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Abstract

The retrieval of atmospheric constituents from measurements of backscattered light requires a radiative
transfer forward model that can simulate both intensities and weighting functions (partial derivatives of in-
tensity with respect to atmospheric parameters being retrieved). The radiative transfer equation is solved in
a multi-layer multiply-scattering atmosphere using the discrete ordinate method. In an earlier paper dealing
with the upwelling top-of-the-atmosphere radiation 1eld, it was shown that a full internal perturbation anal-
ysis of the plane-parallel discrete ordinate solution leads in a natural way to the simultaneous generation of
analytically-derived weighting functions with respect to a wide range of atmospheric variables. In the present
paper, a more direct approach is used to evaluate explicitly all partial derivatives of the intensity 1eld. A
generalization of the post-processing function is developed for the derivation of weighting functions at ar-
bitrary optical depth and stream angles for both upwelling and downwelling directions. Further, a complete
treatment is given for the pseudo-spherical approximation of the direct beam attenuation; this is an impor-
tant extension to the range of viewing geometries encountered in practical radiative transfer applications. The
numerical model LIDORT developed for this work is able to generate intensities and weighting functions
for a wide range of retrieval scenarios, in addition to the passive remote sensing application from space.
We present a number of examples in an atmosphere with O3 absorption in the UV, for satellite (upwelling
radiation) and ground-based (downwelling radiation) applications. In particular, we examine the e=ect of var-
ious pseudo-spherical parameterizations on backscatter intensities and weighting functions with respect to O3
volume mixing ratio. In addition, the use of layer-integrated multiple scatter output from the model is shown
to be important for satellite instruments with wide-angle o=-nadir viewing geometries. Published by Elsevier
Science Ltd.
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1. Introduction

1.1. Background and rationale

Measuring the Earth’s atmosphere is an essential requirement for the understanding of physical
and chemical processes that determine radiative balance. This is particularly important in the light of
possible climate change induced by man’s activities on this planet. A key ingredient in atmospheric
monitoring is the retrieval of surface properties and atmospheric constituent distributions from mea-
surements of earthshine radiation. This applies not only to in-situ measurements from ground-based
instruments and local measurements from aircraft and balloons, but also to the global coverage
provided by passive remote sensing satellite instruments.
Given a state vector X of atmospheric constituents, we may generate a vector Y of synthetic

radiance measurements at di=erent wavelengths or geometries through the symbolic relation Y=F(X),
where F is the forward model describing the attenuation and scattering of light in the atmosphere.
Retrieval involves the solution of the inverse problem X = F−1(Y). This is commonly done by
iteration based on a series of linear inversion steps. The linearization of the forward model is given
by Y − Yn = K(X − Xn), where the matrix K is the set of weighting functions (intensity partial
derivatives with respect to atmospheric parameters to be retrieved), and Yn=F(Xn) is the synthetic
measurement vector corresponding to state vector estimate Xn at iteration step n. The inversion
is carried out using cost-function minimization techniques such as non-linear least squares 1tting
[1], the widely-used optimal estimation method [2], or other methods such as Phillips–Tikhonov
regularization [3]. All such iterative 1tting methods require a radiative transfer model that will
simultaneously generate both intensities and weighting functions.
The main purpose behind this paper and the previous work (Spurr, Kurosu and Chance [4],

hereafter denoted by SKC) is to develop a general radiative transfer tool LIDORT with the capability
to generate simultaneous and accurate intensity and weighting function 1elds. The discrete ordinate
method is used to solve the radiative transfer equation (RTE). In SKC, the intensity model and its
weighting function linearization were developed for upwelling radiation 1elds at top-of-atmosphere
(TOA) in a plane-parallel geometry. The aim of the present paper is to extend and generalize the
LIDORT model, and to develop new tools for dealing with a wider range of atmospheric scenarios.
In the discrete ordinate formalism [5,6], the intensity calculation depends only on knowledge of

optical depths, single scattering albedos and phase function moments. Preparation of these quantities
depends on the application and is carried out beforehand. The discrete ordinate method is a generic
scattering formalism; it is not necessary to know the composition and detailed physics of the medium
in question in order to solve the radiative transfer problem. The DISORT package [6] was developed
with this philosophy in mind, and it is the most Nexible and widely-used plane-parallel radiative
transfer tool available to the atmospheric community. We adopt the same strategy for LIDORT, that
is, to maintain the generic nature of the scattering formalism, but to develop extensions to generate
weighting functions as well as intensities, for both plane-parallel and pseudo-spherical geometries.
In this work, the evaluation of weighting functions is based on an explicit analytic determination

of partial derivatives of all components of the discrete ordinate solution for intensity. In line with the
above remark on linearizing the forward model, we use the term linearization analysis to indicate
the process of obtaining the set of partial derivatives that constitute the matrix of weighting func-
tions. (A di=erent emphasis was used in SKC, where weighting functions were determined through
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a complete 1rst-order perturbation analysis of the discrete ordinate solution.) All weighting func-
tions are determined analytically to the same accuracy as the intensity 1eld. LIDORT can compute
weighting functions with respect to a wide range of atmospheric variables; as with DISORT, the tool
is not application-speci1c. In addition to the above-mentioned optical properties required as input
to the intensity calculation, LIDORT requires as input for the weighting function calculations the
derivatives of layer single scattering albedos and extinction coeOcients with respect to the set of
atmospheric parameters for which weighting functions are required.
For an intensity-only RT model without the linearization capability, weighting functions must be

estimated using 1nite-di=erence methods; in a multi-parameter retrieval, this involves many separate
calls to the model. With LIDORT, a single call will generate the set of intensities and weighting
functions at one wavelength required for an iteration step in a typical multi-parameter atmospheric re-
trieval; this represents a very substantial saving of computer e=ort. Furthermore, the analytically accu-
rate derivation of LIDORT weighting functions avoids concerns over the accuracy of 1nite-di=erence
estimates based on ad hoc choices of the external perturbations. We note that at the present time, to
our knowledge, only the GOMETRAN RT model [7,8] has the capability to generate simultaneous
1elds of intensity and analytically accurate weighting functions.
Weighting functions with respect to ozone volume mixing ratio are important for the retrieval

of ozone pro1les from nadir-viewing remote sensing instruments measuring in the UV and visible.
A full multiple-scatter RT treatment is a necessary requirement in this part of the spectrum. This
retrieval problem has been discussed in the context of the GOME [9] instrument in a number of
studies [10–13]. In the present work, we will give examples of LIDORT output for a terrestrial
atmosphere scenario relevant to the ozone pro1le retrieval context, not only for GOME but also for
future instruments such as SCIAMACHY [14], GOME-2 [15] and OMI [16]. A fast 4-stream version
of LIDORT has recently been developed for use in near-real-time ozone pro1le retrieval algorithms
for these instruments [17].
Many atmospheric RT problems can be treated using the assumption of a plane-parallel medium.

However, this assumption breaks down for solar zenith angles and=or line-of-sight viewing angles
approaching 90◦, and it then becomes necessary to make some allowance for the sphericity of the
atmosphere. This is particularly important for polar-orbiting satellite instruments such as GOME, for
which large solar zenith angles are frequently encountered. In a strati1ed spherical-shell medium, the
intensity 1eld changes with angular variables (solar and line of sight zenith angles, relative azimuth
angle between planes containing the line of sight and solar directions) in addition to the zenith
variation with optical depth.
The pseudo-spherical assumption ignores these angular derivatives; only the variation of intensity

with the vertical coordinate is present in the RTE. The attenuation of the direct beam to the point of
scatter is treated for a curved spherical-shell atmosphere (see Fig. 1); apart from the transmittance
calculation for single scatter, all higher-order scattering events are treated as locally plane-parallel.
In a pseudo-spherical RT model, scattering takes place along the local vertical AC in Fig. 1. It
has been shown [18,19] that the pseudo-spherical approximation provides a useful and suOciently
accurate RT intensity simulation for solar zenith angles up to 90◦, provided that the line-of-sight
is reasonably close to the nadir. A pseudo-spherical model is adequate for simulating backscatter
intensities and weighting functions for the GOME and SCIAMACHY instruments in their normal
nadir scanning modes (where the o=-nadir scan angle does not exceed 31◦ at the satellite). The great
advantage of this approach is that it utilizes the power, speed and Nexibility of the plane-parallel
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Fig. 1. Satellite viewing geometry in a curved spherical-shell atmosphere.

discrete scattering formalism, and avoids the greatly more complex and computationally intensive
full-spherical RT treatment.
It is possible to extend such a model to deal with wide o=-nadir satellite viewing conditions

(angle �0 in Fig. 1 up to 70
◦); such geometry will be encountered routinely with the GOME-2 and

OMI instruments. We consider scattering events along line AB instead of the vertical AC assumed
for the regular pseudo-spherical computation. The basic idea behind the extension for wide-angle
nadir satellite geometry is to make precise calculations of the single scatter contributions along
AB (with both solar and line-of-sight transmittances for a curved atmosphere), but to approximate
the multiple-scatter contributions using regular pseudo-spherical output for points along AB. In a
detailed study for the TOMS project [19], it was shown that the major source of error in the regular
pseudo-spherical model arises from an incorrect computation of the single scatter terms. We shall
call this extension the enhanced pseudo-spherical model. Given the LIDORT capability to generate
both intensities and weighting functions, it is then possible to use the enhanced model in pro1le
retrieval algorithms in wide-angle viewing scenarios.
The accuracy of the pseudo-spherical approximation depends on the parameterization used to

describe the direct beam attenuation. For most cases, the average secant parameterization is suOcient:
in a multi-layer atmosphere, slant path transmittances are taken to be exact at layer boundaries,
with a simple exponential in optical thickness to approximate the attenuation across layers. The
main LIDORT development is based on this assumption. However, we will examine more accurate
parameterizations of direct beam transmittance in situations with optically thick layers. In any case,
the particular solution to the discrete ordinate RTE must be modi1ed to deal with the solar beam
attenuation in a curved atmosphere (the homogeneous solutions are unchanged). In this work, we
will examine two di=erent approaches to the particular integral solution for the direct solar beam:
the classical substitution method 1rst used by Chandrasekhar [5] and standard in DISORT, and
secondly, the more recent Green’s function technique developed by Siewert and co-workers ([20]
and references therein). Particular solutions for atmospheric thermal emission source terms will not
be considered here; a derivation of TOA intensity and weighting functions for thermal emission
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sources in a plane-parallel atmosphere was given in SKC [4]. As in SKC, we shall consider only
the solution to the scalar RTE; polarization will not be considered.
The generalization to arbitrary optical depth and stream angle involves the further development

and extension of the post-processing function, in which the discrete ordinate solution is used to inter-
polate both the intensity and the weighting functions to arbitrary polar viewing angles. The approach
adopted here is the standard source function integration technique [5,21]. Output options for stan-
dard angle-integrated quantities (azimuthally-independent Nuxes and mean intensities and associated
weighting functions) have been incorporated in the model. The delta-M scaling transformation [22]
is also a standard feature in the new version. LIDORT will also generate layer-integrated multiple
scatter source terms and their weighting functions; as noted above, this output is an essential part
of the enhanced pseudo-spherical model for RT simulation in wide-angle o=-nadir satellite viewing
geometries.

1.2. Organization of the paper

Section 2 is a brief recapitulation of the discrete ordinate solution to the RTE in a multi-layer
atmosphere with a pseudo-spherical parameterization of the beam source attenuation. We summarize
solutions for the homogeneous RTE equation, the boundary-value determination of integration con-
stants from the boundary conditions, and the post-processing function. Determination of the particular
solutions is deferred to the following section. In Section 3.1, we introduce three parameterizations
for the attenuation of the direct beam in a curved atmosphere; these are the average secant, the
exponential-sine and the exponential-polynomial parameterizations. In Sections 3.2 and 3.3 we de-
termine, respectively, the classical and Green’s function solutions for the particular integral using
the average secant parameterization. In addition, in Section 3.3, the Green’s function technique is
used to derive more accurate solutions based on the other parameterizations of the direct beam
attenuation.
In Section 4, we look at the linearization analysis. For a set of atmospheric parameters in a

given layer for which we desire weighting functions, we require the derivatives of the extinc-
tion coeOcient and single scattering albedo in that layer with respect to these parameters; these
derivatives then determine the rules for the linearization analysis (Section 4.1). Once the latter
are speci1ed, the evaluation of intensity partial derivatives follows the same sequence of steps
required for the complete intensity solution. In Sections 4.2 and 4.3 we apply the linearization
analysis to the homogeneous and particular solutions, followed by the linearized boundary value
problem (Section 4.4) and the post-processing function for generalized weighting function output in
Section 4.5. The particular solution linearization in this section is restricted to the average secant
parameterization.
Section 5 gives a brief description of the LIDORT software package based on the theory of the

preceding sections. We give some comparisons with DISORT and SDISORT [23] output, and discuss
the issue of weighting function validation. Section 6 contains some examples. The main emphasis
here is on the satellite application for the retrieval of ozone pro1les from nadir UV backscatter
measurements. We concentrate on ozone absorption in the Hartley–Huggins bands (290–335 nm),
and consider weighting functions with respect to ozone volume mixing ratio. Intensities and weight-
ing functions are compared in the pseudo-spherical and plane-parallel approximations. Examples of
output appropriate for ground-based instruments are also presented. In Section 6.3, we illustrate the
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use of the enhanced pseudo-spherical LIDORT model to improve intensity and weighting function
simulations for the GOME, GOME-2, SCIAMACHY and OMI instruments at wide-angle viewing
geometries.

2. Discrete ordinate theory: pseudo-spherical source function

2.1. The radiative transfer equation (RTE)

We consider the solution of the RTE in the pseudo-spherical approximation. Scattering will be
non-conservative. We summarize the homogeneous solutions to the discrete ordinate equations, the
boundary value problem and the post-processing function. Derivations of the particular solutions
are deferred until Section 3; however, the role played by the particular solution will be outlined
here. Although the theory summarized here may be found in various places (see for example [21]
and references therein), it is important to have each stage of the discrete ordinate intensity solution
clearly laid out in order to facilitate the linearization analysis in Section 4.
The RTE for the di<use intensity I(�; �; 	) is:

�
dI(�; �; 	)

d�
= I(�; �; 	)

−!(�)
4�

∫ 2�

0
d	′

∫ 1

−1
d�′P(�; �; 	; �′; 	′)I(�; �′; 	′)− S�(�; �; 	): (1)

Here, � is the optical depth of the medium, � is the absolute value of the cosine of the polar angle
cosine (measured with respect to the zenith), and 	 is the azimuth angle measured with respect to
a suitable axis perpendicular to the zenith. !(�) is the single scattering albedo, and P(�; �; 	; �′; 	′)
the phase function. For a parallel beam of net incident Nux �0�F� and direction {−�0; 	0} at the
top of the atmosphere (�= 0), the single scattering source term is:

S�(�; �; 	) =
F�
4

!(�)P(�; �; 	;−�0; 	0)e−�spher(�): (2)

The solar beam transmittance is expressed in terms of a slant path optical depth �spher(�) which is a
function of �. For now, we will not deal with this term explicitly, referring to the next section for
particular integral derivations using explicit parameterizations of this transmittance. We note that the
total intensity is actually the sum of the di=use 1eld I(�; �; 	) in (1) and an unscattered sunlight
term Isun(�; �; 	) given by:

Isun(�; �; 	) = �F�e−�spher(�)�(� − �0)�(	− 	0): (3)

We assume the atmosphere is divided into a number of homogeneous layers, each layer having
uniform optical properties. We 1rst consider the solutions for a single layer, with single scattering
albedo and phase functions regarded as independent of �. The intensity is expanded as a Fourier
cosine series in the relative azimuth 	− 	0:

I(�; �; 	) =
2N−1∑
m=0

Im(�; �) cosm(	− 	0): (4)
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Using the expansion of the phase function in terms of Legendre polynomials in the cosine of the
scatter angle, plus the addition theorem for Legendre functions, the azimuthal dependence of P can
also be expressed as a cosine series in relative azimuth. The azimuth separation follows immediately,
and we obtain the following for each Fourier component m:

�
dIm(�; �)
d�

= Im(�; �)− Sm(�; �); (5)

Sm(�; �) =
∫ 1

−1
�m(�; �′)Im(�; �′) d�′ − F�

2
(2− �m0)�m(�;−�0)e−�spher(�); (6)

where m= 0; 1; : : : ; 2N − 1, and �m0 is 1 for m= 0 and vanishes for m �=0. The auxiliary quantities
�m are de1ned in terms of normalized Legendre polynomials Pm

l (�) and phase function moment
coeOcients �l (the actual Legendre expansion moments are �l=(2l+ 1)) through

�m(�; �′) =
!
2

2N−1∑
l=m

�lPm
l (�)P

m
l (�

′): (7)

To obtain discrete ordinate solutions, we replace the multiple-scatter integral in (6) with a summa-
tion using two Gauss–Legendre quadratures de1ned separately in each polar angle half-space. Each
quadrature has N points, with abscissae and weights {�i; wi}; i=1; : : : ; N in the positive half-space,
and {−�i; wi}; i = 1; : : : ; N for the negative half-space. The advantages of the double quadrature
scheme have been discussed in the literature (see for example [21]). Eqs. (5) and (6) are then
replaced by the discrete ordinate form:

�i
dIm(�; �i)

d�
= Im(�; �i)−

j=±N∑
j=±1

wj�m(�i; �j)Im(�; �j)− Qm(�i)e−�spher(�); (8)

Qm(�i) =
F�
2
(2− �m0)�m(�i;−�0): (9)

2.2. Homogeneous solutions

To get solutions of the homogeneous version of (8), we substitute Ij ˙ Xje−k� for j=±1; : : : ;±N .
By using the sum and di=erence vectors &j = Xj + X−j and #j = Xj − X−j for j = 1; : : : ; N , (8) can
be reduced to an N -rank eigenproblem with eigenvalues k2� and eigenvectors &�:

(�− k2Ê)& = 0; where �= (�− �)(�+ �); (10)

�ij = (�+
ij wj − �ij)=�i and �ij =�−

ij wj=�i: (11)

Separation constants ±k� occur in pairs. In the above equations, � = 1; : : : ; N; Ê is the unit matrix
and the elements �±

ij =�±(�i;±�j) are given by (7) evaluated at quadrature polar angle cosines.
The di=erence vector #� satis1es the following auxiliary equation linking it to the eigenvector &�:

k�#i� =
N∑

j=1

(�ij + �ij)&j�: (12)
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Eqs. (10) and (12) are suOcient to determine the solution of the homogeneous equations. The
eigenproblem in (10) can be solved reliably using standard numerical routines. We assume that the
eigenvectors &� have unit length. If we de1ne 2N -vectors X

(P)
� and X(N )� such that

X (P)
j� =

&j� + #j�

2
and X (P)

−j� =
&j� − #j�

2
; (13)

X (N )
j� = X (P)

−j� and X (N )
−j� = X (P)

j� ; (14)

where j = 1; : : : ; N , then the complete homogeneous solution is

Ij(x) =
N∑

�=1

{L̃�X
(P)
j� e

−k�� + M̃ �X
(N )
j� e+k��}; (15)

where L̃� and M̃ � are integration constants.

2.3. The boundary value problem

We assume that a particular solution G(�; �j) corresponding to the source term Qm(�j)e−�spher(�)

in (8) has been found. Consider 1rst a single layer p with upper and lower optical depths given
by �p−1 and �p respectively, and optical thickness $p = �p − �p−1. Rather than use the cumulative
optical depth � as the vertical coordinate, we express the homogeneous and particular solutions in
terms of the partial layer optical thickness x = � − �p−1. The complete solution for the discrete
ordinate components of the intensity 1eld in the layer is:

Ijp(x) =
N∑

�=1

{Lp�X
(P)
jp�e

−kp�x +Mp�X
(N )
jp� e

−kp�($p−x)}+ Gp(x; �j): (16)

This is valid for upwelling and downwelling streams, j = ±1; : : : ± N . The integration constants
Lp� and Mp� will be determined from the boundary value problem. The de1nition with x and
$− x is equivalent to the scaling transformation suggested by Stamnes and Conklin [24] to express
homogeneous transmission factors as negative exponentials; this ensures the stability of the numerical
solution.
In a multi-layer atmosphere with K homogeneous layers and K+1 layer boundaries, the boundary

conditions are:

(BC1) no downward di=use radiation at the top of atmosphere;
(BC2) continuity of the intensity 1eld at all intermediate levels;
(BC3) a surface reNection condition at the lowest level.

For the reNectance of the lower boundary, we use an expansion of the bi-directional surface
reNection function &(�; 	; �′; 	′) in terms of a Fourier series in the cosine of the relative azimuth.
The condition for the mth Fourier component of the reNected intensity (di=use and direct) at the
lower boundary is then

Im(�K ;+�i) = (1 + �m0)
N∑

j=1

�jwjIm(−�j)&m(�i;−�j) + �0F�e−�spher(�K )&m(�i;−�0); (17)
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where i=1; : : : ; N; �spher(�K) is the slant optical depth of the whole atmosphere (total vertical optical
depth �K), and &m are the bi-directional Fourier coeOcients with polar angles as indicated. As in
SKC, we use a normalized form &∗ of the bi-directional reNection function:

&m(�i;−�j) = R&∗m(�i;−�j) with R=
1
4

∫ 1

0

∫ 1

0
��′&0(�;−�′) d� d�′; (18)

where R is the spherical albedo. For a Lambertian surface, &∗0(�i;−�j) = 1 and &∗m(�i;−�j) = 0 for
m¿ 0, where i; j = 1; : : : ; N .
We can now write down expressions for the boundary conditions. We introduce the indices p, q,

and r to label layers. BC1 is

N∑
�=1

{L1�X (P)
−j1� +M1�+1�X

(N )
−j1�}=−G−j1|�=0; (19)

where Gjp=G(�; �j) for � in layer p. In (19), j=1; : : : N , and −j denotes the downwelling stream
directions. On the right-hand side, the particular integral is evaluated at the optical depth indicated.
The transmittance factors +p� are de1ned by

+p� = exp (−kp�$p); (20)

where �= 1; : : : N , and $p = (�p − �p−1) is the optical thickness of layer p. BC2 is

N∑
�=1

[{Lr�+r�X
(P)
jr� +Mr�X

(N )
jr� } − {Lp�X

(P)
jp� +Mp�+p�X

(N )
jp� }] = (Gjp − Gjr)|�r ; (21)

where r = p− 1. This is valid for both upwelling and downwelling directions j =±1; : : : ;±N , and
for p= 2; : : : ; K . BC3 at the lower boundary �= �K (p= K) is

N∑
�=1

{LK�+K�,
(P)
j� +MK�,

(N )
j� }= R�0F�&∗m(�j;−�0)e−�spher(�K ) −-j; (22)

where

,(P)j� = X (P)
jK� − (1 + �m0)R

N∑
i=1

wi�i&∗m(�j;−�i)X
(P)
−iK� and similarly for ,(N )j� ; (23a)

-j = GjK |�K − (1 + �m0)R
N∑
i=1

wi�i&∗m(�j;−�i)G−iK |�K : (23b)

The normalized bi-directional reNectance coeOcients have been used in BC3, and e−�spher(�K ) is the
whole atmosphere solar beam transmittance. Eq. (22) is valid for j=1; : : : ; N . It is possible to write
down a surface boundary to include surface blackbody thermal emission in BC3 [21].
BC1, BC2 and BC3 together constitute a linear algebra system AX = B of order 2NK . The

vector X consists of the unknown integration constants Lp� and Mp�. Matrix A has 3N − 1 sub-
and super-diagonals; it may be compressed into band-storage form and then inverted using standard
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methods (the LAPACK [25] modules DGBTRF for the LU-decomposition and DGBTRS for the
back-substitution were used in the numerical model).

2.4. The post-processing function and the complete solution

Finding the intensity for arbitrary direction � and optical depth � is known as “post-processing”
of the RTE solution. We use the source function integration technique, which relies on the formal
integration of (5); it has a clear physical interpretation, and is convenient to use numerically. It is
essentially a form of interpolation for the intensity [21]. For a single layer with upper and lower
boundary optical depths �U and �B, the upwelling and downwelling intensities at any intermediate
layer optical thickness x = �− �U are given by

I+(x; �) = I+B (�)e
−($−x)=� + .+(x; �) (24a)

I−(x; �) = I−U (�)e
−x=� + .−(x; �); (24b)

where $= �B − �U and the integrated source terms are

.+(x; �) = ex=�
∫ $

x
J+(y; �)e−y=� dy

�
; (25a)

.−(x; �) = e−x=�
∫ x

0
J−(y; �)ey=�

dy
�

: (25b)

Here J±(y; �) is a sum of the multiply-scattered source term intensity at optical thickness y in
direction � and the term due to single scattering of the direct beam into this direction. The 1rst
of these terms is evaluated by approximating the multiple-scatter integral by its discrete-ordinate
quadrature, using the discrete-ordinate solutions already obtained in (16). Without going into details
of the derivation, we can write:

.±(x; �) = H±(x; �) + D±(x; �) + E±(x; �); (26)

where the three terms represent contributions from the integrated homogeneous solutions, the in-
tegrated particular solution and the integrated single scatter term, respectively. The single scatter
contribution E±(x; �) and the particular solution contribution D±(x; �) both depend on the beam at-
tenuation parameterization and the latter depends also on the method used to determine the particular
solution. The homogeneous solution term H±(x; �) is independent of these aspects. Expressions for
H±(x; �) may be found in [21] and are noted in Appendix B.1. For now we defer discussion of
the single scatter term E±(x; �) to the appropriate place in Section 3.1, while the particular solution
contributions D±(x; �) will be treated later on when we consider the form taken by the particular
solution (Sections 3.2, 3.3).
In an inhomogeneous atmosphere, source terms must be integrated on a layer-by-layer basis.

Denoting I±p−1(�) and I±p (�) for the upwelling and downwelling intensities at the upper and lower
boundaries of layer p, respectively, we have from (24a) and (24b):

I+p−1(�) = I+p (�)e
−$=� + .+(0; �); I−p (�) = I−p−1(�)e

−$=� + .−($; �); (27)
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where .+(0; �) is expression (25a) evaluated at x=0 and .−($; �) is (25b) evaluated at x=$. These
two relations are applied on a recursive basis to get the upwelling and downwelling intensities at
layer boundaries. The downwelling recursion starts at TOA, where the downwelling di=use intensity
is zero (I−0 (�) = 0).
The starting value for the upwelling recursion is the bottom-of-the-atmosphere (BOA) source term

I+K (�), which may be determined from the surface reNection condition. For a general bi-directionally
reNecting surface with albedo R and normalized reNection coeOcients &∗m(�;−�j) de1ned for up-
welling directions �, this is:

I+K (�) = (1 + �m0)R
N∑

j=1

wj�j&∗m(�;−�j)I−jK(�K) + R�0F�&∗m(�;−�0)e−�spher(�K ): (28)

This is easy to evaluate since the components I−jK(�K) are known from the discrete ordinate solution
for the lowest layer p = K . This BOA source term is only present for the m = 0 Fourier term in
the Lambertian case. This result can easily be extended to include surface thermal emission (see
SKC for details). Thus to 1nd the upwelling intensity at arbitrary stream angle � and to arbitrary
optical depth � (assumed to lie within layer q), we start with (28), then use (27) recursively until
the lower boundary of layer q is reached. We then apply (24a) once to get the required intensity
at �.
To complete the discrete ordinate solution, we sum the Fourier series (4). It is usual to terminate

the azimuth series when the addition of an extra harmonic does not alter the overall intensity by
more than a pre-speci1ed relative quantity (the accuracy criterion). This convergence test should
be applied to all intensities for which output is desired. Furthermore, it makes sense to apply this
test to at least two successive azimuth contributions to avoid accidental omission. This procedure is
standard in DISORT [6] and GOMETRAN [7] regarding series convergence.
The layer-integrated multiple scatter source term output may be obtained by simply dropping the

single scatter contribution from (26):

.(MS)±q ($q; �) = H±
q ($q; �) + D±

q ($q; �) (29)

in terms of layer optical thickness $q.
For mean-value (angle-integrated) output, it is only necessary to compute the azimuth-independent

term of the Fourier series (m = 0). Mean value output does not require the above post-processing
analysis. The half-space angular integrations are performed using the discrete ordinate quadrature
values. Upwelling and downwelling Nuxes 〈F〉 and mean intensities 〈J 〉 at optical depth � inside the
layer p are given by

〈F+(�)〉= 2�
N∑

j=1

wj�jI+jp(�) and 〈F−(�)〉= 2�
N∑

j=1

wj�jI−jp(�) + F��0e−�spher(�); (30)

〈J+(�)〉= 1
2

N∑
j=1

wjI+jp(�) and 〈J−(�)〉= 1
2

N∑
j=1

wjI−jp(�) +
F��0
4�

e−�spher(�); (31)
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where I±jp(�) are the discrete ordinate solutions in layer p. Additional direct beam contributions are
present in the downwelling case.

3. The pseudo-spherical particular integral

3.1. Direct-beam attenuation in a curved atmosphere

We 1rst discuss the parameterization of the pseudo-spherical source term. In a multi-layer atmo-
sphere, we may write

4q =
q∑

p=1

4qp =
q∑

p=1

sqpep (32)

for the cumulative slant optical depth 4q to the bottom boundary of layer q in terms of layer path
lengths sqp, layer extinctions ep and slant optical thickness values 4qp for layers p above and equal
to q. In a plane-parallel atmosphere, 4qp = $p=�0. For straight line paths (shell geometry only) the
distances sqp may be expressed easily in terms of vertical altitudes. In a non-refracting atmosphere,
4q is expressed in terms of the Chapman function [18]. In a refractive atmosphere, sqp can be cal-
culated with repeated application of Snell’s law. The zenith solar angle cosine is always −�0 for a
non-refractive atmosphere. With refractive geometry, one must compute an average value − W�0p for
each layer p. In the rest of this paper, we will continue to work with a non-refractive atmosphere,
but the analysis is equally valid for the refractive case, provided the above points are noted. To
characterize the pseudo-spherical input, we need to specify an input grid of slant path optical depths
4qp, and (for a refractive atmosphere) a local grid of solar zenith cosines − W�0p. {4qp;− W�0p} are
additional inputs to the RT model; in keeping with the philosophy to maintain the generic nature of
the discrete ordinate formalism, we do not include ray tracing as part of the model (this should be
application-speci1c).
In a plane-parallel atmosphere, the direct beam attenuation is given by exp[− �=�0]. In a curved

spherical-shell atmosphere this is replaced by exp[ − 4(�)]. We wish to 1nd a parameterization
of this transmittance. The simplest assumption uses an expression which is exact at layer
boundaries:

e−4(�) 	 Tq(x) = T̂ qe−x8q ; where T̂ q = e−4q−1 and 8q =
4q − 4q−1

$q
: (33)

Here, x= �− �q−1 is the partial layer optical thickness. Clearly 8q is an average secant factor which
replaces �−1

0 in layer q. Note that this de1nition is slightly di=erent to that used in [18], where 8q

is de1ned in terms of the slant path optical depth at the center of the layer. The de1nition here has
the advantage that the attenuation is a continuous function of �.
This approximation is equivalent to assuming an average attenuation across the layer, and takes

no account of variations in optical depth through the layer. Some accuracy is lost for optically thick
layers, or for geometrically extensive layers where there is considerable curvature. An improved
parameterization may be obtained with the following exponential-sine and exponential-polynomial
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expressions:

e−4(�) 	 T̂ qe−x8q


1 + N∗

q∑
n=1

cqn sin
(
nx�
$q

) (34a)

e−4(�) 	 T̂ qe−x8q


1 + x($q − x)

N∗
q∑

n=1

cqnxn−1


 ; (34b)

where x; T̂ q and 8q are de1ned in (33). In both cases, correct slant path attenuations result at the
layer boundaries, and the coeOcients cqn may be found by linear 1tting, assuming that a suitable
number of 1ne-level attenuation values are available. The number of coeOcients N ∗

q depends both
on the layer optical and geometrical thickness values and on the degree of accuracy desired for the
parameterization. In practice, we use a single accuracy measure to ensure that the parameterization
is consistently accurate for all layers.
In order to get an idea of the accuracy of these parameterizations, consider a single uniform

atmospheric layer L above the ground (lower height level of 0 km), and with varying optical and
geometrical thicknesses. We assume that this layer is bounded above by another homogeneous layer
of 1xed optical thickness 0.25, and extending up to a 1xed upper level of 50 km. A non-refractive
atmosphere is assumed; the earth radius is 6371 km. We make exact calculations of the attenu-
ation for a large number of subdivisions of L and use these results to 1nd the factors 8q and
Tq and the 1tted coeOcients cqn. A maximum of 4 coeOcients was found to be suOcient in the
1tting. Fig. 2 shows the results of these computations for a number of di=erent solar zenith an-
gles (indicated as contours) ranging from 77◦ to 89:5◦. An accuracy criterion of 5% was set for
the average secant approximation, and 2% for the other parameterizations. Thus for example in
Fig. 2 (center), for all combinations of the ground layer optical and geometric thickness values
lying above and to the right of the contour labeled 87◦, the exponential-polynomial parameterization
will reproduce the solar beam attenuation to better than 2% for a solar zenith angle of 87◦. From
Fig. 2 (top), a 5% accuracy level for solar zenith angles up to 87◦ implies that for the average secant
approximation, the ground layer optical thickness values should be below 	 0:6, and corresponding
geometrical thickness values should be less than 	 0:6 km. In practical applications in a multi-layer
atmosphere, a suOcient number of layers is used to ensure that inaccuracies in the average secant
parameterization due to geometric e=ects are minimized. However, it is clear that there are limita-
tions on the accuracy of the average secant approximation in the presence of optically thick layers.
In Section 5, we give an example of the e=ect of a more accurate pseudo-spherical parameterization
on backscatter intensities at high solar zenith angle.
Finally, we determine the single scatter contributions E±(x; �) which appeared in the integrated

layer source terms (26). The source term to be integrated in this case is Qm(�)T̂e−x8 for the average
secant pseudo-spherical approximation, where Qm(�) is given by (9) evaluated at zenith cosine �.
Source term integration over optical depth along the lines of (25a) is straightforward. Details are
given in Appendix B.2 for all three parameterizations of the direct beam transmittance noted in this
section.
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Fig. 2. Direct beam attenuation accuracy; contours label solar zenith angles in (
◦
), so that all geometrical and optical

conditions above and right of a given contour indicate that the parameterization is accurate to the speci1ed level for the
corresponding solar zenith angle: (top) 5% accuracy levels in the average secant parameterization; (center) 2% accuracy
level for the exponential-polynomial parameterization; (bottom) 2% levels for the exponential-sine parameterization.

3.2. The classical (Chandrasekhar) particular solution

We 1nd the particular solution for the average secant approximation. We use a notation similar to
that in Section 2.1. For a double-Gauss discrete ordinate scheme with N quadrature abscissae and
weights {�j; wj} in the half space, we require the particular solution of the following 2N coupled
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linear di=erential equations (we drop the layer index q temporarily):

dI+i
dx

=−
N∑

j=1

{�ijI+j + �ijI−j } − Q+
i �

−1
i T̂e−x8 (35a)

dI−i
dx

=+
N∑

j=1

{�ijI+j + �ijI−j }+ Q−
i �−1

i T̂e−x8; (35b)

where

Q±
i = (2− �m0)

F�
2�

�m(−�0;±�i): (36)

These expressions are obtained by substituting the average secant form (33) in the general discrete
ordinate Eq. (9), and using the de1nitions of matrices � and � in (11). For the plane-parallel case,
8 = �−1

0 and T̂ = exp[ − �U=�0] (�U is the upper boundary vertical optical depth). The particular
solution G±

j is found by substituting I±j ∼ F±
j T̂ exp(−x8) in (35a) and (35b). This eliminates the

optical depth dependence and we are left with a linear system of order 2N :

8F+i =
N∑

j=1

{�ijF+j + �ijF−
j } − Q+

i �
−1
i ; (37a)

8F−
i =−

N∑
j=1

{�ijF+j − �ijF−
j } − Q−

i �−1
i : (37b)

If we de1ne sum and di=erence vectors H=F++F−, J=F+−F−, S=Q++Q− and D=Q+−Q−,
we can eliminate J in favor of H, thereby reducing the order of the system from 2N to N . The
result is

(�− Ê82)H =−(�− �)S− 8D (38)

for the sum vector H. � is the eigenmatrix in (10) and Ê is again the unit matrix. This system is
solved numerically by standard means. The di=erence vector J is found from the auxiliary equation

8J = (�+ �)H + S (39)

Eqs. (38) and (39) are suOcient to complete the solution. The derivation here (in particular, the
reduction in order) follows closely that found in [20].
A similar approach applies to the exponential-polynomial parameterization given in (34b) above.

Solutions of the form

I±j ∼ T̂e−x8
∑
n

F±
jn x

n (40)

may be substituted in the discrete ordinate Eq. (8). Successive powers of x are then equated, and this
yields a series of linked linear equations for the components F±

jn which are solved recursively starting
with the highest power of x. A solution for the particular integral in a plane-parallel atmosphere
has been developed for an exponential-linear form [23]. For the exponential-sine parameterization
(34a), the ansatz I±j ∼ T̂ exp(−x8)

∑
n F

±
jn sin(nx�=$) can be used. We will not go into details for the

determination of classical solutions for these two parameterizations, as the procedures are somewhat
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cumbersome. In the next section we will see that the Green’s function technique allows particular
solution to be evaluated in a convenient analytic fashion, without the need for solving linear systems
numerically.
For integrated particular solution source functions with the classical method, we refer again to the

de1nition in (26), where we now require the particular solution contribution D±
class. This derivation

is given in Appendix B.3. In line with our preference for using the Green’s function technique, we
do not consider similar expressions for the exponential-sine and exponential-polynomial parameter-
izations (these will however be derived below in Section 3.3 for the Green’s function particular
integral contributions).

3.3. The Green’s function particular solution

The Green’s function method is based on expansions for the upwelling and downwelling particular
solution in terms of solution vectors X(P)� and X(N )� and separation constants ±k� for the homogeneous
problem. A rigorous derivation of this result is outside the scope of the present paper, but the reader
is referred to the explicit formulation of the in1nite-medium Green’s function found in [26]. The
particular form used in the present work assumes that the eigenproblem separation constants occur
in pairs, but this is not a necessary requirement. In this section, we summarize the results given in
[20]. We write

G+
j (�) =

N∑
�=1

{A�(�)X
(P)
j� + B�(�)X

(N )
j� }; G−

j (�) =
N∑

�=1

{A�(�)X
(N )
j� + B�(�)X

(P)
j� } (41)

for the upwelling (+) and downwelling (−) particular integral solutions G±
j (x) of (8), where the

multipliers A and B are given by

A�(�) = a�C−
� (�) and B�(�) = b�C+

� (�): (42)

In (42), the terms independent of optical depth are given by

a� =
1
N�

N∑
j=1

wj[P−
j X (N )

j� + P+j X
(P)
j� ]; b� =

1
N�

N∑
j=1

wj[P+j X
(N )
j� + P−

j X (P)
j� ]; (43)

where the normalization factor N� is given by

N� =
N∑

j=1

�jwj[X
(N )
j� X (N )

j� − X (P)
j� X (P)

j� ] (44)

and P±
j =(2− �m0)�m(±�j;−�0) (the � function was de1ned in (7)). If the layer upper and lower

optical depths are �U and �L respectively, then the optical depth multipliers in (42) are given by

C−
� (�) =

∫ �

�U

e−k�(�−y)e−�spher(y) dy and C+
� (�) =

∫ �L

�
e−k�(y−�)e−�spher(y) dy: (45)

These results may be veri1ed by substituting (41) in the discrete ordinate RTE (8) and using (42)
and (43) together with the properties of the eigensolutions to separate the optical depth dependence
and construct the multipliers in (45). The most important property of these eigensolutions is their
full-range orthogonality. We note that the particular integral is written in analytic form, requiring
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only the evaluation of the optical depth integrals (45). Results for C±
� (�) in a plane-parallel medium

have been noted several times in the literature (see for example [26] or [20]). Since the average
secant parameterization is in fact a local plane-parallel formulation with e−�spher(y) 	 T̂e−(y−�U)8, the
integrals in (45) are straightforward:

C−
� (x) = T̂

e−xk� − e−x8

8− k�
and C+

� (x) = T̂
e−x8 − e−Y8e−($−x)k�

8+ k�
; (46)

where again, x = �− �U and $= �L − �U. In Appendix A we calculate optical depth multipliers for
the exponential-polynomial and exponential-sine parameterizations.
For the post-processing function, we refer to (26) and write D±

Green(x; �) for the integrated partic-
ular solution contribution to the partial-layer source terms. In Appendix B.4, we present derivations
of D±

Green for all three parameterizations of the direct beam transmittance considered in this paper.
The Green’s function method o=ers a more systematic way of dealing with parameterizations of the

direct beam. In general, the classical method (which relies on substitution) is limited to source terms
with straightforward and separable dependence on optical depth; the Green’s function formalism is
more powerful and o=ers greater scope for dealing with a wider variety of source terms.

4. Linearization of the pseudo-spherical discrete ordinate solution

4.1. Preamble: linearization rules

In the previous work (SKC), a perturbation analysis of the intensity 1eld in a plane-parallel
multi-layer multiply scattering atmosphere was carried out in order to establish analytical weighting
functions. In this paper, we adopt a slightly di=erent emphasis, instead working directly with the
partial derivatives of the discrete ordinate solution components. Since the discrete ordinate RTE
comprises a set of coupled linear 1rst-order di=erential equations, this is equivalent to the perturbation
analysis. We also extend the analysis in two directions: (1) the derivation of weighting functions
for the pseudo-spherical model, and (2) the generalization to upwelling and downwelling output at
arbitrary stream angles and optical depth. Together this enables weighting functions to be calculated
for any atmospheric application, in addition to extending the range of viewing geometries to include
large solar zenith angle scenarios.
In order to generate weighting functions with respect to any given atmospheric parameter, we

require the corresponding variational derivatives of the basic optical property inputs to the RTE. We
consider variations only of layer single-scatter albedo and extinction coeOcient, though it is possible
to consider variations of the phase function moments. Consider an atmospheric parameter ?q in layer
q; the relative (parameter-normalized) weighting function de1nition is:

K?q(�; �; 	0 − 	) =
2N−1∑
m=0

Km
?q(�; �) cosm(	0 − 	); (47)

Km
?q(�; �) =L?q[I

m(�; �)] = ?q
@Im(�; �)

@?q
: (48)

Eq. (48) de1nes the linearization operator L? = ?@=@?, and we will continue to use this notation
in the weighting function analysis.
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The input variational quantities that determine the weighting functions may be expressed as

{uq; vq}=
{
Lq[!q]

!q
;
Lq[eq]

eq

}
=
{

?q

!q

@!q

@?q
;
?q

eq

@eq
@?q

}
: (49)

Here, uq can be thought of as the relative change in single scattering albedo !q induced by a relative
change in property ?q, and vq as the relative change in extinction coeOcient eq induced by a relative
change in ?q. The pairs {uq; vq} are fundamental to the weighting function derivation, and they will
be established beforehand and entered as additional inputs to LIDORT.
A simple example will illustrate the construction of the optical properties and their derivatives.

Consider a single homogeneous layer of depth h with Rayleigh (molecular) scattering and absorption
by one trace gas species g. The single scattering albedo is !=ERay=Etotal, where Etotal =ERay +XgEg,
ERay is the Rayleigh cross section, Eg the trace gas absorption cross section, and Xg the trace gas
volume mixing ratio. The layer extinction coeOcient is e=Etotal&air , and the vertical optical thickness
is $=eh, where &air is the air number density (assumed constant). If ?=Xg is the property undergoing
variation, it can be shown readily that

u? =− XgEg

ERay + XgEg
and v? =+

XgEg

ERay + XgEg
: (50)

In the Earth’s atmosphere, there are normally at least two scatterers (molecules and aerosols,
where the latter may include clouds). For each particulate s in layer q, we have single scattering
albedos !qs and phase function moment coeOcients �lqs. Each single scattering albedo is normalized
to the total extinction coeOcient. Then we have !q =

∑
s !qs, and the combination !q�lq which

appears in the equations in Sections 2 and 3 is de1ned by the sum
∑

s !qs�lqs over particulates.
�lq is a weighted mean value of the separate moment coeOcients �lqs. For the linearization, we also
have relative derivatives uqs de1ned for each scatterer s. Continuing to use these de1nitions of !q

and �lq, it is necessary to de1ne weighted mean values ulq such that !q�lqulq=
∑

s �lqs!qsuqs. This
is the combination that appears in the linearization analysis.
In a multi-layer atmosphere, it is important to note that variations in parameter ?q in layer q

will a=ect all cumulative vertical optical depths � in and below that layer. For layers below q, the
variation in � is $qvq, since the optical thickness of layer q will undergo variation by this amount,
but optical thicknesses for all layers below q are not a=ected. This observation applies equally to
slant path optical depth values, since layer slant optical thicknesses are also proportional to extinction
coeOcients. Summarizing, we may write down the rules for the linearization analysis:

Lq[�] =




xvq for �q−1¡�¡�q;
0 for �6 �q−1;
$qvq for �¿ �q;

(51a)

Lq[!p] =
{

uq!q for q= p;
0 for q �=p (51b)

for x = �− �q−1 and $q = �q − �q−1.
Now we examine the linearization of the direct beam attenuation. From (32), it follows that

Lq[4p] = vq4pq, and from the de1nition (33) of the average secant parameterization, we obtain:

Lq[T̂ p] =−vq4p−1; qT̂ p for q¡p; Lq[T̂ p] = 0 for q¿p (52)
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with

$pLq[8p] =




−vq(4pq − 4p−1; q) for q¡p and p¿ 1;
−vq(4pq − $p8p) for q= p;
0 for q¿p:

(53)

Bringing these results together, we 1nd

$pLq[Tp(x)] =




−vq[4pq($p − x)− 4p−1; qx]Tp(x) for q¡p and p¿ 1;
−vq4pqxTp(x) for q= p;
0 for q¿p:

(54)

These results are vital for the linearization analysis of the particular integral, and we will need them
later. For the plane-parallel (pp) case, we have 8p = �−1

0 and 4pq = $p�−1
0 , and hence

�0Lq[T (pp)
p (x)] =




−vq$qT (pp)
p (x) for q¡p;

−vqxT (pp)
p (x) for q= p;

0 for q¿p:
(55)

The plane-parallel result was derived in a di=erent form in SKC; the average secant result is new.
In Section 4.2 we go through the linearization process for the discrete ordinate homogeneous

solutions; this mirrors the treatment in SKC. Sections 4.3 and 4.4 deal with the linearization of the
classical and Green’s function particular integrals, with particular emphasis paid to the e=ects of
the pseudo-spherical assumption. The analysis for the particular solutions is restricted to the average
secant parameterization. The linearization of the boundary value problem follows in Section 4.5; the
treatment is more general than the plane-parallel analysis presented in SKC. In Section 4.6 we exam-
ine the post-processing function in order to establish linearizations (and hence weighting functions)
at arbitrary optical depth and stream angle, again paying particular attention to the pseudo-spherical
treatment.
Note also that one can de1ne an albedo weighting function: KR(�; �) = R@I(�; �)=@R. For a

Lambertian surface, this weighting function is only nonzero for the azimuth-independent Fourier
term. Layer homogeneous and particular solutions do not depend on the albedo, so their partial
derivatives with respect to R vanish. The albedo only appears explicitly in the surface boundary
condition BC3, so the corresponding linearization operator LR need only be applied to this result. We
note this development in Section 4.5, and mention the post-processing function for albedo weighting
functions in Section 4.6. The notion of an albedo weighting function can easily be extended to a more
general surface reNectance condition, if we assume no sensitivity to the shape of the bi-directional
reNectance function.
The analysis presented here is restricted to a solar beam source; we do not consider weighting

functions with respect to sources of atmospheric thermal emission. However, the latter was done in
SKC, where thermal emission was assumed isotropic, and the results established in that work can
easily be incorporated in the present analysis.

4.2. Linearization analysis for the homogeneous solutions

We assume that derivatives {uq; vq} have been de1ned with respect to property ? varying in
layer q. We drop the index q for now, since derivatives with respect to ? vanish for homogeneous
solutions in layers other than q. If x is the optical thickness measured from the top boundary of
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the layer, and $ the thickness for the whole layer, then as noted above, L[x] = xv and L[$] =$v.
The homogeneous solutions are X(P)� e−k�x and X(N )� e−k�($−x). Applying the linearization operation
and using the chain rule gives us:

L[X(P)� e−k�x] = e−k�x{L[X(P)� ]− (L[k�] + vk�)xX(P)� }; (56)

L[X(N )� e−k�($−x)] = e−k�($−x){L[X(N )� ]− (L[k�] + vk�)($− x)X(N )� }: (57)

To determine L[k�] and L[X�], we apply the linearization operator to the eigenvalue problem (10).
We note 1rst that the elements �ij in the de1nitions of � and � in (11) are proportional to !, so
that L[�ij] = u�ij. It follows that:

L[Gij] = u
N∑
l=1

{
wlC−

il

�i
(�lj + �lj) + (�il − �il)

wjC+
lj

�l

}
; where C±

ij =*
+
ij ±*−

ij : (58)

The linearization of (10) gives:

N∑
j=1

(Gij − �ijk2�)L[&j�] = 2k�L[k�]&i� +
N∑
l=1

L[Gij]&j�: (59)

Since for each � there are N +1 unknowns L[k�] and L[&i�], i=1; : : : ; N , an additional condition
is required in order to 1nd the solution. This comes from the unit normalization condition imposed
on the eigenvectors. Since &� · &� = 1 (vector product), then it follows that L[&�] · &� = 0. Together
with (59), we get the combined linear system M�,�=B�, where vectors ,� and B� and matrix M�

are given by:

,� =




L[k�]

L[&1�]

L[&2�]
...

L[&N�]



; B� =




∑
j

?1j&j�

∑
j

?2j&j�

...∑
j

?Nj&j�

0



;

M� =




2k�&1� k2� − G11 −G12 · · · −G1N
2k�&2� −G21 k2� − G22 · · · −G2N
...

...
...

. . .
...

2k�&N� −GN1 −GN2 · · · k2� − GNN

0 &1� &2� · · · &N�



: (60)
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Solving this system gives us L[k�] and L[&�]. We now linearize the auxiliary Eq. (12) to 1nd
L[#�]. From these results, the linearizations L[X(P)� ] and L[X(N )� ] may be obtained; these have the
same symmetry properties (14) as the original solution vectors. Reintroducing layer indices, we note
that for q �=p, Lq[kp�] = 0, Lq[X

(P)
p� ] = 0 and Lq[X

(P)
p� ] = 0. These results were derived in SKC

using perturbation methods.

4.3. Linearization analysis for the classical particular solution

In this section, we retain the layer indices. We derive the linearization only for the average secant
parameterization of the direct beam transmittance. The original particular solution in a given layer q
was determined from the linear system (38), so that application of the linearization operator Lq will
result in the same linear system with a di=erent source vector. From the previous section, we know
the linearizations Lq[�q], Lq[�q] and Lq[�q]; all these matrices are linearly proportional to !q, so
their linearizations depend only on uq. Further, Lq[�p] = 0 for q �=p, and similarly for �p and �p.
Secondly, we have Lq[Sq] = uqSq and Lq[Dq] = uqDq, since Sq =Q+

q +Q
−
q , Dq =Q+

q −Q−
q and

Q±
q as de1ned in (36) all vary with !q. Again there is no variation of these quantities for q �=p.

With these considerations in mind, we can now apply the linearization operator directly to (38). The
result for the pseudo-spherical case is:

(�p − Ê82p)Lq[Hp] = �pqZq + (28pHp −Dp)Lq[8p]; (61)

where

Zq =−Lq[�q − �q]Sq − (�q − �q)Lq[Sq]− 8qLq[Dq]−Lq[�q]Hq: (62)

This result is valid for p¿ q. (The plane-parallel result is considerably simpler: only the term
�pqZq is present, since Lq[8p]=0 for 8p=�−1

0 a constant; it follows that Lq[Hp]=0 for p �= q in
this case.) It is clear from (61) that the solutions Lq[Hp] are determined using the same matrices
�p − Ê82p that were used in the original system (38). Since we have already inverted these matrices
while solving for the original vectors Hp, the linearizations follow by back-substitution.
In a similar vein, we can linearize the auxiliary Eq. (39) to 1nd Lq[Jp]:

8pLq[Jp] =−JpLq[8p] + (�p + �p)Lq[Hp] + �pqZq; (63)

where this time the auxiliary vector Zq is given by

Zq =Lq[�q + �q]Hq: (64)

This result is valid for p¿ q in the pseudo-spherical case. (In the plane-parallel case, Lq[Jp]=0
for p �= q). Eqs. (61)–(64) are suOcient to determine the linearizations Lq[F±p ] in the de1nition
of the particular solution. Since the particular solutions themselves are given by G±

p (x) = F
±
p Tp(x),

where Tp(x) = T̂ pe−x8p , we can now write down the complete result for the linearization of G±
p :

Lq[G±
p (x)] =Lq[F±p ]Tq(x) + F±pLq[Tp(x)] for p¿ q; (65)

where Lq[Tp(x)] is given by (54).
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4.4. Linearization analysis for the Green’s function particular solution

In this section we carry out a linearization analysis on the Green’s function solution. We retain
layer indices throughout. In (43), ap� is independent of optical depth, so that Lq[ap�]=0 for p �= q,
and similarly for the other terms de1ned in (43) and (44). We proceed by applying the linearization
operator to (41) and using the chain rule:

Lq[G+
jp(x)] =

N∑
�=1

{Lq[Ap�(�)]X
(P)
jp� +Lq[Bp�(�)]X

(N )
jp� }+ �pqZjq (66)

where now

Zjq =
N∑

�=1

{Aq�(�)Lq[X
(P)
jp� ] + Bq�(�)Lq[X

(N )
jp� ]} (67)

with a similar result for Lq[G−
jp(x)]. The linearizations of X

(P)
p� and X(N )p� are known from Section

4.2. Further, we have from (42)

Lq[Ap�(�)] = �pqLq[ap�]C+
p�(�) + ap�Lq[C+

p�(�)] (68)

and similarly for Lq[Bp�(�)]. From the de1nition (43) for ap�, we 1nd

Lq[aq�] =
aq�

Nq�
{uqNq� −Lq[Nq�]}+ 1

Nq�

N∑
j=1

wj{Q−
jqLq[X

(N )
jq� ] + Q+

jqLq[X
(P)
jq� ]} (69)

and similarly for Lq[bq�]. In deriving this result we used the fact that Lq[Q±
jq] = uqQ±

jq . For the
linearization of the normalization factor Nq� in (44), we obtain

Lq[Nq�] = 2
N∑

j=1

�jwj{X (N )
j� Lq[X

(N )
jq� ]− X (P)

j� Lq[X
(P)
jq� ]}: (70)

In dealing with the linearizations of the optical depth multipliers in (46), we must distinguish
between those multipliers in the layer q in which the variation in parameter ?q is taking place, and
multipliers in layers p¿q which will be a=ected by the variation in layer q. Using the fact that
Lq[$p] = $qvq�pq and Lq[x] = xvq�pq for x in q, and the result already established in Section 4.2
for Lq[kq�], we 1nd

Lq[C+
p�(x)] =

T̂ p

8p − kp�
{−e−x8pxIpq + e−$p8pe−($p−x)kp� pq�}+ $+

pq�C
+
p�(x); (71)

Lq[C−
p�(x)] =

T̂ p

8p + kp�
{−e−xkp��pqxLq� + e−x8pxIpq}+ $−

pq�C
−
p�(x); (72)

where

Lq� =Lq[kq�] + vqkq�; (73)

Ipq = �pqvq8p +Lq[8p]; (74)
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$±
pq� =

Lq[T̂ p]

T̂ p
∓ Lq[8p]∓ �pqLq[kq�]

8p ∓ kp�
(75)

and

 pq� = $p$+
pq� + �pq($p − x)Lq�: (76)

Again this is valid for p¿ q. This completes the linearization of the Green’s function solution.

4.5. Linearization analysis of the boundary value problem

This is one of the most important aspects of the weighting function analysis. Applying the lin-
earization operator to the boundary conditions will determine the linearizations Lq[Lp�] andLq[Mp�]
for the integration constants Lp� and Mp� in (16) in terms of the linearizations worked out in the
previous three sub-sections for the component homogeneous and particular solutions. We 1rst apply
the chain rule to (16) in layer p:

Lq[Ijp] =
N∑

�=1

{Lq[Lp�]X
(P)
jp�e

−kp�

+Lq[Mp�]X
(N )
jp� e

−kp�($p−x)}+Lq[Gjp] + �pqLq[Zjq]; (77)

where some of the dependence on x has been suppressed for convenience. The last term is only
present when p= q and is given by

Lq[Zjq] =
N∑

�=1

{Lq�Lq[X
(P)
jq� e

−kq�x] +Mq�Lq[X
(N )
jq� e

−kq�($q−x)]}: (78)

We can now apply the linearization operator to the three boundary conditions BC1, BC2 and BC3
as written down in Section 2.3. Clearly the linearization Lq[Ijp] must also satisfy these conditions
(in terms of the perturbation analysis in SKC, the perturbed 1eld also obeys the same conditions).
Using the notation developed earlier for the boundary conditions for the intensity problem, we can
write down explicit equations for these boundary conditions, noting that x takes values only at the
layer boundaries (that is, x=0 or x=$p for layer p). We use indices p and r to label layers, while
q is reserved for the layer that contains a varying parameter. By analogy with (19), (21) and (22),
we have

N∑
�=1

{Lq[Lp�]X
(P)
−jp� +Lq[Mp�]+p�X

(N )
−jp�}= B(1)jp ; (79a)

N∑
�=1

[{Lq[Lr�]+r�X
(P)
jr� +Lq[Mr�]X

(N )
jr� } − {Lq[Lp�]X

(P)
jp� +Lq[Mp�]+p�X

(N )
jp� }] = B(2)jp ; (79b)

N∑
�=1

{Lq[Lp�]+p�,
(P)
j� +Lq[Mp�],

(N )
j� }= B(3)jp : (79c)
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The right-hand side vectors are

B(1)jp =−{Lq[G−jp] + �pqLq[Z−jp]}|�0 ; (80a)

B(2)jp = {(Lq[Gjp]−Lq[Gjr]) + (�pqLq[Zjp]− �rqLq[Zjr])}|�r ; (80b)

B(3)jp = R�0F�Lq[T̂ pe−$p8p]−Lq[-j]− �pqLq[Yjp]: (80c)

In (79a) and (79c), j = 1; : : : ; N , and −j denotes the downwelling stream directions. In (79b),
j=±1; : : : ;±N . On the right hand sides, the vectors B are evaluated at the optical depths indicated;
p=1 in (79a), r=p−1 in (79b) and p=K in (79c). The transmittance factors +p� have been de1ned
in (20), vectors 0(P) and 0(N ) in (23a), and 1 in (23b). The BC3 condition was written down for
a Lambertian surface in (80c), but the generalization to a bi-directional surface is straightforward.
There is one additional de1nition in (80c), namely

Lq[Yjq] =
N∑

�=1

{Lq�Lq[,
(P)
j� +p�] +Mq�Lq[,

(N )
jq� ]}: (81)

It is seen immediately that these conditions provide a linear system similar to that used to solve
the original boundary value problem. Indeed the solution matrix A in Section 2.3 is the same as
before, so we can write ALq[X]=Lq[B], where the vector Lq[X] consists of the set of unknown
linearized integration constants Lq[Lp�] and Lq[Mp�], and the solution vector Lq[B] is constructed
from the expressions (80a), (80b) and (80c). Since we have already found the inverse of A while
solving the original boundary value problem, it is straightforward to determine the vector Lq[X] by
back-substitution. No additional matrix inversion is required, and the results are analytic, depending
only on the accuracy with which the original intensity was calculated. The formulation presented here
is slightly di=erent from that in SKC, where a more explicit breakdown of the boundary conditions
was presented in a plane-parallel multilayer atmosphere.
For the albedo weighting function, the discrete ordinate homogeneous and particular solutions have

no partial derivatives, and we need only 1nd LR[Lp�] and LR[Mp�]. For a Lambertian surface, the
corresponding linearization of BC1, BC2 and BC3 for the Fourier m= 0 component gives:

N∑
�=1

{LR[Lp�]X
(P)
−jp� +LR[Mp�]+p�X

(N )
−jp�}= B(R1)jp ; (82)

N∑
�=1

[{LR[Lr�]+r�X
(P)
jr� +LR[Mr�]X

(N )
jr� } − {LR[Lp�]X

(P)
jp� +LR[Mp�]+p�X

(N )
jp� }] = B(R2)jp ; (83)

N∑
�=1

{LR[Lp�]+p�,
(P)
j� +LR[Mp�],

(N )
j� }= B(R3)jp ; (84)

where B(R1)jp = 0 for p= 1 and j = 1; : : : ; N ; B(R2)jp = 0 for all p¿K and j = 1± 1; : : : ;±N and

B(R3)jK = R�0F�e−�spher (�K)− 2R
N∑
i=1

wi�iG−iK |�K : (85)
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We have used (23a) and (23b) to establish B(R3)jp for p = K and j = 1; : : : ; N . Again, we have the
same linear system, this time with a new source vector constructed from the right-hand entries. The
solution for LR[Lp�] and LR[Mp�] follows once again by back-substitution.
Once the linearizations of the integration constants have been found, it is possible to write the

linearization of the discrete-ordinate solution anywhere in the atmosphere, and hence we have deter-
mined weighting functions at quadrature values and at arbitrary optical depth. In order to complete
the weighting function solution for arbitrary stream angles, we now look at the linearization analysis
of the post-processing function.

4.6. Linearization analysis of the post-processing function

We return to expressions (24a) and (24b) for the partial layer intensities derived using the source
function integration technique. Since Lq[$q] = $qvq and Lq[x] = xvq for x in layer q, we have

Lq[I+(x; �)] = {Lq[I+p (�)]− �pqvq($p − x)�−1I+p (�)}e−($p−x)=�

+NpqLq[.+p (x; �)]; (86a)

Lq[I−(x; �)] = {Lq[I−p−1(�)]− �pqvqx�−1I−p−1(�)}e−x=�

+NpqLq[.−
p (x; �)]; (86b)

where �pq = 1 for p= q and �pq = 0 otherwise, and Npq = 1 for p¿ q and Npq = 0 for p¡q. The
latter condition arises from the fact that the source terms .±

p (x; �) have no linearization for p¡q.
Expressions for whole layers can be obtained by setting x = 0 in (86a) and x = $p in (86b).
Recalling the expression (26) for the source function terms, we write

Lq[.±
p (x; �)] =Lq[H±

p (x; �)]�pq +Lq[D±
p (x; �)] +Lq[E±

p (x; �)]: (87)

This is valid for variations in layers p6 q. Note that the homogeneous solution contribution H±
p (x; �)

has no variation outside layer q. Finding the linearizations of the three quantities on the right hand
side of this equation is a straightforward but lengthy exercise; one proceeds using already-established
results from the linearization of the discrete ordinate solution, along with repeated applications of
the chain rule. The mathematical details are given in Appendix C.1 for the three right hand side
terms in (87) respectively.
As with the intensity calculation, the above results can be used recursively to generate weighting

functions at arbitrary optical depth and direction. For whole layer terms we simply set x = $p or
x = 0 for layer p. For the upwelling values at point x in layer p, we start with the bottom-of-the
atmosphere linearization Lq[I+(�K ; �)] and use the whole-layer expressions repeatedly for layers
below p, followed by a single partial-layer application of (86a) in layer p to 1nish. Care should be
taken to distinguish the cases p= q, p¡q and p¿q.

5. The LIDORT package

Based on the theory presented in this paper and the preceding one (SKC), the numerical model
LIDORT (Linearized Discrete Ordinate Radiative Transfer) has been developed as a general tool
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for use in forward model studies connected with atmospheric retrieval. The model can be used
in an intensity-only mode (without the linearization options) or additionally to generate simultane-
ous 1elds of weighting functions. The 1rst version based on SKC dealt with the satellite applica-
tion in a plane-parallel atmosphere. The second version has two important extensions to cover the
pseudo-spherical treatment of the direct beam attenuation and to generate output for any atmospheric
application. The LIDORT V2 package has the following attributes:

1. Multiple scatter treatment of the radiative transfer equation in an inhomogeneous atmosphere, with
any number of scatterers. A general treatment for a bi-directionally reNecting surface is available;

2. Generation of upwelling and=or downwelling intensity and weighting function 1elds for arbitrary
viewing geometry and optical depth;

3. Option to perform a plane-parallel calculation or a pseudo-spherical calculation using the average
secant approximation. Both methods of particular integral solution (classical and Green’s function)
are implemented;

4. Weighting functions may be generated with regard to any atmospheric parameter that causes
variation in layer extinction coeOcient and single-scatter albedo. Options to output weighting
functions with respect to albedo and surface blackbody temperature are implemented;

5. Additional output includes mean-value quantities (Nux, mean intensity) and their weighting func-
tions, and layer-integrated multiple scatter source terms and associated weighting functions;

6. The delta-M scaling transformation has been incorporated both in the intensity calculation and in
the weighting function analysis.

Double precision arithmetic is used throughout LIDORT; the code is written in FORTRAN 77. For
the numerical tools, the module ASYMTX from DISORT was used for the homogeneous solution
eigenproblem, and LAPACK modules [25] were employed for all linear matrix algebra systems.
LIDORT contains a standardized error handling procedure in addition to a number of auxiliary
routines for both the reading of input data from 1les, and the generation of result data to 1le. As
noted already, LIDORT is a pure scattering formalism; there are no databases or climatologies of
atmospheric and optical properties in the model. The LIDORT package is called as a subroutine
within a user-de1ned environment; the usage is similar to that for DISORT [6]. The software has
been quality controlled and is portable and robust; it can be installed on PCs under the Linux
operating system. Memory requirements are modest.
For the average secant parameterization, both methods of particular integral solution (Green’s

function and substitution) are implemented in the software. Intensity results for the two methods
were found to be identical to 9 places of decimals. Computation speeds are similar: the Green’s
function method is faster for the determination of the discrete ordinate solution, but a little slower
for the post-processing step. An o=-line intensity-only version of LIDORT has been written to
deal with the exponential-sine and exponential-polynomial parameterizations of the direct beam
transmittance.
All plane-parallel intensity output was veri1ed using the DISORT model; pseudo-spherical results

were validated against the SDISORT code [23]. Table 1 gives a sample of these validations for the
test atmosphere described in Section 6.1. Results are for upwelling intensities at TOA for line-of-sight
viewing zenith angles as indicated. DISORT comparisons were done for a solar zenith angle of 15◦,
SDISORT validations with solar angle 82◦; in both cases the relative azimuth angle was 60◦. The
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Table 1
TOA upwelling intensity: LIDORT plane-parallel (PP) and DISORT, LIDORT pseudo-spherical (PS) and SDISORT

Angle (◦) DISORT LIDORT PP SDISORT LIDORT PS

0.0 8.83804E−02 8.838043E−02 1.74379E−02 1.743787E−02
1.0 8.82865E−02 8.828647E−02 1.74259E−02 1.742588E−02
2.0 8.81990E−02 8.819904E−02 1.74194E−02 1.741939E−02
5.0 8.79799E−02 8.797986E−02 1.74333E−02 1.743328E−02
10.0 8.77839E−02 8.778397E−02 1.75709E−02 1.757091E−02
15.0 8.78271E−02 8.782700E−02 1.78613E−02 1.786122E−02
20.0 8.81004E−02 8.810022E−02 1.83187E−02 1.831864E−02
25.0 8.86090E−02 8.860901E−02 1.89573E−02 1.895727E−02

1gures apply to a 60-layer atmosphere with 10 discrete ordinate streams in the half-space for the
DISORT validation, and 8 streams for the SDISORT comparison.
All weighting function output may be veri1ed against 1nite-di=erence estimates

KFD(?q) 	 (I(?+q )− I(?−q ))=(2NFD); (88)

where I(?±q ) are the intensities calculated using perturbed values ?±q =?q(1± NFD) of parameter ?q in
layer q for an external perturbation NFD. For parameters such as volume mixing ratio for which the
optical thickness dependence is linear, agreement between analytically-derived results KLIDORT(?q)
and the 1nite-di=erence equivalents KFD(?q) can be made very close for small enough NFD. For
other parameters such as temperature, where the optical property dependence is usually non-linear,
the 1nite-di=erence result is at best an approximation.
The delta-M scaling transformation [22] is a useful adjunct to any radiative transfer model dealing

with multiple scattering. It provides a convenient way of dealing with phase functions which are
sharply peaked in the forward scattering direction; the original phase function is replaced by a
delta-function forward peak plus a smoother residual which requires a limited number of Legendre
phase function moments for its description. The delta-M process essentially involves an initial scaling
of the optical depth inputs (single scattering albedo and vertical optical depth) before the RTE is
solved. (Slant path optical thickness inputs must also be scaled when the pseudo-spherical treatment
is required in the RTE solution). In a model with a simultaneous weighting function capability, it
is also necessary to scale the variational inputs {uq; vq} before the RTE is linearized. Details of the
delta-M scaling transformations for LIDORT are presented in Appendix D.
Creating the right inputs for the model is very important, and we will examine this in more detail

in the next section when we consider examples in a real atmospheric situation. We enumerate here
the main geophysical inputs:
1. Layer single scattering albedos !qs for any number of scatterers, each such albedo normalized to
the total layer extinction coeOcient. A vertical optical depth grid �q, plus layer slant path optical
thicknesses 4qp for each layer p traversed by the direct beam in its path to a scatter point at
vertical optical depth �q.

2. Surface albedo R and an albedo-normalized bi-directional reNection function speci1ed at all stream
angles (ordinates and o=-quadrature) for suOcient Fourier terms.
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3. Layer phase function moment coeOcients �lqs for layer q, scatterer s in this layer, and for suOcient
Legendre moments l to ensure valid application of the delta-M scaling.

4. Variational input uq?s which is the relative di=erential variation of layer single scattering albedo
!qs with respect to atmospheric parameter ?. Variational input vq? which is the relative di=erential
variation of layer extinction coeOcient eq with respect to atmospheric parameter ?.

The LIDORT User’s Guide has a description of the complete package, and a discussion with
examples on the construction of a typical environment for the model and an interface to set up
the appropriate optical property inputs. The User’s Guide also contains instructions on installation
and execution. A test data set has been prepared for release; this is based in part on the example
described in detail in below. The LIDORT source code and User’s Guide may be downloaded from
the SAO web site (http://cfa-www.harvard.edu/pub/lidort/v2).

6. Nadir and zenith examples with the LIDORT model

6.1. Construction of LIDORT inputs for a terrestrial scenario

For the applications considered below in Sections 6.2 and 6.3, we take a terrestrial atmosphere
with height 60 km, a vertical height resolution of 1 km, with O3 volume mixing ratios (VMRs)
Xq, temperatures Tq and pressures Pq for a “tropical” standard atmosphere [27], interpolated to the
mid-points of each layer. We choose a range of wavelengths in the UV covering the O3 Hartley–
Huggins absorption bands. We take O3 cross sections EO3q (cm2) for layers q to possess quadratic
temperature-dependency. Thus EO3q = E0 + TqE1 + T 2q E2, where Tq is in

◦C. CoeOcients E0; E1; E2 are
taken from a standard data set [28].
Molecular (Rayleigh) scattering and aerosol scattering are present in all layers. For the wavelength

dependence of the Rayleigh scattering cross section ERay (cm2) and the depolarization ratio �Ray, we
use empirical formulae [29] based on data from Bates [30]. The only non-zero phase function moment
coeOcients are �Ray0 = 1 and �Ray2 = (1− �Ray)=(2 + �Ray). For the aerosol properties, a LOWTRAN
model [31] is selected, with maritime-type boundary layer aerosol (visibility 23 km, relative humidity
70%) and background stratospheric and tropospheric optical properties. Aerosol scattering coeOcients
EAerq and extinction coeOcients eAerq (in (cm−1)) are linearly interpolated to wavelength. For the
aerosols we assume Henyey–Greenstein phase functions with asymmetry parameters g taken from
the appropriate selection of LOWTRAN aerosol types and interpolated linearly with wavelength
(phase function moment coeOcients are �Aer0 =1, and �Aerl =gl for l¿ 0). The clear sky total optical
thickness for this atmosphere is 1.256 at wavelength 335:4579 nm, with corresponding total Rayleigh
scattering optical thickness 0.759, and total ozone absorption optical thickness 0.00707.
We illustrate the construction of LIDORT inputs for this atmosphere. Writing &q for the average

air number density (cm−3), eq for the layer total extinction coeOcient, $q the layer optical thickness,
and !Rayq and !Aerq for the layer single scattering albedos, we get:

eq = &q[XqEO3q + ERay] + eAerq ; with $q = eqhq; (89a)

!Rayq = &qERay=eq and !Aerq = EAer=eq; (89b)

http://cfa-www.harvard.edu/pub/lidort/v2
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where hq is the layer geometrical thickness (cm). Together with �Rayl and �Aerl , these results de-
1ne the LIDORT model input for the plane-parallel atmosphere in an intensity-only mode. For the
pseudo-spherical approximation, we need the slant optical depths 4pq as de1ned in (32); since the
extinctions are known, these layer optical depths can be speci1ed once the slant path distances spq

in (32) have been worked out from a suitable ray-tracing program.
The second step concerns inputs {uq; vq} for the weighting functions. The de1nitions are Lq[!q]=

?q@!q=@?q = uq!q and Lq[eq] = ?q@eq=@?q = vqeq. We consider two atmospheric parameters ?: the
volume mixing ratio Xq and the temperature Tq. For ?=Xq, the dependence on Xq is straightforward
and we can write

uRay?q =−&qXqEO3q =eq; uAer?q =−&qXqEO3q =eq and v?q =+&qXqEO3q =eq: (90)

For ?=Tq the dependence is more complex. From the temperature dependence of the cross-sections,
we 1nd @EO3q =@Tq= E1 + 2TqE2. Also we have @&q=@Tq=−&q=Tq, since &q= &S(PqTS)=(PSTq) (the S
suOx indicates values for a standard atmosphere). Using this information in the de1nitions gives us

uRay?q =−T−1
q − e−1q @eq=@Tq; uAer?q =−e−1q @eq=@Tq and v?q =+e−1q @eq=@Tq; (91)

where

@eq=@Tq =−&qT−1
q (XqEO3q + ERayq ) + &qXq(E1 + 2TqE2): (92)

6.2. Intensity and O3 VMR weighting functions from LIDORT

We look at two nadir viewing situations: (1) the upwelling radiation 1eld at TOA as seen by
a nadir-viewing satellite such as GOME, GOME-2 or SCIAMACHY; and (2) the downwelling
radiation at the surface as seen by a ground-based instrument measuring sky radiances. In both
cases, we assume a Lambertian surface and no surface or atmospheric thermal emission. We show
results for a wide range of solar zenith angles, concentrating in particular on the higher values from
65◦ to 89:5◦ in order to examine the e=ect of the pseudo-spherical approximation. Line-of-sight
zenith angles will range from 0◦ to 35◦, with azimuth angles as noted. A 10-stream discrete ordinate
solution was used in LIDORT, with an accuracy criterion of 0.001 on the convergence of the
Fourier azimuth series (this model control is suOcient for a UV scenario with a large Rayleigh
scattering component). The examples that follow are indications of the output that the model can
generate.
First we compare pseudo-spherical intensities against comparable plane-parallel results. Fig. 3 (top

panel) shows the di=erences between the TOA upwelling intensities calculated using the plane-parallel
mode and average secant parameterization to the pseudo-spherical mode. The limitation on the va-
lidity of the plane-parallel assumption is clear. A similar picture emerges for downwelling intensities
at the bottom of the atmosphere (BOA) (bottom panel). These intensities were calculated at a sin-
gle wavelength (335:4579 nm) for a number of solar zenith angles as indicated, for a range of
line-of-sight angles up to 25◦ and for a relative azimuth of 60◦.
Next we look at the pseudo-spherical approximation in a little more detail. In Fig. 4, we show

the e=ect of neglecting refraction using the average secant parameterization. As noted before, the
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Fig. 3. (Top) TOA upwelling intensities: % di=erence between pseudo-spherical (average secant) and plane-parallel results
for the geometries indicated, albedo 0.3, wavelength 335:4579 nm; (bottom) the same comparison for downwelling intensity
at the lower boundary.

inclusion of refraction is really a question of providing properly ray-traced optical depth inputs; the
execution of LIDORT itself is not a=ected by this input choice. All computations were done for
the azimuth-independent term (nadir=zenith viewing) and for a number of heights (optical depths)
through the atmosphere. The top panel (for the upwelling 1eld) indicates the spread of di=erences
through the atmosphere; the peak around 18 km is clear. The di=erence is less noticeable for down-
welling intensities (lower panel), where the largest e=ect is close to the surface for the highest solar
zenith angles.
The average secant pseudo-spherical parameterization is adequate for clear sky scenarios with a

number of optically thin layers. We now examine a scenario where a more accurate parameterization
of the direct beam is useful. To the atmosphere described in Section 6.1, we add a highly scattering
optically thick particulate in one layer. We take a hypothetical polar stratospheric cloud (PSC)
scenario, with a cloud layer of optical thickness 1.0 and single scattering albedo 0.996 between 24
and 25 km. The solar zenith angle is 88◦; at this sort of incidence, layers beneath the cloud will be
opaque to direct beam illumination and the light is multiply scattered in this part of the atmosphere.
Fig. 5 shows upwelling intensity LIDORT results for 3 line-of-sight viewing angles at a relative
azimuth of 60◦, calculated with the average secant and exponential-polynomial parameterizations
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Fig. 4. (Top) Zenith upwelling intensities in the whole atmosphere: a comparison with and without refraction using the
pseudo-spherical average secant parameterization. Albedo and wavelength as in Fig. 3; (bottom) similar comparison for
zenith downwelling intensities in the lower atmosphere.

of the direct beam attenuation. The latter parameterization required 3 1tted coeOcients to ensure
an accuracy of 1% in the beam attenuation through the cloud layer. For the viewing geometries
considered, errors in the intensity due to the average secant approximation are in the range 2.5–4%.
It is clear that for atmospheres with cloud layers, an improved direct beam parameterization will
result in signi1cantly better intensity accuracy.
We now look at some weighting function output. Fig. 6 shows the weighting functions with respect

to O3 volume mixing ratio for all levels in the atmosphere, and for a number (10) of wavelengths in
the Hartley–Huggins range of ozone absorption. Results have been normalized to the peak values; a
pseudo-spherical calculation was performed for albedo 0.3, for two solar zenith angles 35◦ and 82◦,
line of sight 15◦ and relative azimuth 0◦. Below 300 nm, peak values occur at heights that increase
with lower wavelengths. It is this well-known di=erential scattering height behavior that underpins the
BUV technique for O3 pro1le retrieval in the stratosphere [32]. Note also the increasing tropospheric
sensitivity for the longer wavelengths; this sensitivity tends to disappear with increasing solar zenith
angle.
Fig. 7 shows nadir-view O3 VMR weighting functions at one wavelength (335:4579 nm), calculated

in the average secant pseudo-spherical and plane-parallel approximations for a number of solar zenith
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Fig. 5. Upwelling intensities in the atmosphere using the average secant and exponential-polynomial pseudo-spherical
parameterizations: a comparison. Albedo and wavelength as in Fig. 3; geometries as indicated.

angles. The top panel shows results for the satellite application (TOA upwelling) at four selected
solar zenith angles. There is a signi1cant loss of tropospheric sensitivity for higher solar zenith
angles. Note also the spurious upward drift of the peak sensitivity for the plane-parallel results. The
lower panel illustrates in more detail the di=erences in these results.

6.3. LIDORT model simulations for wide o<-nadir satellite viewing

Under normal viewing conditions, GOME-2 has a swath width of 1920 km; at the extremes,
the line-of-sight at the satellite is 	 48◦ from the nadir (this translates to a zenith angle of 	
55:3◦ at the top of an atmosphere of height 100 km). The swath for the OMI instrument is even
larger (	 2600 km), the o=-nadir line-of-sight angle at the satellite being 57◦ at the swath ends.
Wide-angle views are also a feature of the GOME and SCIAMACHY instruments operating in
special polar-viewing modes [9]. As noted in the Introduction, the regular pseudo-spherical model
treats all scatter events along the zenith AC in Fig. 1 (the solar zenith angle is always OA); the solar
path to the point of scatter is attenuated in a curved atmosphere. In the enhanced pseudo-spherical
approach, we consider precise calculations of the single scatter at all points Pn along AB, treating both
solar beam and line-of-sight attenuation for the curved atmosphere. All multiple scatter contributions
to the upwelling intensity IB are computed from regular LIDORT computations done for points along
AB. We adopt the source function integration method to compute IB.
Referring to Fig. 1, consider points Pn and Pn−1 at the lower boundaries of layers n and n − 1

respectively. Using an integration of the RTE along the segment PnPn−1, we can write:

In−1 = In+n + .(SS)n + .(MS)n ; (93)
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Fig. 6. TOA upwelling O3 VMR weighting functions for a number of wavelengths as indicated. Output is normalized to
the peak values.

where +n is the line-of-sight transmittance along the segment, .
(SS)
n is the layer-integrated single

scatter contribution to the upwelling radiance, and .(MS)n is the layer-integrated upwelling multiple
scatter contribution. For a curved atmosphere with appropriate viewing geometry along the segment,
+n and .(SS)n are evaluated accurately in a separate calculation for the single scatter. .(MS)n is simply
replaced by the upwelling whole layer multiple scatter contribution derived in Eq. (29) from the
LIDORT model. Since viewing geometries vary along AB, separate LIDORT calculations should be
done for each geometry {On; �n; 	n} at Pn (where 	n is the relative azimuth angle).
The recursion (93) starts with the upwelling intensity IA at the lower boundary at position

A, and 1nishes with IB, the upwelling intensity at B. IA is returned from a LIDORT calcula-
tion with the appropriate geometry at A. Between A and B, one can reduce the number of in-
termediate multiple scatter calculations by calling LIDORT for a small subset of points along
AB (to include the 1rst and last points P1 and A), and then interpolating the multiple scatter
source term output against the cosine of the solar zenith angle along AB. (Remember that a
single LIDORT call can return layer-integrated multiple scatter terms for all layers in the atmo-
sphere). Any error induced by this interpolation will be very much smaller than the basic en-
hancement itself. Note also that the corrected single scatter computation uses the phase function
directly without the truncation implicit in the discrete ordinate treatment. A similar approach us-
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Fig. 7. (Top panel) TOA upwelling O3 weighting functions in the nadir direction for 4 solar zenith angles, wavelength
335:4579 nm, albedo 0.3; (lower panel) corresponding percentage di=erences.

ing multiple-scatter source terms has been developed for the pseudo-spherical GOMETRAN 1nite-
di=erence model [33].
In a non-refractive atmosphere, the scattering angle is a constant for all points on the path AB.

Fig. 1 illustrates the forward scatter situation; for the backward (antisolar) scenario, the scatter angle
will be quite di=erent. We can thus expect some additional asymmetry between the forward and
backward scatter cases. Also, in the forward scatter scenario the solar zenith angle at A is less than
the value at B; for the backward scatter case, the reverse is true (the di=erence is about ∓1:5◦ for
a TOA line-of-sight zenith of 60◦ for the solar=antisolar positions). This variation in solar zenith
angle is an additional source of asymmetry, both in the single scatter calculation and in the multiple
scatter source terms.
Fig. 8 shows the di=erences between regular pseudo-spherical LIDORT output and improved

estimates of intensity using the multiple-scatter layer-integrated source term output from LIDORT
and the corrected single scatter calculation. Intensity results were performed for 0◦ (solar) and 180◦

(antisolar) azimuth angles, for a solar zenith angle of 85◦ and for line-of-sight angles from 0 to
70◦. The results were performed at 1ve di=erent wavelengths in the UV for the atmosphere outlined
in Section 6.1 but without aerosols (Rayleigh scattering alone) and with a surface albedo of 0.1.
The results mirror closely those found in [33]. In general the absolute magnitude of the correction
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Fig. 8. Comparison of TOA upwelling intensities from regular and enhanced pseudo-spherical model output, for 0
◦
(solar)

and 180
◦
(antisolar) azimuth angles, solar zenith angle 85

◦
. Rayleigh atmosphere, albedo 0.1. 5 wavelengths as indicated.

is greater for the antisolar scenarios. It is immediately clear that this correction is essential for the
wide-angle viewing geometries of GOME-2 and OMI; di=erences for viewing zenith angles in excess
of 50◦ vary from 3% to 8%.
The situation for weighting functions is also straightforward. With respect to an atmospheric

parameter ?q in layer q, we may apply the linearization operator Lq to the recursion (93):

Lq[In−1] =Lq[In]+n + In�qnLn[+n] +Lq[.(SS)n ] +Lq[.(MS)+n ]: (94)

Again, Ln[+n] and Lq[.
(SS)
n ] may be evaluated directly for a curved atmosphere in a dedicated sin-

gle scatter calculation. Assuming .(MS)+n to be approximated by the pseudo-spherical LIDORT value,
then its linearization Lq[.

(MS)+
n ] can also be taken straight from LIDORT output. The linearized

recursion starts with Lq[IA] which is returned from the LIDORT calculation at A, and 1nishes with
the weighting function at the top of the atmosphere B.
Fig. 9 shows di=erences in ozone VMR weighting functions for a solar zenith angle of 85◦, a

viewing zenith angle of 55◦ (this is a typical value for GOME-2 at the swath limits), and for the
solar and anti-solar positions. Calculations were done for the same atmosphere and wavelengths as
used in Fig. 8. The asymmetry between forward and backward scatter weighting function di=erences
is more marked, with a broad bias apparent for the lowest wavelength (greatest sensitivity). It is
again clear that the correction will be essential for retrievals of ozone pro1les from GOME-2 and
OMI.
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Fig. 9. Comparison of TOA upwelling ozone VMR weighting functions from regular and enhanced pseudo-spherical model
output for solar zenith angle 85

◦
, viewing zenith angle 55

◦
and for the solar and anti-solar positions. Atmosphere and

wavelengths as in Fig. 8.

7. Concluding remarks

In this paper we have described an extension of the discrete ordinate solution of the radiative
transfer equation in a multiply scattering multi-layer atmosphere to the simultaneous calculation
of analytically accurate weighting function 1elds. A pseudo-spherical treatment of the direct beam
transmittance enables the backscatter 1elds to be obtained for a range of solar zenith angles up to
90◦. Examples of intensity and weighting function output using the numerical model LIDORT were
presented for a number of nadir and zenith viewing earthshine backscatter applications in the UV
part of the spectrum.
The GOME, SCIAMACHY and GOME-2 instruments have the ability to measure earthshine

spectra in two directions of polarization; intensity measurements are polarization-corrected before use
in retrieval algorithms. Vector radiative transfer studies in and around the O2 A band have shown
that the polarization correction is critically important for certain GOME retrievals [34]. Comparisons
between scalar (intensity) and polarized vector RT models indicate that the scalar assumption can lead
to signi1cant sources of error in the simulation of backscatter intensity [35]. Feasibility studies have
shown the value of polarization measurements for the retrieval of aerosol properties (see for example
[36]). Polarized light measurements from the POLDER instrument have been used to separate aerosol
and surface contributions to earthshine reNectance [37]. This instrument was Nown in space on
ADEOS-1 (1996–1997) and a second POLDER device will be on board ADEOS-2 scheduled for
launch in 2001.
Although there are a number of vector RT models in existence, they all calculate the Stokes

vector alone; weighting functions must be estimated by 1nite di=erencing. Most retrieval studies
using vector RT models have used phase-space diagrams and look-up tables. Vectorized discrete
ordinate models have been written for a plane-parallel medium [38,39], but the pseudo-spherical
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treatment has not been included. A third version of LIDORT will address these issues, namely
the development of a linearization analysis of a vectorized model for the generation of weighting
functions, and the use of a consistent pseudo-spherical vector RT treatment.
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Appendix A. Green’s function optical depth multipliers

We derive Green’s function optical depth multipliers (45) for the exponential-sine and exponential-
polynomial pseudo-spherical parameterizations. We can de1ne

C±
� (x) = T̂

N∗∑
n=0

cnK±
n�(x) (A.1)

by analogy with the coeOcient expansions (34a) and (34b), with c0 = 1 for both parameterizations,
and T̂K±

0�(x) the average secant results already noted in (46).
For the exponential-sine parameterization, the functions K±

n�(x) for n¿ 0 are:

K−
n�(x) = e

−xk�Sn(f−
� ; x); (A.2a)

K+
n�(x) = e

+xk�[Sn(f+� ; $)−Sn(f+� ; x)] (A.2b)

with the de1nition

Sn(�; x) ≡
∫ x

0
e−y� sin(	ny) dy =

	n(1− e−x� cos(	nx))− �e−x� sin(	nx)
�2 + 	2n

: (A.3)

Here, f±
� = 8± k� and 	n = �n=$.

For the exponential-polynomial parameterization, the functions K±
n�(x) for n¿ 0 are:

K−
n�(x) = e

−xk�{$Qn(f−
� ; x)− Qn+1(f−

� ; x)}; (A.4a)

K+
n�(x) = e

+xk�{[$Qn(f+� ; $)− Qn+1(f+� ; $)]− [Qn(f+� ; x)− Qn+1(f+� ; x)]} (A.4b)
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with de1nitions

Qn(�; x) ≡
∫ x

0
e−y�yn dy; (A.5)

�Qn(�; x) = nQn−1(�; x)− xne−x� for n¿ 0 and Q0(�; x) =
1− e−x�

�
: (A.6)

Appendix B. Integrated source term contributions in the post-processing function

In this appendix, we establish the integrated source term contributions that appear in (26). The
appendix is divided into four parts, dealing 1rst with the homogeneous contribution, then the single
scatter contribution, followed by the two particular integral contributions evaluated for the classical
and Green’s function solution methods.

B.1. Homogeneous integrated solution source term contribution

We 1rst look at the contribution H±(x; �) to the source function terms in (26). This may be
written

H±(x; �) =
N∑

�=1

{L�X (P)
� (�)H±+

� (x; �) +M�X (N )
� (�)H±−

� (x; �)}; (B.1)

where the two functions

X (P)
� (�) =

!
2

2N−1∑
l=m

�lPl
m(�)

N∑
j=1

Pl
m(−�j)wjX

(P)
j� ; (B.2)

X (N )
� (�) =

!
2

2N−1∑
l=m

�lPl
m(�)

N∑
j=1

Pl
m(+�j)wjX

(N )
j� (B.3)

can be thought of as the solution vectors X(P)� and X(N )� de1ned at o=-quadrature directions �. The
sum over j indicates that the discrete-ordinate solutions have been used in the source function deriva-
tions. The integrated homogeneous multipliers H±±

� (x; �) arise from the optical depth integrations
implicit in the source function derivation. These are straightforward exponential integrals, and the
results are

H++
� (x; �) =

e−xk� − e−$k�e−($−x)=�

1 + �k�
(B.4)

H+−
� (x; �) =

e−($−x)k� − e−($−x)=�

1− �k�
(B.5)
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for the upwelling source function terms, and

H−+
� (x; �) =

e−xk� − e−x=�

1− �k�
; (B.6)

H–
� (x; �) =

e−($−x)k� − e−$k�e−x=�

1 + �k�
; (B.7)

for the downwelling terms. These results have appeared a number of times in the literature (see for
example [20]). To evaluate whole layer source terms we set x=0 in (B.4) and (B.5) for upwelling
contributions, and x=$ in (B.6) and (B.7) for the downwelling terms. The whole layer multipliers
are

H++
� (0; �) =H–

� ($; �) =
1− e−$k�e−$=�

1 + �k�
; (B.8)

H+−
� (0; �) =H−+

� ($; �) =
e−$k� − e−$=�

1− �k�
: (B.9)

B.2. Primary scatter integrated source term contribution

Next we look at single scatter contributions to the integrated source terms. These are

E±(x; �) = Q±(�)E±(x; �); (B.10)

where

Q±(�) =
F�
2
(2− �m0)�m(�;−�0) (B.11)

and the single scatter multipliers E±
� (x; �) are

E+(x; �) =
ex=�

�

∫ $

x
T (y)e−y=� dy and E−(x; �) =

e−x=�

�

∫ x

0
T (y)ey=� dy; (B.12)

where T (y) is the direct beam transmittance. These results (B.12) are valid for all parameteriza-
tions of the direct beam attenuation; furthermore, they are independent of the Fourier index m in
(B.11), so only need evaluation once. The integrations are straightforward for the average secant
parameterization T (y) = T̂ exp(−y8):

E+(x; �) = T̂
e−x8 − e−$8e−($−x)=�

1 + �8
; (B.13)

E−(x; �) =−T̂
e−x8 − e−x=�

1− �8
: (B.14)

The plane-parallel result may be obtained by setting 8= �−1
0 . Note also that l’Hopital’s rule should

be used in (B.14) when 8 is close to �−1; the limiting value is:

lim
�→8

E−(x; �) =−T̂ x8e−x8: (B.15)

Whole layer source term contributions are obtained by setting x=0 in (B.13) (upwelling), and x=$
in (B.14) (downwelling).
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For the other pseudo-spherical parameterizations we have some additional terms corresponding to
the series expansions used in these approximations. We may write

E±(x; �) = E±
AS(x; �) +

T̂
�

N∗∑
n=1

cnW±
n (x; �); (B.16)

where E±
AS(x; �) are the average secant multipliers from (B:13) and (B:14), and for n¿ 0,

W+
n (x; �) = e

x=�
∫ $

x
e−y(8+�−1) sin

(�ny
$

)
dy;

W−
n (x; �) = e

−x=�
∫ x

0
e−y(8−�−1) sin

(�ny
$

)
dy (B.17)

for the exponential-sine parameterization, and

W+
n (x; �) = e

x=�
∫ $

x
e−y(8+�−1)yn($− y) dy;

W−
n (x; �) = e

−x=�
∫ x

0
e−y(8−�−1)yn($− y) dy (B.18)

for the exponential-polynomial parameterization. In both cases, the integrals are straightforward and
mirror similar calculations in Appendix A.

B.3. Classical particular solution integral source term contributions

We 1rst look at the contributions D±(x; �) to the source function terms in (26) from the classical
form of the particular integral. We do this for the average secant form Gj(x) = FjT (x), where
T (x) = T̂ exp(−x8) and the vector F was determined in Section 3.3. The results are

D±(x; �) = F±(�)D±(x; �); (B.19)

where

F±(�) =
!
2

2N−1∑
l=m

�lPl
m(�)

N∑
j=1

Pl
m(∓�j)wjF±

j (B.20)

can be thought of as the particular solution vector F de1ned at o=-quadrature streams �. Since the
particular solution has the same optical depth dependence as the single scatter term in the previous
section, the integrated classical solution multipliers D±(x; �) are

D±(x; �) = E±
AS(x; �) (B.21)

as de1ned by results (B.13) and (B.14) for the average secant approximation. One can also use the
results in Eqs. (B.16)–(B.18) for the other parameterizations. This would require additional functions
such as (B.20) to be de1ned for each term in the coeOcient expansion beyond the average secant.
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B.4. Green’s function integral source term contributions

Since the Green’s function particular integral is also an expansion in terms of homogeneous
solution vectors, we would expect the analysis to be similar to that above in Appendix B.1. Recalling
the particular integral de1nitions from Section 3.3, we may write

D±(x; �) =
N∑

�=1

{a�X (P)
� (�)D±+

� (x; �) + b�X (N )
� (�)D±−

� (x; �)} (B.22)

where X (P)
� (�) and X (N )

� (�) have been de1ned in (B.2) and (B.3) respectively, with a� and b� given
by (43).
The integrated Green’s function multipliers D±±(x; �) again arise from the optical depth integra-

tions implicit in the source function derivation. They are

D+±
� (x; �) =

ex=�

�

∫ $

x
C±

� (y)e
−y=� dy; (B.23a)

D−±
� (x; �) =

e−x=�

�

∫ x

0
C±

� (y)e
+y=� dy; (B.23b)

for the upwelling and downwelling contributions respectively. For the average secant (and by default,
the plane-parallel) parameterizations, explicit expressions for C±

� (y) were written down in (46).
Using these results, one can carry out the integrations to give

D+±
� (x; �) =

T̂e−$8H+±
� (x; �)± E+(x; �)

8± k�
; (B.24a)

D−±
� (x; �) =

T̂e−$8H−±
� (x; �)± E−(x; �)

8± k�
; (B.24b)

for upwelling and downwelling multipliers respectively. The quantities H±±
� have been determined

above in Eqs. (B.4)–(B.7), while E± have been determined for the average secant case in (B.13)
and (B.14). Expressions (B.24a) and (B.24b) are convenient for computation; it is obviously possible
to write out the full results in terms of many transmittance factors.
For the exponential-sine and exponential-polynomial parameterizations, we can substitute the re-

sults of Appendix A for C±
� (y) in (B.23a) and (B.23b). All integrals are again straightforward

and we summarize the results for the exponential-polynomial parameterization. For the upwelling
multipliers, the results are:

D+∓
� (x; �) =

T̂
�
e+x=�

N∗∑
n=0

cnK+∓
n� (x; �); (B.25)

where c0 = 1, and the 1rst term in the series duplicates the average secant result (B.24a). For n¿ 0
the K-functions are:

K+∓
n� (x; �) = C∓

n�(x; �)∓ $Rn(f∓
� ; g±� ; x)±Rn+1(f∓

� ; g±� ; x) (B.26)

with the function R de1ned by the recurrence relation

�Rn+1(�; L; x) = nRn−1(�; L; x)− Qn(� + L; x) (B.27)
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for general inputs � and L. The function Qn(�; x) was de1ned in (A.5). The particular arguments are
f±

� = 8± k� and g±� = �−1 ± k�. We also have

C−
n�(x; �) = $Rn(f−

� ; g+� ; $)−Rn+1(f−
� ; g+� ; $); (B.28)

C+n�(x; �) =Jn�(�)[Q0(g−� ; $)− Q0(g−� ; x)]− $Rn(f+� ; g
−
� ; $)

+Rn+1(f+� ; g
−
� ; $); (B.29)

Jn�(f+� ) = $Qn(f+� ; $)− Qn+1(f+� ; $): (B.30)

For the downwelling multipliers, one 1nds similar results:

D−±
� (x; �) =

T̂
�
e−x=�

N∗∑
n=0

cnK−±
n� (x; �); (B.31)

where c0 = 1, and the 1rst term in the series duplicates the average secant result (B.24b). For n¿ 0
the K-functions are:

K−±
n� (x; �) = C±

n�(x; �)± $Rn(f∓
� ;−g∓� ; x)∓Rn+1(f∓

� ;−g∓� ; x) (B.32)

with the function R de1ned in (B.27), and f±
� and g±� as before. We also have

C−
n�(x; �) = 0; (B.33)

C+n�(x; �) =Jn�(f+� )Q0(−g+� ; x); (B.34)

where Jn�(f+� ) was given in (B.30).

Appendix C. Linearization analysis of the post-processing source terms

We wish to apply the linearization operator L to each of the source term contributions that appear
in the post-processing result (26). The procedure is based on linearization results already obtained
for the discrete ordinate solutions in all layers and the linearizations of the boundary value constants,
and application of the chain rule of di=erentiation. The algebraic manipulations are fairly extensive
but quite straightforward, illustrating once again that the determination of partial derivatives of the
complete discrete ordinate intensity 1eld can be done in an entirely analytic fashion. We follow
the same sequence as in the previous appendix. Linearizations for the particular integrals and the
single scatter terms are con1ned to the average secant parameterization of the pseudo-spherical
treatment.

C.1. Linearization of the homogeneous source term contributions

We 1rst look at the source function contributions H±(x; �) from the homogeneous solutions. We
apply the chain rule to (B.1), noting that Lq[Lp�] and Lq[Mp�] are known from the linearization
analysis of the boundary value problem. All other quantities in (B.1) have vanishing derivatives for
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p �= q, so we will drop the index q in the rest of this section. From (B.2) and (B.3), we 1nd

L[X (P)
� (�)] =

!
2

2N−1∑
l=m

�lPl
m(�)

N∑
j=1

Pl
m(−�j)wj{L[X (P)

j� ] + uX (P)
j� }; (C.1)

L[X (N )
� (�)] =

!
2

2N−1∑
l=m

�lPl
m(�)

N∑
j=1

Pl
m(+�j)wj{L[X (N )

j� ] + uX (N )
j� }; (C.2)

where the layer index q is assumed throughout. The terms with uX� arise from the linearization
L[!] = u!.
Next we look at the linearizations of the homogeneous multipliers de1ned in (B.4) and (B.5). We

proceed by chain rule di=erentiation, using the known result for L[k�] from Section 4.2 and the
linearization rules L[$] = v$ and L[x] = vx from Section 4.1. The result for H++ is:

L[H++
� (x; �)] =

−H++
� (x; �)�f� − e−xk�xL� + e−$k�e−($−x)=�[$L� + ($− x)v�−1]

1 + �k�
; (C.3)

where f� =L[k�], and L� = vk� + f�. In a similar vein, we 1nd:

L[H+−
� (x; �)] =

H+−
� (x; �)�f� − e−($−x)k�($− x)L� + e−($−x)=�($− x)v�−1

1− �k�
; (C.4)

L[H−+
� (x; �)] =

H−+
� (x; �)�f� − e−xk�xL� + e−x=�($− x)v�−1

1− �k�
; (C.5)

L[H−−
� (x; �)] =

−H−−
� (x; �)�f� − e−xk�($− x)L� + e−$k�e−x=�[$L� + xv�−1]

1 + �k�
: (C.6)

As with the original multipliers, values of these linearizations at the layer boundaries can be obtained
by setting x = 0 in (C.3) and (C.4), and x = $ in (C.5) and (C.6). The above results appeared in
SKC in a slightly di=erent form.

C.2. Linearization of the single scatter source term contributions

We start with the de1nition of E±
p (x; �) in (B.10), this time keeping an explicit layer indexing

throughout. Applying the linearization operator Lq for a parameter ?q varying in layer q, we 1nd

Lq[E±
p (x; �)] = Q±

p (�){�pquqE
±
p (x; �) +Lq[E±

p (x; �)]}: (C.7)

Q±
p (�) as de1ned in (B.11) is directly proportional to !p, so the corresponding linearization is

then �pquqQ±
p (�). For the second term in (C.7), we apply linearization to the de1nitions of these

multipliers given in (B.12). Using the linearizations established in Section 4.1 for Lq[T̂ p] and
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Lq[8p], we get

Lq[E+p ] =
−e−x8pxIpq + e−$q8pe−($q−x)=�[$qIpq + ($− x)�pqvq�−1]

1 + �8p
+ E+p$

+
pq; (C.8a)

Lq[E−
p ] =

−e−x8pxIpq + e−x=�[$qIpq + x�pqvq�−1]
1− �8p

+ E−
p $−

pq; (C.8b)

where the dependence of E±
p on (x; �) has been assumed, and

$±
pq =

Lq[T̂ p]

T̂ p
∓ �Lq[8p]
1± �8p

and Ipq =Lq[8p] + �pqvq: (C.9)

A form of these results were derived for the plane-parallel case in SKC using a perturbation analysis.
The above results are a generalization to the average secant pseudo-spherical approximation, and it
is clear that there are important contributions to multipliers in layer p from variational derivatives
in layer q above p. This illustrates the care that need to be taken in setting up the linearization rules
for the pseudo-spherical case.

C.3. Linearization of the classical particular solution source term contributions

From the de1nition (B.19), we 1nd

Lq[D±
p (x; �)] =Lq[F±

p (�)]D
±
p (x; �) + F±

p (�)Lq[D±
p (x; �)]: (C.10)

For the 1rst term, we note that

Lq[F±
p (�)] =

!p

2

2N−1∑
l=m

�lPl
m(�)

N∑
j=1

Pl
m(−�j)wj{Lq[F±

jp] + �pquqF±
jp}: (C.11)

This is similar to the result in (C.1), and follows from the de1nition in (B.20). Note that the particular
solution discrete ordinate vector F±p has cross-layer derivatives outside layer p; the linearization of
this vector was dealt with in Section 4.3. Finally, since the multipliers D±

p are actually equal to E±
p ,

then we may use the results already established for Lq[E±
p ] in (C.8a) and (C.8b).

C.4. Linearization of the Green’s function particular integral source term contributions

Although the Green’s function particular integral source term contributions de1ned in (B.22) have
a number of contributions, we may use the results established in Appendices B and C to simplify
the analysis considerably. We retain layer indices throughout. In applying chain-rule di=erentiation
to the terms in (B.22), we note that

Lq[ap�X (P)
p� (�)D

±+
p� (x; �)]

= �pqLq[ap�X (P)
p� (�)]D

±+
p� (x; �) + ap�X (P)

p� (�)Lq[D±+
p� (x; �)] (C.12)
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since the terms ap� and X (P)
p� (�) have no optical depth dependence. Their linearizations are given,

respectively, by (69) in Section 4.4 and (C.1) above. Similar remarks apply to the combination
bp�X

(N )
p� (�) which comprises the second half of (B.22). We are thus left with the task of determining

linearizations for the multipliers D±±
p� .

We note that the Green’s function multipliers de1ned in (B.24a) and (B.24b) are expressed in
terms of multipliers H±±

p and E±
p . Since we already have linearizations for these quantities, a

straightforward application of the chain rule in terms of known linearizations will yield the desired
result. Compacting the notation somewhat by dropping the (x; �) dependence which is assumed
throughout, we 1nd

Lq[D+±
p� ] =

’p{�pqLq
[
H+±

p�

]
+  pqH

+±
p� } ±Lq[E+p ]−D+±

p� $pq�

8± k�
; (C.13)

Lq[D−±
p� ] =

’p{�pqLq[H−±
p� ] +  pqH

−±
p� } ±Lq[E−

p ]−D−±
p� $pq�

8± k�
; (C.14)

where the following auxiliary quantities are evident:

’p = T̂ pe−$p8p ; (C.15)

 pq =
Lq[’p]

’p
=

Lq[T̂ p]

T̂ p
− $p(�pq8p +Lq[8p]); (C.16)

$±
pq� =Lq[8p]± �pqLq[kp�]: (C.17)

This completes the linearization of the Green’s function particular integral source term contributions.

Appendix D. Delta-M scaling transformations

We restrict the discussion to an atmosphere with one scatterer. For single scattering albedo !q,
optical thickness $q and phase function moment coeOcients �lq in layer q, the delta-M scaling [22]
is

W!q = !q
(1− fq)
(1− !qfq)

; W$q = $q(1− !qfq) with W�lq =
�lq − fq(2l+ 1)

1− fq
: (D.1)

Here, l = 0; : : : ; 2N − 1 and fq = �Mq=(2M + 1) is the truncation factor in layer q, with M = 2N
indicating that all scaled phase function moment coeOcients W�lq for l¿M are zero. As far as the
pseudo-spherical approximation is concerned, we note that all spherical optical depths 4qp as de1ned
in (32) scale in the same way as $p.
This result is standard in intensity-only radiative transfer models; see [21] for more details. For a

model such as LIDORT with additional inputs {uq; vq} expressing the relative partial derivatives of
!q and eq due to some parameter ?q varying in layer q, we must also consider the scaling of these
inputs. Remembering that Lq[!q]=uq!q and Lq[$q]=vq$q, one can simply apply the linearization
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operator to the 1rst two results in (D.1) to de1ne scaled values { Wuq; Wvq}. The result is
uq =

uq

1− !qfq
and Wvq = vq − !qfquq

1− !qfq
: (D.2)

It is straightforward to extend these scaling results to a layer with a number of particulates, bearing
in mind the combination forms

!q =
∑
s

!qs; !q�lq =
∑
s

!qs�lqs and !q�lqulq =
∑
s

�lqs!qsuqs (D.3)

which are used in the RTE (see Section 4.1).
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