultaneous generation of backscatter
intensities and weighting function output at arbitrary elevation angles, for a user-de"ned set of atmospheric
variations. Results for a 5-layer test atmosphere with two scatterers and thermal emission terms are shown.
Intensities are validated against benchmark discrete ordinate results, while weighting functions are checked
for consistency against "nite di!erence results based on external perturbations. A second example is
presented for a 60-layer terrestrial atmosphere with molecular and aerosol scattering and ozone trace gas
absorption in the UV spectral range; weighting functions are shown to correspond closely with results
derived from another radiative transfer model. Published by Elsevier Science Ltd.
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1. Introduction

1.1. Background and rationale

The derivation of atmospheric constituent distributions and surface properties from surface-
based, airborne and satellite remote-sensing instruments plays a vital role in monitoring the earth's
atmosphere and understanding the chemical and physical processes therein. A common feature of
all retrievals is the need for an accurate forward model for the generation of synthetic quantities
such as radiances, #uxes and weighting functions. The model should include a full treatment of all
orders of scattering. Accurate multiple-scatter forward models are also critical for addressing
problems in stellar and planetary atmospheres.

The retrieval process will generate estimates of a number of atmospheric parameter distributions
which together constitute the state vector X of parameters to be retrieved. The retrieval is the formal
inverse of the forward problem Y"F(X), where Y is the vector of synthetic measurements and F is
a function describing the attenuation of solar and/or thermal emission radiation in the atmosphere
by means of absorption, scattering and re#ection of light. This function is speci"ed by a radiative
transfer model. In most cases, F has a complex dependence on the atmospheric parameters X, and
the inverse problem is often solved with a non-linear iterative scheme based on likelihood
estimation. Uncertainties in the retrieval will depend not only on the accuracy of the instrumental
measurements but also on uncertainties inherent in the modeling of the atmosphere and on
assumptions made about the accuracy of any a priori information.

Non-linear least-squares "tting [1] has been and continues to be a standard technique for
many remote-sensing problems, for example the global "tting of limb emission spectra [2].
The optimal estimation retrieval algorithm [3,4] has found much use in constituent pro"le retrieval
from backscatter and emission measurements. In particular, we note the application of this method
to ozone pro"le retrieval from nadir backscatter measurements made by instruments such as
SBUV [5] and GOME [6}8]. A number of related retrieval techniques are used in the remote
sensing context, including Phillips}Tikhonov regularization [9], and Chahine inversion [10]. In
order to illustrate the retrieval requirement for forward model synthetic measurements and
associated weighting functions, we give an example for the optimal estimation approach [3,4].

The solution of the inverse problem X"F~1(Y) is constrained by the existence of an indepen-
dent a priori state vector X

a
with error covariance S

a
. Assuming Gaussian statistics with error

covariance S
m

associated with measurement vector Y
m
, the optimization minimizes with respect to

X the functional
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Here, Y
n
"F(X

n
) is the synthetic measurement computed from a forward model calculation based

on atmospheric state vector X
n
, and K

n
is the Jacobean matrix of forward model parameter

derivatives (also known as weighting functions) evaluated at X
n
. K

n
represents the responses of the

simulated intensity to small changes in atmospheric parameters that make up state vector X
n
.

(Henceforth we use the term `weighting functionsa for K
n
). The starting point for the state vector

iteration is often taken to be the a priori value. For optimal estimation and other iterative retrieval
algorithms, it is clear that the radiative transfer model must generate the set MY

n
, K

n
N for each state

vector estimate X
n
.

In many circumstances, a simpli"ed model of atmospheric light attenuation can be used, for
which weighting functions can be determined in a straightforward manner from explicit expres-
sions. Thus for example in solar occultation viewing, extinction of the line-of-sight solar beam
predominates over atmospheric backscatter, which is ignored in the forward model (see for
example [10] for SAGE II retrieval). However for instruments measuring backscattered light in the
UV, visible and near-infrared regions, multiple scattering of light in the earth's atmosphere is an
important physical process that cannot be neglected. Although accurate values for Y

n
for multiple

scattering scenarios have been determined from a variety of radiative transfer (RT) solution
methods (see [11] for a summary of techniques), less attention has been paid to the calculation of
weighting functions K

n
.

Finite di!erence approximations to K
n

have often been derived by using external perturbations.
Here, two independent simulations of the atmospheric attenuation are made, one for an unpertur-
bed atmosphere, the other for an atmosphere in which a single parameter has been changed by
a small amount; the intensities are subtracted and divided by the parameter change. This process
must be repeated for each parameter to be retrieved, and at every iteration step of the retrieval. In
addition to the time-consuming nature of this approach, the accuracy depends in a rather ad hoc
manner on the magnitude of the external perturbation. This is particularly evident when the optical
properties depend in a complex non-linear fashion on the atmospheric parameter in question (for
example, temperature).

The main purpose of this paper is the development of a forward model LIDORT (Linearized
Discrete Ordinate Radiative Transfer) that will generate quickly and accurately any desired set of
backscatter weighting functions in a multi-layered atmosphere with anisotropic scatterers, as well
as the backscatter intensity "eld. The model is based on the discrete ordinate method for the
solution of the radiative transfer equation (RTE). This method has a long history, from the
pioneering work of Chandrasekhar in the 1940s [12,13] to the DISORT package developed by
Stamnes and co-workers in the 1980s [14]. DISORT in particular has been widely used in
atmospheric radiative transfer applications, and has recently been installed in MODTRAN [15] to
provide a reliable scattering formalism.

The discrete ordinate approach uses optical depth as the vertical coordinate; scattering proper-
ties are speci"ed by means of layer single-scatter albedos and phase functions. The method reduces
the full RTE to a set of coupled linear "rst-order di!erential equations. We show that "rst-order
perturbation analysis may be carried out explicitly on the discrete ordinate solutions to these
equations. Furthermore, we show that the boundary condition problem applied to the perturbed
intensity "eld generates in a natural way the complete "eld of "rst-order parameter derivatives.
Analytic expressions may be developed for all weighting functions, which can then be calculated
rapidly and to the same level of accuracy as the (unperturbed) backscattered intensity.
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We look at the following general scenario pertinent to satellite retrieval applications in the
earth's atmosphere. We con"ne our attention to intensity and weighting function output for
upwelling radiation at the top of the atmosphere (TOA). The atmosphere will be assumed
plane-parallel, with each layer treated as homogeneous and possessing several non-conservative
scattering particulates. Two sources of light will be considered* the beam source (prototype for
solar illumination) and an isotropic thermal emission source. No di!use light is incident on the top
of the atmosphere. The atmosphere is bounded below by a re#ecting surface with a known
bi-directional or Lambertian re#ection function. The lower boundary may also have a thermal
emission property (assumed isotropic). The scope of the plane-parallel DISORT package [14]
covers this scenario, and this version of DISORT will be used as the standard for validating the
backscatter intensity results. Polarization e!ects are not included.

For weighting function derivation, we need to know how variations in layer atmospheric
quantities will be manifested as changes to the layer single-scatter albedos and optical thickness
values. We will not consider changes to phase function angular distributions (although this is in
principle possible in the perturbation analysis). The e!ect of atmospheric parameter variations will
also be included in the thermal emission source term. For the surface property, we will consider
perturbations of the total surface albedo (but not the angular distribution of the bi-directional
re#ectance) and the surface emission term. These assumptions will allow a wide variety of weighting
functions to be derived, including those with respect to layer trace gas concentrations, layer
temperatures and pressures, cloud and aerosol scattering and extinction coe$cients, molecular
scattering coe$cients, and thermal emission coe$cients.

As part of the algorithm development for the GOME satellite instrument [16], a weighting
function analysis has been carried out on the GOMETRAN RT model developed for this
instrument [17]. This model uses altitude rather than optical depth as the vertical coordinate, and
the RTE for a multi-layered atmosphere is solved using "nite di!erences for the altitude derivatives.
This transforms the complete problem to a linear matrix algebra system [18,19], which is then
subject to "rst-order perturbation theory for the generation of weighting function output. As is
often the case with altitude "nite-di!erencing, great care must be taken with the choice of vertical
grid. This version of GOMETRAN has been used in some studies of ozone pro"le retrieval from
GOME nadir backscatter measurements using optimal estimation methods [7,8].

1.2. Overview of the paper

In Section 2 we recapitulate the discrete ordinate solution for the backscattered intensity.
Following the basic RTE de"nitions (Section 2.1), the description falls into two parts: (1) solution of
the discrete ordinate di!erential equations for the homogeneous and particular integrals for each
layer, the component solutions being evaluated at the computational quadrature angles (Section
2.2); (2) the intensity "eld derivation using appropriate boundary conditions at the top and bottom
of the atmosphere, plus continuity of the "eld at intermediate layer boundaries, to "x the constants
of integration; the solution is completed using the post-processing function, that is, the derivation of
intensities for arbitrary (user-de"ned) zenith angles using the source function integration method
(Section 2.3). This exposition follows closely the DISORT description [14]. Although much of this
material is familiar (see for example [14] or [20]), the exposition given here is designed to
illuminate the perturbation analysis that follows.
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In Section 3.1 we introduce some de"nitions and rules for the "rst-order perturbation analysis of
the discrete ordinate solution. In Section 3.2 we apply these rules to the layer homogeneous and
particular solutions of the perturbed RTE. This is followed by a description of the boundary
conditions required for the perturbed intensity "eld (Section 3.3). Section 3.4 outlines the derivation
of analytic expressions for TOA weighting functions with respect to layer parameters for both the
discrete ordinate stream angles and the post-processed o!-quadrature directions; the TOA albedo
weighting functions are treated in Section 3.5. The whole of Section 3 is designed to give an overall
summary and description of the weighting function analysis without going into excessive math-
ematical detail. Most of the algebraic manipulations have been placed in Appendices A}C.

An analytic formulation of the discrete ordinate solution for a single layer was "rst developed by
Chandrasekhar [12,13] using the full-space quadrature scheme over the interval (!1, 1). It turns
out that a complete analytic perturbation analysis can also be developed with this quadrature
scheme. This approach is not as #exible or as powerful as the `doublea quadrature eigenproblem
method used in DISORT and the present work. The original Chandrasekhar solution and the
corresponding perturbation analysis are presented for completeness in Appendix D.

In Section 4 we consider the numerical model LIDORT developed from the theory in Sections
2 and 3, and provide two examples of weighting function simulations. Following some discussion of
the model and its implementation (Sections 4.1}4.3), the "rst example treats a 5-layer atmosphere
with two scatterers and beam and thermal source terms; this scenario will illustrate the principles
behind the weighting function derivations. In Section 4.5, we examine a realistic scenario involving
a 60-layer terrestrial atmosphere with both molecular (Rayleigh) and aerosol scattering, and
including ozone absorption, for a number of wavelengths in the UV region. In both examples, we
check the LIDORT weighting function output by comparing with external "nite-di!erence values
obtained from independently calculated intensities based on perturbed atmospheric parameters. In
addition, values of intensity in all cases are checked against DISORT results for the same scenarios.
Finally, we show that the weighting function results in Section 4.5 are consistent with values
computed from the GOMETRAN model [17] for the same scenario.

In Section 5 following the summary, we remark on future developments for LIDORT. These
include (i) additional options to output weighting function "elds at arbitrary optical depths and stream
angles, for both upwelling and downwelling directions; (ii) the generation of mean-value output (#uxes,
mean intensities); (iii) the treatment of the direct beam attenuation in a curved atmosphere; and (iv)
a vectorization of the model for the treatment of fully polarized light. The "rst three developments
have been carried out, and will be the subject of a second paper (R. Spurr, in preparation).

2. The discrete ordinate solution

2.1. Radiative transfer equation (RTE)

The equation of radiative transfer for the di!use intensity "eld I in a plane-parallel scattering
medium may be written as

k
dI(q,k,/)

dq
"I(q,k,/)!J(q,k,/). (5)
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The scattering is assumed to be completely coherent (no redistribution among wavelengths), so that
Eq. (5) is valid for a monochromatic intensity "eld. The optical depth coordinate q is measured
perpendicular to the medium boundaries with q"0 at TOA, and the direction is speci"ed through
k (absolute value of the cosine of the zenith angle) and / (azimuth angle). In this paper, the source
term J is de"ned to be

J(q,k, /)"J
%95

(q,k,/)#
u(q)
4p P

2p

0

d/@P
1

0

dk@P(q,k,/; k@,/@)I(q,k@,/@). (6)

Here J
%95

"J
"%!.

#J
5)%3.!-

is the sum of the beam and atmospheric thermal emission source
terms, u(q) is the single-scatter albedo, and P(q,k,/; k@,/@) the phase function; the last term in Eq.
(6) represents the multiple scatter contribution.

The source term J
"%!.

corresponds to scattering of a parallel beam of incident #ux k
0
F

_
in

direction M!k
0
,/

0
N; J

5)%3.!-
represents thermal emission (assumed isotropic) as determined by

a Planck function B(¹) at temperature ¹ (which is regarded as a function of q). Speci"cally:

J
"%!.

(q,k,/)"
F

_
4p

u(q)P(q,k,/;!k
0
,/

0
)e~q@k0 , (7)

J
5)%3.!-

(q,k, /)"(1!u(q))B(¹). (8)

Next, we expand the intensity as a Fourier cosine series in the relative azimuth /
0
!/, and the

phase function as a series of Legendre polynomials in the cosine of the scatter angle # between
directions Mk,/N and Mk@,/@N:

I(q,k, /)"
2N~1
+

m/0

Im(q,k) cosm(/
0
!/), (9)

P(cos#)"
2N~1
+
l/0

b
l
P

l
(cos #), (10)

where b
l
are the phase function moments of the Legendre expansion, and

cos#"kk@#J(1!k2)(1!k@2) cos(/!/@). (11)

This development yields a separate equation for each of the 2N Fourier components

k
dIm(q,k)

dq
"Im(q,k)!P

1

~1

Dm(q,k,k@)Im(q,k@) dk@!Jm
%95

(q,k), (12)

where m"0, 1,2, 2N!1. The external source term may be written as

Jm
%95

(q, k)"d
0m

(1!u(q))
S
+
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b
s
qs#

F
_

2p
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)Dm(q,k,k

0
). (13)
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The auxiliary quantities Dm(q,k, l) are de"ned by

Dm(q,k, l)"
u(q)
2

2N~1
+
l/m

b
l
(q)Pm

l
(k)Pm

l
(l). (14)

The Pm
l
(k) are associated Legendre polynomials. The addition theorem for Legendre polynomials

has been used in the Fourier decomposition. For the thermal source term, the Planck function B(¹)
has been expressed as a power series in optical depth [21], where the b

s
are the expansion

coe$cients.
In the Nth discrete ordinate approximation, the multiple scatter source term integral is replaced

by a quadrature sum de"ned by the set Mk
i
, a

i
N, i"($1,2,$N) of Gauss}Legendre quadrature

abscissae and weights. In order to obtain RTE solutions, the atmosphere is assumed to consist of
a number of homogeneous layers, with u and b

l
constant for a given layer. In the rest of this section

we con"ne our attention to one such layer (the superposition of layers will be addressed in Section
2.3). The solution for Fourier component m is then determined by solving the set of 2N linear
"rst-order di!erential equations for Im(k

i
), the intensities at the computational (quadrature) stream

angles

k
i

dIm(q, k
i
)

dq
"Im(q,k

i
)!+

j

a
j
Dm(q,k

i
, k

j
)Im(q,k

j
)!Jm

%95
(q,k

i
). (15)

Here, j"($1,2,$N) is the quadrature sum. In this equation, Jm
%95

(q, k
i
) and Dm(q,k

i
, k

j
) are

given by Eqs. (13) and (14) evaluated at the quadrature cosines.
Two kinds of quadrature regimes are usual * a full-range (`singlea) scheme over the interval

(!1, 1), and a `doublea scheme with quadratures de"ned separately for k3(0, 1) and k3(!1, 0). In
both cases k

~j
"k

j
and a

~j
"a

j
, for j"1,2, N. For the single scheme, the abscissae are just the

2N zeros of P
2N~1

(k) in the interval (!1, 1). The single scheme was used by Chandrasekhar in his
original development of an analytic discrete ordinate solution to Eq. (15) (see Appendix D);
this solution depends on the orthonormality of the Legendre polynomial set MP

l
(k), l"0,

1,2, 2N!1N.
The double quadrature scheme re#ects in a natural way the upward and downward stream

separation of the intensity "eld, and the symmetrical distribution of abscissae about k"$0.5
ensures a more representative spread of points around k"0 and DkD"1 than that achieved with
the single scheme. With the advent of an eigenvalue approach to the solution of Eq. (15), the double
scheme has now become standard in DISORT (see [20] and references therein for a discussion of
quadratures). The double scheme is adopted as the default in the present work, though the option
to use the single scheme and the analytic solution developed in Appendix D has been retained in
the numerical model.

2.1.1. Surface boundary condition
The lower surface of the atmosphere is assumed to have a general bi-directional re#ecting

property. The bi-directional surface re#ection function o(k,/;k@, /@) is expanded as a Fourier series
in cosine azimuth

o(k,/; k@,/@)"o
0
(k, k@)#2

2N~1
+

m/1

o
m
(k, k@) cosm(/!/@). (16)
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In the discrete ordinate approximation, the re#ection condition for the mth Fourier component of
the di!use intensity at the lower boundary is then

Im(#k
i
)"(1#d

m0
)

N
+
j/1

k
j
a
j
Im(!k

j
)o

m
(k

i
,!k

j
), where i"1,2, N. (17)

In the present work, a normalized form of the bi-directional re#ection is used:

o
m
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i
,!k

j
)"RoH

m
(k

i
,!k

j
), where R"

1
4P

1

0
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0

kk@o
0
(k,k@) dk dk@. (18)

R is the surface albedo. For the Lambertian case, oH
0
(k

i
, k

j
)"1 for all streams and oH

m
"0 for

m'0. Expressions for o
m

may be derived from invariance principles [12], and these functions have
been investigated in a number of applications ranging from planetary atmospheres [22] to the
treatment of terrestrial clouds as bi-directional re#ecting surfaces [23].

The upwelling radiation at the lower boundary q"q
g
also has a contribution from the re#ection

of the direct beam; this has the form

Im
$*3%#5

(k
i
, q

g
)"

F
_

k
0

p
e~qg @k0RoH

m
(k

i
,!k

0
). (19)

Furthermore, for the azimuth-independent component, a surface emission term may be included:

I
%.*44*0/

(k
i
)"d

m0
i(k

i
)B(¹

g
), (20)

where the black-body function B(¹
g
) depends on surface temperature ¹

g
. The directional surface

emissivity i(k) is determined from Kirchho!'s law

i(k)"1!2RP
1

0

k@oH
0
(k,k@) dk@. (21)

2.2. Solutions of the basic equations

2.2.1. Homogeneous solution
We summarize the main results from the eigenvalue approach to the homogeneous RTE

developed by Stamnes and co-workers [14,21,24]. The treatment is the same for each Fourier
component, and we henceforth drop the index m except where necessary (for example in the
Legendre sum in Eq. (23) below). Homogeneous solutions of (15) may be found with the ansatz
I
j
JX

j
exp(!kq) for j"$1,2,$N. Because of the quadrature symmetry, it can be shown that

the values of k2 are real numbers satisfying the following reduced eigenvalue equation of order N:

(!!k2E)1"0 where !"(f!g)(f#g). (22)

With indices i, j"1,2, N, the matrices f and g are given by

f
ij
"(D`

ij
a
j
!d

ij
)/k

i
and g

ij
"D~

ij
a
j
/k

i
with DB

ij
"

u
2

2N~1
+
l/m

b
l
Pm

l
(k

i
)Pm

l
($k

j
). (23)

In the above, E is the unit matrix. Values of k occur in pairs $ka , a"1,2,N. The correspond-
ing solution vectors are XB

ja , and these are related to the eigenvectors 1 of Eq. (22) by means of the
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relation 1
ja"X`

ja#X~
ja . The di!erence vector de"ned by 0

ja"X`
ja!X~

ja satis"es the following
auxiliary equation linking it to the eigenvector 1 :

ka0ia"
N
+
j/1

(f
ij
#g

ij
)1

ja . (24)

Details of these derivations may be found in [14,21]. For components of XB
ja at negative stream

angles, we use the symmetry relations

X`
~ja"X~

ja and X~
~ja"X`

ja . (25)

The eigenproblem in Eq. (22) can be solved reliably using standard numerical packages such as
those in LAPACK [25]. A suitable LAPACK driver would be module DGEEV (double precision)
for a general non-symmetric eigenmatrix such as ! in (22). However, DGEEV looks for real and
imaginary components, and it is quicker to use a dedicated routine solving for real eigenvalues
only. The module ASMYTX as used in DISORT is convenient for this purpose. Both modules are
implemented in the code; DGEEV and ASYMTX give identical results in all cases, but the latter is
faster. A normalization condition will be imposed on the eigenvectors (this will be important in the
perturbation analysis):

DD12a DD,
N
+
j/1

12
ja"1 for a"1,2, N. (26)

Eigenvectors from the ASYMTX module are unnormalized; those from DGEEV already satisfy
(26).

2.2.2. Particular solutions
For the particular solution of (15) appropriate to the plane-parallel beam source term, an ansatz

of the form I
j
&=

j
exp(!q/k

0
) yields the following (see [21] for details):

N
+

j/~N

A("%!.)
ij

=
j
"B ("%!.)

i
, (27)

where

A("%!.)
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"A1#
k
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k
0
Bdij!a
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D

ij
and B ("%!.)

i
"

F
_

2p
(2!d

m0
)D(k

i
,!k

0
). (28)

D
ij

is de"ned as in (23), but with indices i, j"$1,2,$N for all stream angles. D(k
i
,!k

0
) is

de"ned similarly for the cosine of the beam solution zenith angle. Eq. (27) may be solved as
a standard linear matrix algebra problem for the component values=

j
. In the model, this is done

using the LAPACK combination DGETRF for an LU-factorization of the matrix A("%!.), followed
by DGETRS for the solution by backsubstitution. Note that it is possible to use the intrinsic
symmetry of the discrete ordinate equations to halve the order of system (27); one then requires an
auxiliary equation and sum and di!erence vectors de"ned in a similar way to those used for the
homogeneous solution (see for example [26]).

The particular solution of Eq. (15) corresponding to the thermal emission source term may be
found with the power-series substitution I

j
"d

m0
+S

s/0
¹

j,s
qs. Successive powers of optical depth
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q in the resulting polynomial are equated to zero, generating the following recurrence relation for
the coe$cients ¹

j,s
:

+
j

A(5)%3.!-)
ij

¹
j,s
"G

(1!u)b
s
e
i

for s"S,

(1!u)b
s
e
i
#(s#1)k

i
¹

i,s`1
for s(S,

(29)

where A(5)%3.!-)
ij

"d
ij
!a

j
D

ij
and e

i
is a 2N-vector with unit entries. The linear algebra system in

(29) can again be solved using LAPACK modules DGETRF for the LU-decomposition of A(5)%3.!-),
followed by repeated application of DGETRS for the recurrence coe$cients ¹

j,s
.

2.3. Boundary conditions and the complete solution

We assume there are K homogeneous layers in the atmosphere, with K#1 layer boundaries. We
use indices p, q and r for labeling layers. Combining the discrete ordinate homogeneous solutions
and the particular integrals, the quadrature components of the di!use intensity in layer p are given
by

I
jp
"

N
+
a/1

¸
paX`

jpae~kpa (q~qp~1)#M
paX~

jpae~kpa (qp~q)#J
jp

, (30)

where

J
jp
"=

jp
exp(!q/k

0
)#d

m0

S
+
s/0

¹
jp,s

qs. (31)

Suitable boundary conditions will enable the integration constants ¸
pa and M

pa to be determined.
Here we have used the scaling transformation suggested by Stamnes and Conklin [24] and used in
DISORT [14] to ensure that the exponential factors remain bounded and the discrete ordinate
solution numerically stable. The boundary conditions are (see Fig. 1a):

(BC1) no downward di!use radiation at the top of atmosphere;
(BC2) continuity of the intensity "eld at all intermediate levels;
(BC3) a surface re#ection condition at the lowest level.

In terms of the discrete ordinate solutions (30), these conditions may be written, respectively, as

I
~jp

(q
0
)"0 for j"1,2,N and p"1, (32a)

I
jr
(q

r
)"I

jp
(q

r
) for j"$1,2,$N and 1(p4K, r"p!1, (32b)

I
jK

(q
K
)"(1#d

m0
)R

N
+
i/1

a
i
k
i
oH
m
(k

j
,!k

i
)I

~iK
(q

K
)#IH(k

j
) for j"1,2,N. (32c)

Here, IH(k
j
) in (32c) comprises a surface emission term and a re#ection of the direct beam:

IH(k
j
)"d

m0
i(k

j
)B(¹

g
)#

F
_

k
0

n
e~qK @k0RoH

m
(k

j
,!k

0
). (33)

De"ning transmittance factors #
pa"exp(!k

pa*p
), for p"1,2, K and a"1,2,N, where

*
p
"(q

p
!q

p~1
) is the optical thickness of layer p, we substitute the discrete ordinate solutions (30)
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Fig. 1. (a) Boundary conditions for the discrete ordinate solution in a multi-layer atmosphere; (b) schematic matrix
structure for the boundary value problem. All marked blocks have N rows and 2N columns, with K layers in total; the
matrix has 2NK columns and 2NK rows, with 3N!1 sub- and super-diagonals. All other entries are zero.

into the boundary conditions (32a)}(32c) to arrive at the following set of equations which de"ne the
linear algebra system for the solution of the boundary value problem:

N
+
a/1

M¸
paX`

~jpa#M
pa#paX~

~jpaN"!J
~jp Kq0 , (34a)

N
+
a/1

[M¸
ra#raX`

jra#M
raX~

jraN!M¸
paX`

jpa#M
pa#paX~

jpaN]"(J
jp
!J

jr
)Kqr , (34b)

N
+
a/1

M¸
pa#pa'`

ja#M
pa'~

jaN"IH(k
j
)!(

j KqK . (34c)

Eq. (34a) is BC1 for p"1 and j"1,2,N; (34b) is BC2 for p"2,2, N, r"p!1 and
j"$1,2,$N; and (34c) is BC3 for p"K and j"1,2, N. J

jp
are the particular integrals

R.J.D. Spurr et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 68 (2001) 689}735 699



evaluated at the optical depths indicated. We have the following two auxiliary equations for the
BC3 condition:

'B
ja"XB

jKa!(1#d
m0

)R
N
+
i/1

a
i
k
i
oH
m
(k

j
,!k

i
)XB

~iKa , (35a)

(
j
"J

jK KqK!(1#d
m0

)R
N
+
i/1

a
i
k
i
oH
m
(k

j
,!k

i
)J

~iK KqK . (35b)

Eqs. (34a)}(34c) may be written in the matrix form AX"B, and solved simultaneously for the
vector X of unknowns. The structure of the matrix A is shown in Fig. 1b; the order of this linear
system is 2NK. The matrix A has 3N!1 sub- and super-diagonals; once it is compressed into
band-storage form, a standard LU-decomposition linear matrix algebra package can be used to
"nd the solution e$ciently. To this end, the double-precision driver modules DGBTRF and
DGBTRS from LAPACK [25] were used. DBGTRF executes the LU-factorization of A and is
called once. DGBTRS "nds the solution X by backsubstitution and can be called repeatedly for
di!erent vectors B. In particular, it will be seen in Section 3 that the weighting function problem
reduces in essence to the creation of a series of vectors B

c
which depend on the parameter c being

varied; the matrix A is unchanged.
The above procedure gives the intensity "eld at the quadrature streams for any optical depth in

the atmosphere, and for a single Fourier component. For the satellite application, the upwelling
TOA intensity "eld may be found by substituting q"0 for p"1 and j"1,2,N in (30).

For the intensity at arbitrary k, we use the source function integration technique (also known as
`post-processinga) which was "rst developed by Chandrasekhar [12], and is now standard practice
in discrete ordinate theory. It has been shown (see for example [20]) that in addition to preserving
continuity at o!-quadrature stream cosines, this method is superior to numerical interpolation
over the quadrature solutions. Here we con"ne our attention to upwelling TOA intensity.

The procedure relies on the formal integration of Eq. (5). In an inhomogeneous atmosphere,
source terms must be integrated on a layer-by-layer basis. We adopt the recurrence relation

I
p~1

(k)"I
p
(k)c

p
(k)#"

p
(k) (36)

for the upwelling intensity I
p~1

(k) at the top of layer p. The layer transmittance factor is de"ned to
be c

p
(k)"exp(!*

p
/k) where *

p
"q

p
!q

p~1
, and the integrated layer source term "

p
is de"ned by

"
p
(k)"P

qp

qp~1

dq
k

J
p
(q,k)e~(q~qp~1)@k. (37)

The recurrence is valid for p"K,K!1,2, 1. The starting value is the bottom-of-the-atmosphere
source term I

K
(q

K
, k), and the desired TOA result is I

0
(k). In (37), the term J

p
(q,k) in the integrand

is approximated by its discrete ordinate form

J
p
(q, k)K

F
_

2p
(2!d

m0
)D(k,!k

0
)e~q@k#+

j

a
j
D(k,k

j
)I

p
(q,k

j
), (38)

where the D(k,k
j
) and D(k,!k

0
) terms are de"ned as before, but with the arbitrary stream cosine

k replacing the quadrature values k
i
. One can then perform the optical depth integrations explicitly
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and write down closed-form expressions for the layer source terms and the recursion starter
I
K
(q

K
, k). For the details of these calculations, refer to Appendix C.

This completes the solution for a single Fourier component; to generate the intensity "eld at
arbitrary azimuth angles, we sum these components according to Eq. (9). Although it is possible to
compute all Fourier terms (2N!1 harmonics require at least N half-space quadratures), it is usual
to terminate the azimuth series when the addition of an extra harmonic does not alter the overall
intensity by more than a pre-speci"ed relative amount t (a typical value is t"0.005). This
convergence test must be satis"ed for each output stream. Furthermore, it makes sense to apply
this convergence test to at least two successive azimuth contributions to avoid accidental omissions
(the Rayleigh scatter intensity contribution for m"2 is greater than that for m"1 for example).
This procedure is adopted in the present work, in line with the policy of DISORT [14] and
GOMETRAN [19] regarding series convergence.

3. Perturbation analysis of the discrete ordinate solution

3.1. Rules for the layer perturbation analysis

For a multi-layer atmosphere, we wish to determine the sensitivity of the discrete ordinate
solution to a variation in a single atmospheric variable x

q
de"ned in layer q. A perturbation in

x
q

will induce changes in the main optical inputs for the layer, namely the single-scatter albedo
u

q
and the layer optical thickness *

q
. We suppose that x

q
changes by a relative amount e, and that

to "rst order in e, this induces a relative change of u
q
e in u

q
, and an absolute change of v

q
e in *

q
. The

variation x
q

in layer q does not a!ect single-scatter albedos in other layers. However, the optical
depth value at the bottom of the layer q has increased by v

q
e; for all layers below q, the optical depth

values are increased by the same amount. The quantities u
q

and v
q

depend on the constitution and
physical properties of the atmosphere. Since the discrete ordinate method is a generic scattering
formalism, it is not necessary to know this dependence in the perturbation analysis that follows.
Using primes to denote "rst-order perturbed values, we write

x@
q
"x

q
(1#e), (39a)

u@
p
"G

u
q
(1#u

q
e) for p"q,

u
p

otherwise,
(39b)

q@
p
"G

q
p
#v

q
e for p5q,

q
p

for p(q.
(39c)

To include sensitivity to the thermal emission source term, we suppose that the variable x
q
induces

an absolute change h
qs

in each of the Planck function coe$cients b
qs

in Eq. (13); coe$cients for
layers other than q are not a!ected. Thus

b@
ps
"G

b
ps
#eh

ps
for p"q, s"0,2, S,

b
ps

otherwise.
(39d)
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These are the perturbation analysis rules. The variational quantities u
q
, v

q
and h

qs
are inputs to the

model; the examples in Section 4 will illustrate the construction of these inputs for two test-case
atmospheres. It should be noted that the above rules apply only to plane-parallel atmospheres; for
a curved-atmosphere treatment of the direct beam attenuation (the `pseudo-sphericalamodel), the
rules governing the optical depth variation v

q
are quite di!erent (R. Spurr, paper in preparation).

3.2. Perturbation analysis of the discrete ordinate component solutions

Now we examine the discrete ordinate solution given by (30) and (31). For layer q, the beam source
particular solution vector=

jq
and the eigenvalues k

qa and solution vectors X
jqa of the homogeneous

equation depend only on the single-scatter albedo u
q

for that layer. In fact, all three of these
quantities are directly proportional to u

q
, and it follows from (39b) that changes in these quantities

are directly proportional to u
q
e. The "rst-order perturbed values of k, X and= are thus de"ned as

k@
qa"k

qa#u
q
ef
qa , (40a)

X@
jqa"X

jqa#u
q
e>

jqa , (40b)

=@
qa"=qa#u

q
eZ

qa . (40c)

The thermal emission particular solution vector ¹
jqs

depends both on u
q

and on the expansion
coe$cients b

qs
. For this term the "rst-order perturbed value is de"ned to be

¹@
jqs

"¹
jqs

#e<
jqs

. (40d)

In these de"nitions, j"$1,2,$N labels the quadrature streams, a"1,2,N labels the eigen-
solutions, and s"0,2, S labels the thermal expansion coe$cients. These de"nitions apply only to
the RTE solutions in layer q; for other layers, unperturbed values of the homogeneous solution and
particular integrals may be used.

The "rst task of the perturbation analysis is to establish the quantities f, >, Z and < de"ned in
Eqs. (40a)}(40d). To derive f and >, it is necessary to construct a perturbed form of the eigenprob-
lem (22) based on the single-scatter albedo variation u

q
; the normalization condition (26) provides

an additional constraint. First-order theory reduces the calculation to a linear algebra system of
order N#1. The details of this calculation can be found in Appendix A. Perturbation analysis for
the particular integral factors Z and < is more straightforward, since the original (unperturbed)
solution vectors= and ¹ were determined through linear matrix algebra; the details are also given
in Appendix A.

Assuming these component factors have been determined, we move on to the second stage of the
analysis.

3.3. Perturbation analysis of the boundary value problem

This is the most important step of the analysis. We require perturbed values of the constants of
integration, which we de"ne as follows:

¸@
pa"¸

pa#eN
pa , (41a)

M@
pa"M

pa#eP
pa . (41b)
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These de"nitions are valid for all layers p"1,2, K and for a"1,2, N. The task of this section is
to determine the factors N

pa and P
pa .

We can write down expressions for the perturbed intensity "eld I@
jp

, making a distinction between
layer q in which varying atmospheric property x

q
induces changes in both single-scatter albedo and

optical depth, layers p(q for which there is no change in optical depth, and layers p'q, for which
only the optical depths are altered. Speci"cally:

I@
jp
"=@

jp
e~q@k0#

N
+
a/1

¸@
paX@`

jpae~k
@
pa (q~qr )#M@

paX@~
jpa e~k{pa (q@p~q) for p"q, (42a)

I@
jp
"=

jp
e~q@k0#

N
+
a/1

¸@
paX`

jpae~kpa (q~qr )#M@
paX~

jpae~kpa (qp~q) for p(q, (42b)

I@
jp
"=

jp
e~q@k0#

N
+
a/1

¸@
paX`

jpae~kpa (q~q@r )#M@
paX~

jpae~kpa (q@p~q) for p'q. (42c)

Only the beam source term has been included in the above (this is purely for convenience of
exposition). In these de"nitions, q@

p
"q

p
#ev

q
for p5q, r"p!1, and the argument q is regarded

as a dummy variable.
The key point is that the same boundary conditions hold for the perturbed xeld as those applied to

the original "eld. There are three cases to be distinguished and eight separate conditions; these are
illustrated in Fig. 2, and summarized below with reference to the set of equations (42a)}(42c). The
general situation involves variation in a layer q that is somewhere in the middle of the atmosphere
(Case 1, BCL1}BCL6). For q"1, we have Case 2 with modi"ed TOA condition BCL3M followed
by BCL4 to BCL6. For Case 3, q"K (bottom layer), and we require BCL1 to BCL3 followed by
a modi"ed lower boundary condition BCL4M. The eight conditions are:

(BCL1) No downward di!use radiation for p"1 at q"q
0
.

N Set Eq. (42b) to zero for downwelling streams;
(BCL2) Continuity at level q"q

p~1
, for 1(p(q.

N Equate two expressions of type (42b) at this level, for all streams;
(BCL3) Continuity at upper boundary q"q

q~1
of layer q.

N Equate (42a) and (42b) at this level, for all streams;
(BCL4) Continuity at lower boundary q"q

q
of layer q.

N Equate (42a) and (42c) at this level, for all streams;
(BCL5) Continuity at level q"q

p
, for q(p(K.

N Equate two expressions of type (42c) at this level, for all streams;
(BCL6) Surface boundary condition for p"K at q"q

K
.

N Construct condition from expressions of type (42c) at this level;
(BCL3M) No downward di!use radiation for q"1 at q"q

0
.

N Set Eq. (42a) to zero for downwelling streams;
(BCL4M) Surface boundary condition for q"K at q"q

K
.

N Construct condition from expressions of type (42a) at this level.
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Fig. 2. Boundary conditions for the perturbed discrete ordinate solution in a multilayer atmosphere.

Explicit analytic expressions for these eight boundary conditions can be found in Appendix B. It
is seen that the boundary value solution for N

pa and P
pa has the same form as that used in

Section 2.3 for constants ¸
pa and M

pa . Recalling the linear system AX"B de"ned by conditions
BC1, BC2 and BC3 for the original "eld, we now have a similar system AXH"BH for the
perturbed boundary conditions. Here, the column vector BH depends uniquely through u

q
and

v
q

on the atmospheric parameter x
q

that is being varied, and of course on the layer q in which the
variation occurs. Since the matrix A has been established and its LU-decomposition already
performed for the unperturbed boundary value problem, it follows that solutions XH may be found
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by straightforward backsubstitution using the LU-factorized form of A. Thus the determination of
the perturbed integration constants is equivalent to the construction of a series of column vectors
BH for each parameter to be varied. These column vectors may be constructed from the detailed
expressions listed in Appendix B.

3.4. Layer weighting function computation

We now have all the ingredients in place for an explicit derivation of the complete discrete
ordinate solution for the perturbed "eld corresponding to a variation x

q
in layer q. The normalized

weighting function components for the quadrature streams k
j

are found by relaxing the "rst-order
perturbation

K
jp

(x
q
)"x

q

LI
jp

Lx
q

"lim
e?0

I@
jp
!I

jp
e

. (43)

This de"nition is quite general and weighting functions for the quadrature streams can be
computed at any optical depth. For the TOA upwelling values, set p"1 and q"0. To determine
the perturbed "eld (and hence the weighting functions) at TOA for arbitrary zenith angles k, we
must carry out a post-processing evaluation of the perturbed "eld. We may write down a perturbed
version of the recursion relation (36)

I@
p~1

(k)"I@
p
(k)c@

p
(k)#"@

p
(k). (44)

Note that c@
q
(k)"c

q
(k)(1!v

q
e/k), and c@

p
(k)"c

p
since only layer q contributes to the variation of

optical thickness *
q
. To determine "@

p
(k), we go back to the original expressions derived in

Appendix C.1 using the source function integration method, and apply the perturbations explicitly
using the quantities derived in Sections 3.2 and 3.3 for the perturbed discrete ordinate solution.
This is a relatively involved exercise, and care must be taken to distinguish between the layer
q containing the varying parameter x

q
and all other layers. We also require the perturbed

bottom-of-the-atmosphere source term I@
K
(k) that starts recursion (44). Details of these calculations

may be found in Appendix C.2. As in (43) above, the TOA weighting function is determined by
relaxing the perturbation e.

The perturbation analysis described above applies to a single Fourier component (harmonic) of
the intensity. The azimuth cosine expansion Eq. (9) applies equally to the weighting functions
de"ned in (43) and (44), namely,

K
jp

(x,/
0
!/)"

2N~1
+

m/0

Km
jp

(x)cosm(/
0
!/), (45)

where x is the parameter undergoing variation. In this work, a separate convergence test is not
applied to the series in Eq. (45); we continue to rely on the convergence criterion applied to the
unperturbed intensity "eld.

3.5. Albedo weighting functions

To derive an albedo weighting function, a relative perturbation is applied to the albedo:
R@"R(1#e). This perturbation does not a!ect layer optical depths and single-scatter albedos so
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we can use the original homogeneous solutions and particular integrals in all layers. We then have
only to solve for the perturbed integration constants N

pa (R) and P
pa (R) relevant to this problem.

The surface boundary condition will require special consideration for an albedo variation (call this
condition BCL6R), but for the other levels BCL1 and BCL2 as described in Section 3.3 will apply.
Once again, the determination of the perturbed-"eld integration constants will emerge from the
solution of the linear systemAXH"BH, where the column vectorBH(R) now depends uniquely on
the albedo perturbation. The derivations of BCL6R and the associated vector BH(R) are given in
Appendix B.

The TOA albedo weighting function is given at the quadrature streams by

K
jp

(R)"R
LI

jp
LR

"lim
e?0

I@
jp
!I

jp
e

for p"1 and q"0. (46)

The post-processed albedo weighting function is easy to establish. Since there is no layer
variation, we can use the recursion relation (36) and the source function terms (37) for the original
solution, together with a new bottom of the atmosphere source function which re#ects the albedo
variation. Details can be found in Appendix C.2.

Surface emission plays no part in the perturbation analysis for weighting functions with respect
to layer parameters that may vary. However, since the surface emissivity depends on the albedo R,
its variation must be included when dealing with albedo weighting functions. This consideration
applies only to the fundamental Fourier harmonic m"0. If R@"R(1#e) is the albedo perturba-
tion, then from the de"nition in Eq. (21), the perturbed emissivity is found to be

i@(k)"i(k)#(i(k)!1)e. (47)

This is true for all values of k, not just the quadrature streams. Eq. (47) is required in the
determination of the perturbed boundary condition BCL6R in the presence of surface emission.

4. The LIDORT model; two weighting function examples

Before discussing the two examples of LIDORT results in Sections 4.4 and 4.5, we summarize the
LIDORT package and remark on two practical aspects, the "rst regarding atmospheric inputs for
more than one scatterer, and the second the issue of weighting function veri"cation.

4.1. Implementation of the LIDORT package

The numerical model LIDORT Version 1.1 is based on the theory of the previous two sections.
Intensity and weighting function output are determined for the positive (upwelling) direction at
TOA (q"0), for arbitrary angular direction (k, /), and for a plane-parallel medium. The number of
terms in the Fourier series required for convergence depends on the azimuth angle and the degree
of the discrete ordinate approximation. Double-precision arithmetic is used throughout LIDORT;
the code is written in FORTRAN 77. For the numerical tools, we used module ASYMTX for the
homogeneous solution eigenproblem (extracted from DISORT), and LAPACK modules [25] for
all linear matrix algebra systems. The model contains a standardized error handling procedure in
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addition to a number of auxiliary routines for both the reading of input data from "les, and the
generation of result data to "le.

LIDORT has been designed as a generic tool to be used in a wide variety of retrieval
applications. It is a pure scattering formalism; the detailed physics required to set up the optical
inputs for any given application must be supplied by the user. The `atmospheric preparationa
interface for LIDORT is one of the most important aspects, and we discuss this in detail for the two
examples below. There are no databases or climatologies of atmospheric and optical properties in
the model. The LIDORT package is called as a subroutine within a user-de"ned environment; the
usage is similar to that for DISORT [14].

In order to make the model portable and robust, it is necessary to develop a clearly interfaced
and well-documented software package that will help the user to "nd the right application. The
LIDORT User's Guide has a description of the complete package, with detailed notes on the input
variables required to run the model, a discussion with examples on the construction of a typical
environment for the model and an interface to set up the appropriate geophysical inputs. The
User's Guide also contains instructions on installation and execution. A test data set has been
prepared for release; this is based closely on the example described in detail in Section 4.5. The
LIDORT source code and User's Guide may be downloaded from the SAO web site (http://cfa-
www.harvard.edu/lidort/).

4.2. Treatment with several scatterers

In most practical applications, there are often two or more scatterers present (for example in
terrestrial atmospheres). Although the theory of Sections 2 and 3 was presented for a single
scatterer, it is straightforward to extend the equations to deal with two or more particulates. For an
intensity-only calculation, we can de"ne a combined single-scatter albedo u

q
and phase function

moments b
lq

for layer q:

u
q
"+

d

u
qd

and b
lq
"+

d

b
lqd

u
qd

u
q

, (48)

where d is an index for the scatterers and l for the phase function moment. One can then apply the
discrete ordinate formalism using the quantities de"ned in (48); the combination u

q
b
lq

appears in
the Legendre polynomial sums (14). (DISORT [14] also uses this kind of input). For the weighting
functions, we suppose that atmospheric parameter x

q
is varying in layer q, inducing variational

changes u
qxd

in the individual single-scatter albedos u
qd

. Using the above combination, we can
de"ne a perturbed form (u

q
b
lq
)@"u

q
b
lq
(1#u

qlx
e). The combined variational input u

qlx
is then

given by

u
qlx

"

1
u

q
b
lq

+
d

b
lqd

u
qd

u
qxd

. (49)

One can then proceed with the perturbation theory as described in Section 3. These considerations
do not apply to the optical depth variation. In the examples below, we will illustrate the generation
of input quantities u

qd
and u

qxd
.
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4.3. Weighting function verixcation

All weighting function output may be checked against "nite-di!erence equivalents calculated
using independent intensity-only calls to the model for externally perturbed atmospheric condi-
tions. To obtain a `"nite-di!erencea weighting function K

FD
(x

q
) with respect to atmospheric

parameter x
q
in layer q, we apply small relative external perturbations $e

FD
to x

q
. The layer input

to the model is recon"gured by using x`
q
"x

q
(1#e

FD
) instead of x

q
in layer q, and leaving all other

inputs unchanged. The perturbation will change the single-scatter albedo in layer q and the optical
depth grid for all levels below and including q. The resulting TOA intensity is denoted I(x`

q
). The

simulation is repeated with x~
q
"x

q
(1!e

FD
) for the perturbed variable, with the result I(x~

q
). The

"nite di!erence approximation to the weighting function is

K
FD

(x
q
)K

I(x`
q

)!I(x~
q

)
2e

FD

. (50)

Although the double quadrature scheme is usual, some extra runs were also carried out using the
single scheme over the interval (1,!1). For this latter scheme, we have the additional closed-form
expressions for the homogeneous and particular solutions developed in the original work by
Chandrasekhar; as noted in Appendix D, these require an initial determination of the roots of the
characteristic equation. It is also shown in this appendix that closed-form expressions for the
perturbed values of these component solutions can be derived. These alternative expressions allow
us to make an independent check on weighting function solutions derived using the usual
`eigenproblem-and-linear-algebraa approach to the RTE solution. (The characteristic equation
was solved using standard eigenvalue modules [27]; this involves considerably less work than
solving the complete eigenproblem).

4.4. LIDORT test for a 5-layer medium with two scatterers

The "rst example described here is for a 5-layer atmosphere ("ve layers are su$cient to test all
eight of the perturbed boundary conditions in Section 3.3). This example will illustrate the
generation of variational inputs u

q
and v

q
controlling weighting function output. This scenario also

provides a shakedown test for the model.
First consider a single homogeneous layer with absorption and scattering coe$cients a and

p (per unit depth), and altitude thickness z. The single-scatter albedo is u"p/(a#p), and the
optical depth is q"z(a#p). If we perturb the absorption coe$cient a by a relative amount e, then
a@"a(1#e), and

u@"u(1#u
a
e), where u

a
"!a/(a#p), (51a)

and

q@"q#v
a
e, where v

a
"az. (51b)

Similarly if the scattering coe$cient p is perturbed by a relative amount e, so that p@"p(1#e),
then

u@"u(1#u
s
e), where u

s
"a/(a#p), (52a)
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Table 1
Setup for 5-layer test of LIDORT

Property/layer 1 2 3 4 5

Absorption coe$cient, scatterer 1 0.05 0.17 0.32 0.50 0.35
Absorption coe$cient, scatterer 2 0.04 0.18 0.36 0.56 0.37
Scattering coe$cient, scatterer 1 0.25 0.25 0.25 0.25 0.25
Scattering coe$cient, scatterer 2 0.25 0.26 0.27 0.28 0.29
Layer thickness 0.05 0.05 0.05 0.05 0.05
Cumulative optical depth 0.0295 0.0725 0.1325 0.2120 0.2750
Single scatter albedo, 1 0.42373 0.29070 0.28033 0.15733 0.19841
Single scatter albedo, 2 0.42373 0.30233 0.22500 0.17610 0.23016
Asymmetry parameter, scatterer 1 0.63 0.71 0.69 0.69 0.69
Asymmetry parameter, scatterer 2 0.65 0.70 0.60 0.65 0.65
Thermal emission coe$cient b

0
0.2813 0.5684 0.5820 0.5692 !0.7276

Thermal emission coe$cient b
1

19.128 9.3951 9.2080 9.3048 15.422

and

q@"q#v
s
e, where v

s
"pz. (52b)

Thus for a single layer speci"ed solely by absorption and scattering coe$cients, the parameter
variations Mu

a
, v

a
N and Mu

s
, v

s
N must be input to LIDORT in order to obtain weighting functions

with respect to these coe$cients.
We now extend these arguments to a 5-layer atmosphere with two particulates. Let the

absorption and scattering coe$cients be a
qd

and p
qd

, with q"1,2, 5, indexing the layers, and
d"1, 2 indexing particulates, along with altitude thickness values z

q
. The layer optical thickness

values are d
q
"e

q
z
q
, where the layer extinction is e

q
"a

q1
#p

q1
#a

q2
#p

q2
. Single-scatter

albedos are u
qd
"p

qd
/e

q
. The two particulates have layer phase function moments b

lq1
and b

lq2
,

where l"0,2, 2N!1. Phase function moments for this test case can be generated by assuming
the Henyey}Greenstein phase envelope (see for example [28]), for which the moments are powers
of the asymmetry parameters g

qd
, that is, b

lqd
"(g

qd
)l. Table 1 summarizes all the optical properties

used in this example.
In a given layer q, there are four possibilities for the parameter x

q
, namely the absorption

coe$cient of particulate 1, the scattering coe$cient of particulate 1, the absorption coe$cient of
particulate 2, or the scattering coe$cient of particulate 2. (In Eq. (53) below, we keep this ordering).
Now let u

qdx
be the perturbations induced in u

qd
by x

q
, that is, u@

qd
"u

qd
(1#eu

qdx
). Let v

qx
be the

corresponding changes induced in optical thickness values q
q
. By the reasoning used to derive Eqs.

(51) and (52), we have for this scenario:

u
q1x

"C
!a

q1
/e

q
1!p

q1
/e

q
!a

q2
/e

q
!p

q2
/e

q
D, u

q2x
"C

!a
q1

/e
q

!p
q1

/e
q

!a
q2

/e
q

1!p
q2

/e
q
D and v

qx
"C

a
q1

z
q

p
q1

z
q

a
q2

z
q

p
q2

z
q
D. (53)
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Table 2
LIDORT output for relative azimuth 03

Stream angle in (") LIDORT intensity DISORT intensity p
31

Weighting function p
31

WF by 2% "nite di!.

88.86231! 0.105562 0.105592 !1.623333E-03 !1.623342E-03
84.16484! 0.0661006 0.0661281 !4.062011E-03 !4.062021E-03
76.27667! 0.0516912 0.0516913 !3.317248E-03 !3.317252E-03
65.90300! 0.0491804 0.0491682 !2.687362E-03 !2.687364E-03
53.72103! 0.0490656 0.0490606 !2.313743E-03 !2.313744E-03
40.29133! 0.0498576 0.0498572 !2.107697E-03 !2.107698E-03
26.06016! 0.0501983 0.0501983 !1.989064E-03 !1.989065E-03
11.43654! 0.0504737 0.0504737 !1.932222E-03 !1.932223E-03
88.85 0.105363 0.105393 !1.637481E-03 !1.637491E-03
80.0 0.0557402 0.0557520 !3.682994E-03 !3.683000E-03
76.27 0.0516864 0.0516865 !3.316667E-03 !3.316671E-03
45.0 0.0495563 0.0495551 !2.164834E-03 !2.164835E-03
30.00 0.0500726 0.0500726 !2.013753E-03 !2.013753E-03
11.44 0.0504737 0.0504737 !1.932232E-03 !1.932232E-03
0.0 0.0504358 0.0504359 !1.917111E-03 !1.917111E-03

!Quadrature angles.

For each layer, the quantities in (53) constitute the required input to the LIDORT model to obtain
the desired weighting function output.

The solar zenith angle cosine k
0

is taken to be 0.75 and the relative azimuth angle 03. The surface
is assumed Lambertian with albedo R"0.3. Thermal emission is omitted from the "rst set of
results. The RTE is solved using eight discrete ordinate streams in the hemisphere. With four
possible parameter variations for each of the "ve layers, there are 20 layer weighting functions in
all. LIDORT will generate the TOA intensity and all 20 weighting functions with a single call from
a master module. Generation of this set of weighting functions using the external "nite-di!erence
approximation (50) would require 40 separate calls to an intensity-only model. In addition to the
eight quadrature values, intensity and weighting function output is given at seven user-de"ned
zenith angles, several of which are deliberately chosen close to quadrature values in order to test the
accuracy of the post-processing function. With a Fourier azimuth series accuracy criterion of 0.001,
seven Fourier terms are required for convergence. All the results in Table 2 are direct-beam
normalized (that is, the #ux factor F

_
in Eq. (7) is set to 1).

In this table, DISORT intensity output for the same scenario is presented for comparison; the
agreement with the LIDORT values is excellent, with small di!erences in the last decimal places
probably due to the single-precision arithmetic used in DISORT. The last two columns are
normalized weighting functions for a variation in layer 3 of the scattering coe$cient for particulate
1, calculated "rst with LIDORT in weighting function mode, and secondly with LIDORT in
intensity-only mode calculating "nite di!erence approximations to the weighting functions based
on a 2% external perturbation of the scattering coe$cient. The results are close, because of the
near-linear dependence of the solution on the input optical parameters. Fig. 3 (top) shows the
intensity output (stream angles are marked with an asterisk) from Table 2. Note the smooth
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Fig. 3. Intensity and weighting function output for a 5-layer atmosphere, relative azimuth 03: (top) intensity (quadrature
values marked by asterisk); (bottom) weighting functions for layer 3.

interpolation to user-de"ned zenith angles. Fig. 3 (bottom) are the TOA weighting functions with
respect to the absorption and scattering coe$cients in layer 3.

Some further runs with this scenario were carried out to test the inclusion of thermal emission
source terms. Two thermal expansion coe$cients b

0q
and b

1q
were computed o!-line using the

Planck function module in DISORT, for a temperature of 550 K (TOA), and 600, 620, 640, 660, and
680 K at the lower boundaries of the succeeding "ve layers, and for spectral range of 5000}5100
wavenumbers. The coe$cients b

0q
and b

1q
are shown in Table 1 in the last two rows (up to a factor

of 4p, DISORT takes the same numbers in its computation of the intensity). Using these coe$cients
enables us to check intensity values against DISORT output. To test the e!ect of changes in
intensity due to thermal emission variations, we assume that any of the optical properties of the
atmosphere will induce an identical change in the thermal expansion coe$cients. That is, if
f@
q
"f

q
(1#e) for property f

q
, then b@

sq
"b

sq
(1#e) for each of the thermal expansion coe$cients.

This means that the perturbation input values de"ned in Eq. (39d) are h
sq
"b

sq
for s"0 and 1.

This is obviously not a physical situation, but it serves to check that weighting functions with
respect to the Plank function coe$cients are being correctly calculated. A similar selection of
results for this scenario is shown in Fig. 4.

4.5. Ozone VMR and temperature proxle weighting functions in a terrestrial atmosphere

For this example, the atmosphere has height 60 km, with a vertical resolution throughout of
1 km. Molecular (Rayleigh) scattering and aerosol scattering are present in all layers. We take
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Fig. 4. Intensity and weighting function output for 5-layer atmosphere, relative azimuth 03, including thermal and
surface emission: (top) intensity (quadrature values marked by asterisk); (bottom) weighting functions for layer 3.

O
3

volume mixing ratio (VMR) temperatures and pressures for a `tropicala standard atmosphere
[29], interpolated to the mid-points of each layer. The temperature and ozone VMR pro"les are
shown in Fig. 5.

For the "rst runs, we take a single wavelength of j"324.8863 nm at one of the peaks of the
O

3
Huggins absorption bands; cross section values are obtained from a standard data set [30].

These cross sections m are temperature-dependent so they must be evaluated for each layer
temperature ¹

q
using the quadratic parameterization [30]:

mj(¹q
)"mj0M1#(¹

q
!¹

0
)mj1#(¹

q
!¹

0
)2mj2N. (54)

Here, the "rst coe$cient mj0 is the value at reference temperature ¹
0
. If the O

3
VMR in layer q is

C
q
, and the cross-section is mj(¹q

), then the molecular absorption coe$cient a
q1

(in (km~1)) is
a
q1
"C

q
mj(¹q

)o
q
, with the air density o

q
in (mol cm~2 km~1) given by o

q
"(¹

0
P
q
/P

0
¹

q
)o

0
,

where the zero su$x denotes values at standard temperature and pressure (STP).
The Rayleigh scattering cross-section at STP is given by

Q
R!:

(¹
0
)"

32p3(n!1)2
3¸2j4

]
6#3*
6!7*

, (55)

where * is the depolarization ratio, ¸ is Loschmidt's number, and n is the refractive index of air.
Values of Q

R!:
may be calculated from an empirical formula [31]. Q

R!:
needs to be multiplied by

the layer air density o
q

to obtain the required scattering coe$cient p
q1

(km~1). For the aerosol
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Fig. 5. Temperature and O
3

volume mixing ratio pro"les for 0}60 km; `tropicala atmosphere.

loading and optical properties, a LOWTRAN model [32] is selected, with maritime-type boundary
layer aerosol and background stratospheric and tropospheric optical properties; values from the
database are linearly interpolated to wavelength j. The resulting optical coe$cients (in (km~1)) are
a
q2

and p
q2

.
The Rayleigh scattering envelope has an a#b cos2 h dependence with respect to scatter angle h;

there are only three terms in the phase function Legendre expansion. The Rayleigh phase function
Legendre moments are b

0
"1, b

1
"0 and b

2
"(1!*)/(2#*). The depolarization ratio * is

wavelength-dependent and may be computed from another empirical formula [31]. For the
aerosols we assume Henyey}Greenstein phase functions with asymmetry parameters taken from
the appropriate choice of LOWTRAN aerosol loading and interpolated to the wavelength of
interest. The solar zenith cosine k

0
is taken to be 0.75, the relative azimuth 603 and the Lambertian

surface albedo 0.75. A 10-stream approximation is used in the RTE solution, with accuracy
criterion 0.001. All output is normalized to the incident intensity of the direct beam. There is no
thermal or surface emission.

We are interested in weighting functions with respect to the O
3

VMR pro"le distribution C
q
.

Writing C@
q
"C

q
(1#e) for the perturbation, we "nd that

u
q1

(C
q
)"u

q2
(C

q
)"!a

q1
/e

q
, (56a)

v
q1

(C
q
)"a

q1
z
q
. (56b)

Here, a
q1

is the O
3

absorption coe$cient and e
q
and z

q
the total extinction and height thickness for

layer q.
For temperature weighting functions, the functional dependence of the optical properties on

temperature is more complex. If the relative variation in temperature ¹
q

in layer q is e, so that
¹@

q
"¹

q
(1#e), then it follows that o@

q
"o

q
(1!e) for the air density, and from Eq. (54) the

variation in O
3

cross-section is

m@j(¹q
),m

q
#eg

q
"mj(¹q

)#e¹
q
mj0Mmj1#2(¹

q
!¹

0
)mj2N. (57)
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Fig. 6. LIDORT results for a 60-layer atmosphere for wavelength 324,8863 nm, albedo 0.75, relative azimuth
603, k

0
"0.75; (top) sun-normalized TOA intensity at various zenith angles (quadrature streams marked by an asterisk);

(bottom) Peak-normalized weighting functions for O
3

VMR and temperature pro"les, at zenith angle 303.

Since Q
R!:

(¹
q
)"o

q
Q

R!:
(¹

0
), and the STP value Q

Ray
(¹

0
) has no dependence on ¹

q
, then the

variations for the absorption and scattering coe$cients are

a@
q1
"a

q1
[1!e(1!g

q
/m

q
)], (58a)

p@
q1
"p

q1
(1!e). (58b)

These in turn lead to the following variational inputs for the layer single-scatter albedos and optical
depth required by LIDORT:

u
q1

(¹
q
)"!(1#t

q
/e

q
), u

q2
(¹

q
)"!t

q
/e

q
and v

q
(¹

q
)"z

q
t
q
, (59)

where

t
q
"a

q1
(g

q
/m

q
!1)!p

q1
. (60)

Note in particular that the aerosol single-scatter albedo has the non-zero variation u
q2

(¹
q
), even

though the aerosol coe$cients themselves are una!ected by the perturbations.
Fig. 6 (top) shows the intensity output for this scenario at j"324.8863 nm. Quadrature values

are marked by an asterisk to illustrate the smoothness of the post-processing function for
user-de"ned zenith angles. Fig. 6 (bottom) shows results for a line-of-sight zenith angle of 303 for
the O

3
VMR and temperature weighting functions plotted against altitude; values are normalized
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Fig. 7. LIDORT weighting functions for O
3

VMR for a 60-layer atmosphere for a number of wavelengths in the UV, for
zenith angle 9.2653.

to the peak values in each case. The sensitivity of both functions around the peak O
3

concentration
level is evident.

In Fig. 7, O
3

VMR weighting functions are presented for a number of wavelengths in the UV
from 290 to 335 nm as indicated (these wavelengths are used as found in the data set [30]; their use
obviates the need for interpolation of cross-section values). Below 300 nm, peak values occur at
heights that increase with lower wavelengths. It is this well-known di!erential scattering height
behaviour that underpins the BUV technique for O

3
pro"le retrieval [5,6]. Note also the increasing

tropospheric sensitivity for the longer wavelengths.
Finally a comparison is made with results from the GOMETRAN [17] model computed

at j"324.8863 nm for the same atmosphere. GOMETRAN input pro"les are given at 61
levels from 0 to 60 km. O

3
cross-sections are given by Eq. (54) for temperatures at the

layer boundaries. Fig. 8 gives the comparison for O
3

VMR weighting functions at stream angle
9.2653 (one of the quadrature values). The agreement between these two independently calculated
results is excellent, with di!erences of 1% or less at virtually all levels away from the shoulder near
17 km. Here the O

3
concentration gradient changes sharply, and the 1 km height resolution of the

models is not "ne enough to ensure `layer-versus-levela interpolation errors are kept to a min-
imum.

5. Summary and future developments

In this paper we have developed an extension of the discrete ordinate solution of the radiative
transfer equation in a plane parallel, multiply scattering, anisotropic, multilayer atmosphere with
beam and thermal emission sources. The extension is essentially an internal perturbation analysis
of the discrete ordinate solution, and along with standard intensity output, it allows for the
simultaneous calculation of analytically-accurate weighting function "elds with respect to a wide

R.J.D. Spurr et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 68 (2001) 689}735 715



Fig. 8. LIDORT and GOMETRAN weighting functions for O
3

VMR for a 60-layer (61-level) atmosphere for
wavelength 324.8863 nm and for zenith angle 9.2653.

variety of atmospheric parameters. This extension avoids the time-consuming procedure of using
external perturbation calculations to approximate the weighting functions. A numerical model
(LIDORT) has been constructed and tested for two scenarios, one of which is a representative
terrestrial atmosphere with ozone absorption and molecular and aerosol scattering. The model is
generic in character, requiring as the main input the single-scatter albedos and grid optical depths,
plus variations induced on these inputs by the set of parameters for which the weighting functions
are to be computed. These application-speci"c inputs are de"ned by the user, and they depend on
the physics of the atmosphere under consideration.

The model described here has recently been extended to cover a much wider range of scenarios;
intensity and weighting function output is now available for upwelling and downwelling directions,
at arbitrary optical depth and stream angle. A `pseudo-sphericala treatment of the direct beam
attenuation has also been implemented in the new version of LIDORT. This gives the model the
power to accommodate solar zenith angles up to 903 (c.f. [33]). There is also the option to treat
sharply peaked phase functions using the delta-M scaling approximation [34]. LIDORT Version
2.1 is now available from the SAO website; the new version will be described in a companion paper
to the present work (R. Spurr, in preparation).

The implementation of a vectorized radiative transfer code to give a full Stokes-vector treatment
of the perturbed discrete ordinate solution is also under consideration. The intensity-only problem
has been analyzed, and there now exists a robust vectorized DISORT [35,36].
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Appendix A. Perturbation analysis for the discrete ordinate component solutions

In this appendix the perturbation factors de"ned in Eqs. (40a)}(40d) are established. We consider
a single layer and Fourier component, omitting the respective indices for the sake of clarity.

A.1. Homogeneous solution

Consider "rst the eigenvalue problem Eq. (22) and associated de"nitions in Eq. (23). The
perturbation rule u@"u(1#ue) applies to the single-scatter albedo, and since the eigenmatrix and
its eigensolutions are proportional to u, then they will also perturb in a similar fashion. De"ne the
"rst-order perturbation for the eigenmatrix ! in Eq. (22) as follows:

!@
ij
"!

ij
#uem

ij
"

N
+
l/1

(f@
il
!g@

il
)(f@

lj
#g@

lj
). (A.1)

Since the DB
ij

in Eq. (23) depend linearly on u, their "rst-order perturbed values are given by
DB@

ij
"DB

ij
(1#ue). From the de"nitions of matrices f

ij
and g

ij
, we obtain

f@
ij
"f

ij
#uea

j
D`

ij
k~1
i

and g@
ij
"g

ij
#uea

j
D~

ij
k~1
i

. (A.2)

Substituting Eqs. (A.2) in Eq. (A.1), we get the following determination of m
ij
:

m
ij
"

N
+
l/1
G
a
l
C~

il
k
i

(f
lj
#g

lj
)#(f

il
!g

il
)
a
j
C`

lj
k
l
H, (A.3)

where CB
ij
"D`

ij
$D~

ij
.

Next, we have the perturbed version of the eigenproblem of Eq. (22):

N
+
j/1

!@
ij
1 @
ja"k@a21 @

ia for i"1,2, N, a"1,2, N. (A.4)

The eigenvalues perturb as k@a"ka#uefa . For the eigenvector perturbation, we de"ne
1 @
ja"1

ja#ueB
ja . In order to "nd scalar fa and vectorB

ja for each a, we use the result of Eq. (A.3) in
(A.4) and remove the zero-order term using the original eigenvalue (22). This gives the following
N equations satis"ed by the "rst-order term:

N
+
j/1

(!
ij
B

ja#m
ij
1
ja)"k2aBia#2ka fa1ia for i"1,2,N. (A.5)

Since there are N#1 unknowns Mfa ,BiaN for each a, an additional condition is required in order to
"nd the solution. This comes from the normalization condition (26). If the perturbed vector also has
unit normalization, then DD1 @a2DD"1; from the de"nition of this vector, we get the following for the
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"rst-order term:

N
+
j/1

B
ja1ja"0. (A.6)

Eqs. (A.5) and (A.6) are now combined in a linear system of order N#1. De"ne vectors Qa and
Ba and matrix Aa as follows:

Qa"C
fa
B
1a
B
2a
F

B
Na
D, Ba"C

+
j
m
1j

1
ja

+
j
m
2j

1
ja

F

+
j
m
Nj

1
ja

0
D, Aa"C

2ka11a k2a!!
11

!!
12

2 !!
1N

2ka12a !!
21

k2a!!
22

2 !!
2N

F F F } F

2ka1Na !!
N1

!!
N2

2 k2a!!
NN

0 1
1a 1

2a 2 1
Na

D.
(A.7)

Then for each a, the linear algebra system AaQa"Ba is solved to obtain the vector Qa of desired
perturbation values. (In the model, LAPACK linear algebra routines DGETRF and DGETRS
were used for the numerical solution of this system). This completes the perturbation analysis of the
eigenproblem.

The perturbed version of the auxiliary relation (24) is

k@a0 @
ia"

N
+
j/1

(f@
ij
#g@

ij
)1 @

ja . (A.8)

We now make the de"nition 0 @
ia"0

ia#ues
ia for the perturbation of the di!erence vector 0. Using

the results obtained so far for fa and B
ja , together with (A.2), and concentrating on the "rst-order

term in (A.8), we "nd after some manipulation that vectors sa have components

s
ia"

1
kaG

N
+
j/1
C
a
j
C`

ij
k
i

1
ja#(f

ij
#g

ij
)B

jaD!fa0iaH for i"1,2, N. (A.9)

Having completed the perturbation analysis for the sum and di!erence vectors 1a and 0a ,
perturbation factors >B

ia for the actual homogeneous solution vectors follow from the relations

s
ia">`

ia!>~
ia and B

ia">`
ia#>~

ia . (A.10)

Application of the symmetry relations>`
~ia">~

ia and>~
~ia">`

ia (cf. (25)) completes the perturba-
tion analysis of the homogeneous solution.

A.2. Particular solutions

The particular solution for the beam source is determined from Eq. (27). The perturbed version of
this equation is

N
+

j/~N

A@ ("%!.)
ij

=@
j
"B@("%!.)

i
. (A.11)
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The de"nitions of A("%!.) and B("%!.) in (28) indicate that they are linearly dependent on the
single-scatter albedo u. Hence the "rst-order perturbed values are

A@
ij
("%!.)"A("%!.)

ij
!uea

j
D

ij
and B@

i
("%!.)"B("%!.)

i
(1#ue). (A.12)

Since=@
i
"=

i
#ueZ

i
for the perturbed solution, then application of (A.12) in (A.11) yields

+
j

A("%!.)
ij

Z
j
"B("%!.)

i
!+

j

a
j
D

ij
=

j
. (A.13)

Since the LU-decomposition of the matrix A("%!.) has been found already in the course of
determining the original beam solution, the solution for Z follows immediately by back-substitu-
tion using the right-hand side of (A.13).

The situation for the thermal emission source term is similar. The recurrence relations in (29) for
the expansion coe$cients ¹

j,s
may be written in the perturbed form

+
j

A@
ij
(5)%3.!-)¹@

j,s
"G

(1!u@)b@
s
e
i

for s"S,

(1!u@)b@
s
e
i
#(s#1)k

i
¹@

i,s`1
for s(S.

(A.14)

The de"nition of the matrix A(5)%3.!-) implies that A@
ij
(5)%3.!-)"A(5)%3.!-)

ij
!uea

j
D

ij
. From the

de"nitions b@
s
"b

s
#eh

s
, ¹@

j,s
"¹

j,s
#e<

j,s
and using (A.14), the following recurrence relations for

the "rst-order perturbation factors <
j,s

are found:

+
j

A(5)%3.!-)
ij

<
j,s
"G

[(1!u)h
s
!ub

s
u]e

i
#u+

j
a
j
D

ij
¹

j,s
for s"S,

[(1!u)h
s
!ub

s
u]e

i
#u+

j
a
j
D

ij
¹

j,s
#(s#1)k

i
<

i,s`1
for s(S.

(A.15)

The LU-decomposition of the matrix A(5)%3.!-) is known already from the original determination of
vector ¹, and thus the solution for the coe$cients < follows by back-substitution in (A.15). This
completes the perturbation analysis of the RTE particular solutions.

Appendix B. Boundary conditions for the perturbed 5eld

We will establish here the eight boundary conditions summarized in Section 3.3 and indicated in
Fig. 2 for the atmospheric layer weighting functions. Only the beam particular integral terms will
be included in the full boundary condition equations that follow; however, we indicate the
additional contributions needed for atmospheric thermal emission. The calculation of TOA
weighting functions is also described. Finally, we determine the special boundary condition BCL6R
required for the albedo perturbation problem.

B.1. BCL1 (Cases 1 and 3)

At the top of the atmosphere, the perturbed downwelling intensity is zero, that is, I@
~jp

"0 for
q"0, p"1 and j"1,2, N. There is no variation in this layer, so k@

pa"k
pa , X@

jpa"X
jpa , and

=@
jp
"=

jp
for the homogeneous and particular solutions; we have only to consider perturbations
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of the integration constants as de"ned in (41a) and (41b). The "rst-order perturbed intensity for this
layer is then

I@
~jp

"I
~jp

#e
N
+
a/1

MN
pae~kpa (q~qp~1 )X`

~jpa#P
pae~kpa (qp~q)X~

~jpaN. (B.1)

Since I
~jp

(q
0
)"0 for the original (unperturbed) boundary condition BC1, BCL1 for p"1 may be

written as

N
+
a/1

[N
paX`

~jpa#P
pa#paX~

~jpa]";(1)
j

(BCL1), (B.2)

where ;(1)
j
"0. As before, the transmittance factor is given by #

pa"exp(!k
pa*p

), with
*
p
"q

p
!q

p~1
the layer optical thickness. Note the similarity to BC1 in (34a).

B.2. BCL2 (Cases 1 and 3)

This applies to all layers p such that 1(p(q (q is the varying layer). As with BCL1, the RTE
solutions remain unperturbed in these layers, and Eq. (B.1) applies for both positive and negative
stream angles. At the boundary between layer r"p!1 and layer p, the optical depth is q

r
and

continuity across this boundary yields BCL2 for j"$1,2,$N:

N
+
a/1

MN
ra#raX`

jra#P
raX~

jraN!
N
+
a/1

MN
paX`

jpa#P
pa#paX~

jpaN";(2)
jp

(BCL2), (B.3)

where ;(2)
jp
"0. Again the similarity to BC2 in Eq. (34b) is clear.

B.3. BCL3 (Cases 1 and 3)

This is the upper boundary of the layer q that is varying (q'1 for this condition). If p"q!1,
the boundary condition is I@

jp
"I@

jq
at q"q

p
. In layer p, there is no variation of the RTE solutions,

so we can use an expression like (B.1) for the perturbed "eld. For layer q, we must use the
expression in Eq. (42a) together with the perturbed RTE solution variables k@

qa , X@
jqa and=@

jq
, with

perturbation factors f
qa , >jqa and Z

jq
as derived from Section 3.2 and Appendix A. Since

q@
q
"q

q
#v

q
e and q@

p
"q

p
, we can expand the exponential factors in (42a) to "rst order in e:

e~k
@
qa q@p"e~kqa qp (1!eu

q
f
qaqp ) (B.4a)

and

e~k
@
qa q@q"e~kqa qq(1!eu

q
f
qaqq!ev

q
k
qa). (B.4b)

In the perturbed boundary condition, the zero-order term is eliminated by using the original
unperturbed boundary condition BC2. Collecting all terms of order e, and using (B.4a) and (B.4b),
the condition BCL3 for j"$1,2,$N is written

N
+
a/1

MN
pa#paX`

jpa#P
paX~

jpaN!
N
+
a/1

MN
qaX`

jqa#P
qa#qaX~

jqaN";(3)
jq

(BCL3). (B.5)
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Here, we have the auxiliary vector

; (3)
jq
"u

q
Z
jq

e~qp @k0#
N
+
a/1

M¸
qauq>`

jqa#M
qa#qa(uq

>~
jqa!-

qaX~
jqa )N, (B.6)

where

-
qa"u

q
f
qa*q

#v
q
k
qa . (B.7)

B.4. BCL4 (Cases 1 and 2)

This is the lower boundary of the layer q that is varying (q(K for this condition). If now
p"q#1 the boundary condition is I@

jq
"I@

jp
at q"q@

q
. In layer p, there is no variation of the RTE

solutions so an expression of type (42c) applies for the perturbed "eld, whereas for layer q, (42a) is
appropriate. In addition to the expressions (B.4a) and (B.4b) there is the following "rst-order
expansion for the beam solution exponential term

e~q@q @k0"e~qq @k0C1!e
v
q

k
0
D. (B.8)

The zero-order term is again removed by using the original BC2 boundary condition, and with the
help of (B.4a), (B.4b) and (B.8), BCL4 for j"$1,2,$N may be written as

N
+
a/1

MN
qa#qaX`

jqa#P
qaX~

jqaN!
N
+
a/1

MN
paX`

jpa#P
pa#paX~

jpaN";(4)
jq

(BCL4), (B.9)

where

;(4)
jq
"A!E

jq
!

v
q
=

jp
k
0
Be~qq @k0!

N
+
a/1

M¸
qa#qa(uq>`

jqa!-
qaX`

jqa)#M
qauq>jqaN. (B.10)

-
qa is de"ned in (B.7) and

E
jq
"u

q
Z

jq
!

v
q
=

jq
k
0

. (B.11)

B.5. BCL5 (Cases 1 and 2)

In this case, the boundary lies between layers p and r"p!1, where r'q and q(K. The only
perturbation is with the optical depth boundary value q@

r
"q

r
#v

q
e, and perturbed "elds of type

(42c) apply to both layers. Again using the original BC2 condition to remove the zero-order term,
the "rst-order term is written as BCL5 for j"$1,2,$N:

N
+
a/1

MN
ra#raX`

jra#P
raX~

jraN!
N
+
a/1

MN
paX`

jpa#P
pa#paX~

jpaN";(5)
jp

(BCL5), (B.12)
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where

;(5)
jp
"

v
q

k
0

e~qr @k0(=
jr
!=

jp
). (B.13)

B.6. BCL6 (Cases 1 and 2)

Here p"K, the "nal layer, and the boundary is the bottom surface, with the di!use radiation
satisfying the re#ection condition. The optical depth variation is q@

p
"q

p
#v

q
e; the single-scatter

albedo has no variation. We require the di!usely re#ected intensities (these appeared in BC3 in
Section 2). We will require also the quantities 'B

ja in (35a) and (
j
in (35b). The re#ection condition

includes the surface source term IH
j

de"ned in (33). Leaving aside the surface emission contribution,
perturbations of IH

j
are generated by the change in optical depth at the lower boundary. Thus

I@
j
H"IH

j A1!
v
q
e

k
0
B. (B.14)

to "rst order. Bringing together the relevant terms, and using BC3 to eliminate the zero-order
terms, the boundary condition BCL6 for j"1,2, N is

N
+
a/1

[N
pa#pa'`

ja#P
pa'~

ja]";(6)
j

(BCL6), (B.15)

where

;(6)
j
"

v
q

k
0

[(
j
e~qp @k0!IH

j
]. (B.16)

Once again, we note the similarity in the left-hand side of BCL6 to that in BC3 (34c).

B.7. BCL3M (Case 2 only)

This is really a combination of BCL1 and BCL3, wherein the upper boundary of the layer that is
varying happens to be the top of the atmosphere. Since q"1 for this case, the boundary condition
is I@

~jq
"0 at q

q~1
"0. We take the BCL3 result above, ignore the term in the left-hand side

involving layer p"q!1 (which does not exist at TOA), and set q
p
"0 in (B.6). The result is

BCL3M for j"1,2, N:

N
+
a/1

MN
qaX`

~jqa#P
qa#qaX~

~jqaN";(3M)
j

(BCL3M), (B.17)

where

;(3M)
j

"!u
q
Z

~jq
!

N
+
a/1

M¸
qauq>`

~jqa#M
qa#qa(uq>~

~jqa!-
qaX~

~jqa)N. (B.18)
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B.8. BCL4M (Case 3 only)

This is a combination of the conditions BCL4 and BCL6 with q"K. At the bottom boundary,
the optical depth variation is q@

q
"q

q
#v

q
e. All of the exponential variations in (B.4a), (B.4b) and

(B.8) are now required, since both the homogeneous solutions and the particular integral are
perturbed in this layer. Both the original and the perturbed di!use intensities must now satisfy the
re#ection condition. Thus in addition to the quantities ' and ( in (35a) and (35b) de"ned for
unperturbed solutions X

jqa and=
jq

, we must de"ne similar quantities for the perturbation terms
>
jqa and E

jq
(the latter is de"ned in (B.11)). Let

$B
ja">B

jqa!(1#d
m0

)R
N
+
i/1

a
i
k
i
oH
m
(k

j
,!k

i
)>B

~iqa (B.19)

and

F
j
"E

jq
!(1#d

m0
)R

N
+
i/1

a
i
k
i
oH
m
(k

j
,!k

i
)E

~iq
. (B.20)

Combining all the variations for this case, and including the variation of the direct beam from
(B.14), BCL4M for j"1,2, N is

N
+
a/1

MN
qa#qa'`

ja#P
qa'~

jaN";(4M)
j

(BCL4M), (B.21)

where

;(4M)
j

"!F
j
e~qq @k0!

v
q

k
0

IH
j
!

N
+
a/1

M¸
qa#qa(uq

$`
ja!-

qa'`
ja )#M

qauq$~
jaN. (B.22)

An examination of the left-hand sides of all these eight conditions shows that the boundary value
problem for N

pa and P
pa has the same form as that for the original integration constants ¸

pa and
M

pa . Thus, as indicated in Section 3.3, the solution has the form XH"A~1BH, where the matrix
A is the same as that used in the unperturbed boundary value problem, and the column vector BH

is constructed from the appropriate combination of vectors ;(1), ;(2)
q

, ;(3)
q

, ;(4)
q

, ;(5)
q

, ;(6), ;(3M)
and ;(4M), the exact choice depending on the layer q containing the variation in parameter x

q
.

B.9. TOA weighting function output

Assuming now that the perturbed boundary problem has been solved for N
pa and P

pa , we use
de"nition (43) to calculate the weighting functions at positive computational angles at the top of
the atmosphere. We distinguish between Cases 1 and 3 (q'1), where the variation is with respect
to parameter x

q
in a layer below the "rst one, and Case 2 (q"1), where the variation is actually in

the top layer. For Cases 1 and 3:

K
jp

(x
q
)"lim

e?0

I@
jp
!I

jp
e

"

N
+
a/1

MN
paX`

jpa#P
pa#paX~

jpaN, (B.23)
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where j"1,2,N and p"1. For Case 2 (q"1):

K
jq

(x
q
)"

N
+
a/1

MN
qaX`

jqa#P
qa#qaX~

jqaN#Q(3M)
j

, (B.24)

where

Q(3M)
j

"u
q
Z

jq
#

N
+
a/1

M¸
qauq>`

jqa#M
qa#qa(uq

>~
jqa!-

qaX~
jqa )N. (B.25)

B.10. Inclusion of atmospheric thermal emission terms in the perturbed boundary conditions

The coe$cients ¹
jq,s

in the thermal emission particular integral (derived by solving (29)) have
"rst-order perturbations <

jqs
de"ned in (40d) only for the layer q that is varying. The solution for

<
jq,s

is given in (A.15). Since the thermal emission term includes powers of optical depth, we must
also account for changes ev

q
in optical depths in and below the layer q. De"ning

I@
jp
(5%)"I(5%)

jp
#eJ (5%)

jp
, (B.26)

for the perturbed thermal emission particular integral, the following additional contributions are
required in the eight boundary conditions of Section 3.3:

J(5%)
jq

"

S
+
s/0

<
jp, s

qs
q~1

for layer q, upper boundary, (B.27a)

J(5%)
jq

"

S
+
s/0

<
jp, s

qs
q
#v

q

S
+
s/0

s¹
jq, s

qs~1
q

for layer q, lower boundary, (B.27b)

J(5%)
jp

"v
q

S
+
s/0

s¹
jp, s

qs~1
p

for layers p'q, lower boundaries. (B.27c)

Eq. (B.27a) is required for BCL3, (B.27b) and (B.27c) for BCL4, and (B.27c) for BCL5 and BCL6.
For BCL4M, (B.27b) is relevant for the thermal emission contribution to the positive (upwelling)
quadrature-angle intensity components, but the downwelling stream components of the thermal
emission contributions in (B.27b) must be integrated over the half-space and included in the surface
re#ection boundary condition.

B.11. Boundary condition BCL6R for albedo weighting functions

Layer homogeneous and particular solutions are una!ected by variations of the surface albedo,
so we may use their unperturbed forms. Only the boundary value constants of integration will
change, and we denote their "rst-order perturbations by N(R)

qa and P(R)
qa to indicate the dependence

on albedo. The perturbed intensity in all layers will have the form expressed in (42b), with boundary
condition BCL1 applying to the TOA level and BCL2 to all intermediate levels. To express the
surface boundary condition for the perturbed "eld, we "rst rewrite the unperturbed re#ecting
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boundary condition in order to de"ne Q(R)
j

as follows (omitting the surface emission term):

I
jK
,RQ(R)

j
"RG

F
_

k
0

p
oH(k

j
,!k

0
)e~qK @k0#(1#d

m0
)

N
+
i/1

a
i
k
i
oH(k

j
,!k

i
)I

~iKH. (B.28)

For a variation R@"R(1#e), the perturbed version of (B.28) is

I@
jK
"R(1#e)G

F
_

k
0

p
oH(k

j
,!k

0
)e~qK @k0#(1#d

m0
)

N
+
i/1

a
i
k
i
oH(k

j
,!k

i
)I@
~iKH, (B.29)

where the perturbed downwelling quadrature-stream intensity at the surface is given by

I@
~iK

"I
~iK

#e
N
+
a/1

MN(R)
Ka#KaX`

~iKa#P(R)
KaX~

~iKaN. (B.30)

Using BC3 to remove the zero-order terms, the special albedo boundary condition (BCL6R) for
j"1,2,N then becomes

N
+
a/1

[N(R)
Ka#Ka'`

ja#P(R)
Ka'~

ja]";(6R)
j

(BCL6R), (B.31)

where ;(6R)
j

"RQ(R)
j

, and 'B
ja have been de"ned in (35a). The solution for N(R)

qa and P(R)
qa again

follows from the back-substitution X(R)"A~1B(R), where B(R) is now constructed from a combi-
nation of vectors ;(1), ;(2)

q
and ;(6R).

Appendix C. Post-processing (source function integration)

C.1. Source function integration for the original (unperturbed) xeld

Referring to the recurrence relation for the upwelling post-processed solution in Section 2.3 we
substitute the values of J

p
(q,k) as given in (38) in the source function integration (37). Omitting the

thermal emission term for now, the optical depth integrations may be carried out explicitly. The
result for "

p
is

"
p
(k)"H

p
(k)F

p
(k)#

N
+
a/1

[¸
paG`

paE`
pa (k)#M

paG~
paE~

pa(k)], (C.1)

where

E`
pa(k)"[1!#

pacp(k)]/(1#kk
pa ), (C.2a)

E~
pa(k)"[#

pa!c
p
(k)]/(1!kk

pa ), (C.2b)

F
p
(k)"e~qp~1@k0[1!e~*p @k0c

p
(k)]/(1#k/k

0
) (C.2c)
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and the transmittance factors #
pa and c

p
(k) have been de"ned previously. In addition, Eq. (C.1)

requires the following double quadrature sums over discrete ordinate variables:

GB
pa(k)"+

j

a
j
D

p
(k,k

j
)XB

jpa , (C.3a)

H
p
(k)"

F
_

2p
(2!d

m0
)D

p
(k,!k

0
)#+

j

a
j
D

p
(k,k

j
)=

jp
. (C.3b)

Here D
p

are the usual Legendre polynomial sums for the streams indicated, with single-scatter
albedo and phase function moments de"ned for layer p. The quantities in (C.2) and (C.3) will be
needed again when we carry out a perturbation analysis of (C.1).

For the inclusion of atmospheric thermal emission terms, there is an additional contribution
"(5%)

p
(k) to the integrated layer source function in a given layer p. This is only present for Fourier

component m"0. In the source function integration, we must include the thermal emission
particular integral given by the last term in (31). By analogy to (C.1) we de"ne

"(5%)
p

(k)"
S
+
s/0

;
ps

(k)A
ps

(k), (C.4)

where the A
ps

(k) term arises from the optical depth integration, and the;
ps

(k) is a quadrature sum
over discrete ordinate variables. It may be shown readily that

A
ps

(k, q)"G
1!c

p
(k) if s"0,

qs
p
!qs

p~1
c
p
(k)#skA

p, s~1
(k) if s'0

(C.5a)

and

;
ps

(k)"(1!u
p
)b

s
#+

j

a
j
D

p
(k,k

j
)¹

jp, s
. (C.5b)

The Legendre sum for layer D
p

is de"ned in the usual way, using Fourier component m"0.
It remains to "nd the boundary source term I

K
(q

K
,k) which is the upwelling radiation at the

lower boundary for direction k. The discrete ordinate approximation is used again to write the
re#ection condition for direction k in a similar manner to that given in (32c) and (33):

I
K
(q

K
, k)"(1#d

m0
)R

N
+
i/1

a
i
k
i
oH
m
(k,!k

i
)I

~iK
(q

K
)#

k
0
F

_
p

e~qK @k0RoH
m
(k,!k

0
). (C.6)

This is easy to evaluate since the components I
~iK

(q
K
) are known from the discrete ordinate

solution for the lowest layer K. It is necessary however to specify the bi-directional re#ection
functions oH

m
(k,!k

i
) and oH

m
(k,!k

0
) for the (user-de"ned) directions k. (With surface thermal

emission present, we add the factor d
m0

i(k)B(¹
g
) to the right-hand side of (C.6), where the

emissivity i(k) follows from (21)).

C.2. Source function integration for the perturbed xeld

In this section the same technique is applied to the perturbed intensity "eld. First we look at the
source function integrations required for weighting functions with respect to layer variations,
before dealing with the albedo weighting function source terms at the end.
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For the layer variations, we require the perturbed form (44) for the source function recurrence
relation, and we now consider the analysis for the perturbed source term "@

p
(k). Leaving aside the

layer thermal emission terms for now (we return to them later in this section), we de"ne perturba-
tions of the quantities de"ned in (C.2) and (C.3):

E@
paB(k)"EB

pa(k)#eEB
pa(k), (C.7a)

F@
p
(k)"F

p
(k)#eF

p
(k), (C.7b)

G@B
qa(k)"GB

qa(k)#eGB
qa(k), (C.7c)

H@
q
(k)"H

q
(k)#eH

q
(k). (C.7d)

For layer q, perturbations in (C.7a) and (C.7b) will depend both on terms ev
q
induced in the optical

depth boundary value q
q
, and on terms eu

q
which will be manifested in the perturbed eigenvalues

k@
qa . For layers p'q, only variations v

q
induced in the optical depth boundary values q

p
will be

required. The results for E are

E`
qa"

#
qacq(k)[k~1v

q
#-

qa]!ku
q
f
qaE`

qa(k)
1#kk

qa
, (C.8a)

E~
qa"

!#
qa-qa#k~1v

q
c
q
(k)#ku

q
f
qaE~

qa(k)
1!kk

qa
, (C.8b)

EB
pa"0 for pOq. (C.8c)

In these equations, we use the following perturbation results on transmittance factors #
qa and

c
q
(k):

#@
qa"#

qa(1!-
qae), (C.9a)

c@
q
(k)"c

q
(k)(1!ev

q
/k), (C.9b)

where -
qa is given by (B.7). Similarly for F

p
we have

F
p
"G

v
q
k~1e~qq @k0c

q
(k) for p"q,

!v
q
k~1
0

F
p

for p'q,

0 for p(q.

(C.10)

Now consider the perturbation analysis for quantities G and H in (C.3a) and (C.3b), using the
de"nitions in (C.7c) and (C.7d). As before, the quantities D

q
perturb to "rst order with factor

(1#eu
q
), since they are both directly proportional to u

q
. Using perturbations of the homogeneous

solution vectors X
qa and the particular integral vectors=

q
, we obtain

GB
qa(k)"u

qC+
j

a
j
D

q
(k,k

j
)(XB

jqa#>B
jqa )D, (C.11a)

H
q
(k)"u

qC
F

_
2p

(2!d
m0

)D
q
(k,!k

0
)#+

j

a
j
D

q
(k,k

j
)(=

jq
#Z

jq
)D. (C.11b)

It is clear that GB
pa (k) and H

p
(k) are both zero for pOq.
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We return now to the complete source function term in (C.1). This contains the integration
constants ¸

pa and M
pa . We must include their perturbations N

pa and P
pa in the analysis. We

combine the results in (C.8), (C.10) and (C.11) and proceed by using the chain rule. The "nal result
for the "rst-order layer source term perturbation is

"@
p
(k)""

p
(k)#e)

p
(k), (C.12)

where (simplifying the notation by dropping the dependence on k):

)
p
"G

+Na/1
)(1)

pa for p(q,

+Na/1
[)(1)

pa#)(2)
pa ]#H

p
F

p
#H

p
F
p

for p"q,

+Na/1
)(1)

pa#H
p
F

p
for p'q.

(C.13)

The following de"nitions are required:

)(1)
pa"N

paG`
paE`

pa#P
paG~

paE~
pa ,

)(2)
pa"¸

pa[G`
paE`

pa#G`
paE`

pa]#M
pa[G~

paE~
pa#G~

paE~
pa].

(C.14)

We now consider perturbations of the thermal emission layer source terms de"ned in (C.4).
These contributions will be added to the above expressions for )

p
when there is a thermal emission

source present in the atmosphere. First, we note that the solution coe$cients ;
ps

contain no
dependence on optical depth, so they experience perturbation only for the layer q that contains the
atmospheric parameter x

q
causing the variation. De"ning

;@
qs

(k)";
qs

(k)#eU
qs

(k), (C.15)

we "nd from the de"nitions in (C.5b) that

U
qs

(k)"[(1!u
q
)h

qs
!u

q
u

q
b
qs

]#+
j

a
j
D

q
(k, k

j
)(u

q
¹
jq, s

#<
jq, s

), (C.16)

where h
qs

are the perturbations of b
qs

. The recurrence factors A
ps

in (C.5a) are perturbed as follows:

A@
ps

(k)"A
ps

(k)#eB
ps

(k). (C.17)

We must again distinguish between the layer q containing the parameter x
q
, and layers below q.

Values of B
ps

are found to obey similar recurrence relationships to those for A
ps

. The result is

B
ps

(k)"G
0 for p(q, s"0,2, S,

v
q
r
q
(k)/k for p"q, s"0,

v
q
qs
q
c
q
(k)A

1
k
#

s
q
q
B#skB

q,s~1
(k) for p"q, s"1,2, S,

0 for p'q, s"0,

sv
q
(qs~1

p
!qs~1

p~1
c
p
(k))#skB

p,s~1
(k) for p'q, s"1,2, S.

(C.18)

For the perturbation of the thermal emission contribution to the source integral term, we write

"@
p
(5%)(k)""(5%)

p
(k)#e)(5%)

p
(k) (C.19)
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and use the above results in (C.16) and (C.18) to produce

)(5%)
p

(k)"G
+S

s/0
[;

ps
(k)B

ps
(k)#U

ps
(k)A

ps
(k)] for p"q,

+S
s/0
;

ps
(k)B

ps
(k) for p'q,

(C.20)

with )(5%)
p

(k)"0 for p(q. These contributions should be added to those in (C.12) so that thermal
emission terms can be included in the TOA weighting functions at arbitrary k.

Now we examine the perturbation of the upwelling lower boundary source term I
K
(q

K
,k) in (C.6).

We use the de"nition

I@
K
(q

K
, k)"I

K
(q

K
, k)#eJ

K
(q

K
,k) (C.21)

and our task is to determine J
K
(q

K
, k). Since the perturbed "eld obeys the surface boundary

condition, we can remove the zero-order terms (boundary condition BC3) and write the following
for the "rst-order contribution:

J
K
(q

K
, k)"(1#d

m0
)R

N
+
i/1

a
i
k
i
oH
m
(k,!k

i
)J

K
(q

K
,!k

i
)!

v
q

k
0

IH(k), (C.22)

where the last term is the variation of the direct-beam term IH(k) as given by Eq. (33) minus the
surface emission, and J

K
(q

K
,!k

j
) is the "rst-order perturbation for the downwelling radiation at

the quadrature values. In other words, I@
K
(q

K
,!k

j
)"I

K
(q

K
,!k

j
)#eJ

K
(q

K
,!k

j
). Expressions for

J
K
(q

K
,!k

j
) can be written down immediately, since the results are available from the boundary

problem perturbation analysis. There are two cases: BCL6, for which q(K, and BCL4M, for
which q"K:

J(q
K
,!k

j
)"G

!

v
q
=

~jK
k
0

e~qK @k#
N
+
a/1

[N
Ka#KaX`

~jKa#P
KaX~

~jKa] (BCL6),

AuqZ~jq
!

v
q
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~jq
k
0
Be~qq @k#

N
+
a/1

MP
qaX~

~jqa#M
qauq>~

~jqaN

#

N
+
a/1

#
qaMNqaX`

~jqa#¸
qa[uq>`

~jqa!X`
~jqa-qa]N (BCL4M).

(C.23)

C.3. Albedo weighting functions at arbitrary k

We complete this appendix by examining the perturbed "eld at arbitrary k for an albedo
variation. Homogeneous and particular solutions remain unchanged, and only the constants of
integration in the boundary-value problem will be perturbed. We proceed using de"nition (C.12),
writing )(R)

p
(k) for the source function perturbation, where the superscript (R) is used to indicate

quantities derived with respect to an albedo variation R@"R(1#e). We "nd

)(R)
p

(k)"
N
+
a/1

[N(R)
pa G`

paE`
pa#P(R)

pa G~
paE~

pa] for all p, (C.24)

where all other quantities occur in the original unperturbed solution.
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To start the source function recurrence, we need the perturbed upwelling intensity at the lower
boundary. To "rst order, we de"ne I@

K
(q

K
,k)"I

K
(q

K
, k)#eJ(R)

K
(q

K
,k). Ignoring the surface emis-

sion term, we apply the surface boundary condition to I@
K
(q

K
, k) and obtain

J(R)
K

(q
K
,k)"(1#d

m0
)R

N
+
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a
i
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i
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m
(k,!k

i
)[I

K
(q

K
,!k

i
)#J(R)

K
(q

K
,!k

i
)]#IH(k), (C.25)

where IH(k) has already been de"ned in (33). From the solution of the perturbed albedo boundary
value problem, we have already the quadrature terms:

J(R)
K

(q
K
,!k

j
)"

N
+
a/1

[N(R)
Ka#KaX`

~jKa#P(R)
KaX~

~jKa]. (C.26)

Appendix D. Chandrasekhar's solution and associated perturbation analysis

We "rst derive Chandrasekhar's solution to the unperturbed RTE. The notation follows that in
[12]; in particular the Legendre polynomials in this appendix are un-normalized. The Fourier
index m is retained throughout. Quadrature over the interval k3(!1, 1) is assumed. The treatment
of thermal emission is omitted.

For the homogeneous part, Chandrasekhar developed solutions of the form

Im(k
i
)&

2N~1
+
l/m

mm
l
(kma )um

l
Pm

l
(k

i
)

1#k
i
kma

e~k
ma q, (D.1)

where k
i
are the quadrature cosines, kma are the roots of the characteristic equation (see below), and

factors mm
l

are to be determined (their dependence on kma is indicated). Here, um
l
"b

l
(l!m)!/(l#m)!

denotes the phase moment factorial term. Substitution of Eq. (D.1) in the RTE (15) without the
external source terms gives the following set of conditions for mm

l
(k):

mm
l
(k)"

2N~1
+

j/m

mmj (k)umjDm
lj(k), (D.2)

where

Dm
lj(k)"

1
2
+
j

a
j
Pmj (kj

)Pm
l
(k

j
)

1#k
j
k

. (D.3)

Using the orthonormality of the Legendre polynomials over the interval (!1, 1), one can develop
a recurrence relation for the D-polynomials in (D.3), and use that to generate further recurrence
relations for mm

l
([12, p. 153]):

mm
l`1

(k)"
!(2l#1)#ub

l
k(l!m#1)

mm
l
(k)!

l#m
l!m#1

mm
l~1

(k) for m#1(l(2N!2, (D.4a)

mm
m`1

(k)"
!(2m#1)#ub

m
k

. (D.4b)
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The indeterminacy in (D.2) allows the recursion initialization condition to be set at will. Letting
mm
m
"1 gives the characteristic equation

1"
u
2

+
j

a
j

1#k
j
k
2N~1
+

j/m

mmj (k)umjPmj (kj
)Pm

m
(k

j
). (D.5)

The roots of (D.5) occur in pairs $ka , a"1,2, N. It is no surprise that these roots are precisely
the eigenvalues from the equivalent formulation in Eq. (22). We again use the index a to label the
roots (eigenvalues). It is also clear that (up to constants of proportionality) the solutions developed
in Section 2 are given by the following:

Xm`
ja "

2N~1
+
l/m

mm
l
(kma )um

l
Pm

l
(k

j
)

1#k
j
kma

, (D.6a)

Xm~
ja "

2N~1
+
l/m

mm
l
(!kma )um

l
Pm

l
(k

j
)

1!k
j
kma

. (D.6b)

For the particular integral (beam source), a solution of the form

Jm(k
i
)"(2!d

m0
)=m

i
e~q@k0 (D.7)

is used, where

=m
i
"u

2N~1
+
l/m

cm
l
um
l
Pm

l
(k

i
)

1#k
i
/k

0

. (D.8)

Substitution in the RTE yields the following equation for the constants cm
l

in terms of the
recurrence factors de"ned above:

cm
l
"cm

m
(k

0
)mm

l
(k~1

0
) for l'm, (D.9a)

cm
m
(k

0
)"

Pm
m
(k

0
)

1!
2N~1
+

j/m

mmj (k~1
0

)umjDm
mj (k~1

0
)
, (D.9b)

where mm
l

are again given by the recurrence relation Eqs. (D.4a) and (D.4b) but with argument
k~1
0

instead of k. Symmetry relationships are the same as those for the solutions in Section 2.2.
This formulation is equivalent to the solution of the RTE given in Section 2.2, assuming the
`singlea quadrature scheme (numerical results agree to high accuracy). This analytic formalism is
not valid for the `doublea quadrature scheme. Clearly, all quantities can be computed explicitly
once the roots of the characteristic equation are found. Attempts to evaluate these roots by
polynomial root-"nding algorithms [37] have now been supplanted by the eigenvalue approach.

D.1. Perturbation of the solution

We are interested only in the perturbation of the RTE homogeneous solutions and particular
integrals. (The boundary condition analysis of Section 3.3 is independent of the method of
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obtaining RTE solutions). The de"nitions of (40a)}(40c) hold, but we suppress the layer index p and
add the Fourier harmonic index m as a subscript:

k@am"kma#uefam, X@m
ja"Xm

ja#ue>m
ja and =@

j
m"=m

j
#ueZm

j
. (D.10)

As in Section 3, the single-scatter albedo will be perturbed according to u@"u(1#ue). We perturb
the recurrence relation (D.4a) and (D.4b) "rst. We write mm

l,a"mm
l
(kma ) for the quantity m correspond-

ing to root kma , and for the "rst-order perturbation, we de"ne

m@m
l,a"mm

l,a#ue(fm
l,a#gm

l,a fam). (D.11)

Using the perturbation rules for u and kma , and equating terms in u and ufam, we "nd that fm
l,a and

gm
l,a satisfy recurrence relationships similar to Eqs. (D.4a) and (D.4b), but with additional terms

fm
l`1,a"

ub
l

kma (l!m#1)
mm
l,a#

!(2l#1)#ub
l

kma (l!m#1)
fm
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l!m#1
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(2l#1)!ub
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(kma )2(l!m#1)
mm
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!(2l#1)#ub
l

kma (l!m#1)
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l#m
l!m#1
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l~1,a , (D.12b)

fm
m`1,a"

ub
m

kma
, (D.12c)

gm
m`1,a"

(2l#1)!ub
m

(kma )2
. (D.12d)

Eqs. (D.12a) and (D.12b) are valid for m#1(l(2N!2. The starting points for these recurren-
ces are mm

m,a"0 and gm
m,a"0. We now substitute (D.11), (D.12a)}(D.12d) and de"nitions (D.10) into

the perturbed version of the characteristic equation (D.5) to obtain variations for kma :

fam"
(ma#2/u
"ma!'ma

, (D.13)

where
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a
j

(1#k
j
kma )2G
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fmj,aumjPmj (kj
)Pm
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j
)H, (D.14a)
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)Pm
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and

'ma"+
j

a
j

(1#k
j
kma )2G

2N~1
+

j/m

gmj,aumjPmj (kj
)Pm

m
(k

j
)H. (D.14c)

Eq. (D.13) may be compared directly to the results obtained for quantity fa in Appendix A. To "nd
the perturbed solution vector X@am`, we de"ne a perturbed form of (D.6a):

X@m`
ja "Xm`

ja #eu>m`
ja "

2N~1
+
l/m

m@
l
m(k@am)um

l
Pm
l
(k

j
)
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. (D.15)
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Using the de"nitions in Eq. (D.10) and the results in Eqs. (D.12a)}(D.12d), (D.13) and
(D.14a)}(D.14c), we "nd after some manipulation that the perturbation factor >m`

ja is given by

>m`
ja "

2N~1
+
l/m

uum
l
Pm

l
(k

j
)

1#k
j
kma Gmm

l,a#fm
l,a#famAgm

l,a!
mm
l,akj

1#k
j
kma BH. (D.16)

Perturbations for the negative solution (D.6b) can be determined in a similar fashion.
For the particular integral (beam source), look "rst at the perturbation:

m@m
l,a (k~1

0
)"mm

l,a(k~1
0

)#uefm
l,a(k~1

0
). (D.17)

This time only the variation in u is required, and since m satis"es the recurrence relations (D.4a) and
(D.4b) with k~1

0
instead of k, then f in (D.17) will satisfy a similar recurrence with additional terms:
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ub
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0
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0
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0
ub

m
. (D.18b)

The recurrence (D.18a) and (D.18b) starts with fm
m
"0. This result is now used in the perturbation

of the cm
l

constants in (D.9a) and (D.9b). De"ning

=@
i
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i
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i
"u@
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, (D.19)

where

c@m
l
"cm

l
(1#eu!m

l
), (D.20)

then we "nd after manipulation that

Zm
i
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+
l/m
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l
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where

!m
l
"

fm
l

mm
l

!

u+2N~1j/m
(mmj#fmj )umjDm

mj
1!+2N~1j/m

mmjumjDm
mj

. (D.22)

This completes the analytic perturbation for the beam solution.
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