



# The Quest for Consistency and Accuracy of Spectroscopic Parameters in HITRAN:

Bridge between Archive and Application

Laurence S. Rothman Harvard-Smithsonian Center for Astrophysics Cambridge MA

> HITRAN Conference Cambridge MA 26-28 June 2006

### "Global Consistency"



► Different Parameters  $\begin{cases} S \lor \gamma, & n, \\ \text{line-coupling} \rightarrow \gamma' \end{cases}$ 

### Why?

#### ASSFTS 12th Workshop

Atmospheric Science from Space using Fourier Transform Spectrometry When: May 18 - 20, 2005





**Consistency of Retrievals using three Different Bands** 

SS2843: Arctic Occultation measured by ACE, late February 2004 (C. Boone and P. Bernath, U. Waterloo, private communication 2004)

# SS2843, HNO3 Retrieved from three different bands, HITRAN 2000



#### **Improvement of Consistency using HITRAN 2004**

#### SS2843, HNO3 Retrieved from three different bands, HITRAN 2004 40 35 30 altitude (km) 25 20 15 → 870 cm-1 - 1330 cm-1 10 5 $\mathbf{0}$ 5 15 10 ()volume mixing ratio (ppb by volume)

#### Consistency of Retrievals using two Different Bands (C. Boone and P. Bernath, U. Waterloo, private communication 2004)



Occultations ~63° North measured by ACE



Radiance (mW / m^2 sr cm-1)

## Validation (AER)



Radiance  $(mW/m^2 sr cm^{-1})$ 

N<sub>2</sub>O CO<sub>2</sub>

## Validation (ACE)







Ethane spectrum near 851.50514 and 856.47908 cm<sup>-1</sup> measured at 0.00003 cm<sup>-1</sup> resolution with LIRHS (black) compared with spectra modeled using line positions and intensities from HITRAN (red) and from the U. Tennessee/GSFC atlas (blue). Note that the line at 1000 MHz does not appear in either atlas and the line intensities, number of lines and the frequency values are different from the line atlases. Measurements were made with a 30 cm long cell and 0.5 Torr ethane pressure.

### **File Structure of HITRAN Compilation**



# **HITRAN Line-by-line Parameters**

| Parameter                | Field size   | Definition                                                                                                  |  |  |  |
|--------------------------|--------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| Mol                      | I2           | Molecule number                                                                                             |  |  |  |
| lso                      | I1           | Isotopologue no.(1 = most abundant, 2 = second most abundant,)                                              |  |  |  |
| v <sub>if</sub>          | <b>F12.6</b> | Transition wavenumber in vacuum [cm <sup>-1</sup> ]                                                         |  |  |  |
| S <sub>if</sub>          | E10.3        | Intensity [cm <sup>-1</sup> /(molecule·cm <sup>-2</sup> ) @ 296K]                                           |  |  |  |
| A <sub>if</sub>          | E10.3        | Einstein A-coefficient [s-1]                                                                                |  |  |  |
| <b>Y</b> <sub>air</sub>  | <b>F5.4</b>  | Air-broadened half-width (HWHM) [cm <sup>-1</sup> /atm @ 296K]                                              |  |  |  |
| <b>Y</b> <sub>self</sub> | <b>F5.4</b>  | Self-broadened half-width (HWHM) [cm <sup>-1</sup> /atm @ 296K]                                             |  |  |  |
| <b>E</b> "               | F10.4        | Lower-state energy [cm <sup>-1</sup> ]                                                                      |  |  |  |
| n <sub>air</sub>         | <b>F4.2</b>  | Temperature-dependence coefficient of $\gamma_{air}$                                                        |  |  |  |
| δ <sub>air</sub>         | F8.6         | Air pressure-induced shift [cm <sup>-1</sup> /atm @ 296K]                                                   |  |  |  |
| v', v"                   | 2A15         | Upper and Lower "global" quanta                                                                             |  |  |  |
| q', q"                   | 2A15         | Upper and Lower "local" quanta                                                                              |  |  |  |
| ierr                     | <b>6I1</b>   | Uncertainty indices for $v_{if}$ , $S_{if}$ , $\gamma_{air}$ , $\gamma_{self}$ , $n_{air}$ , $\delta_{air}$ |  |  |  |
| iref                     | <b>6I2</b>   | Reference pointers for $v_{if}$ , $S_{if}$ , $\gamma_{air}$ , $\gamma_{self}$ , $n_{air}$ , $\delta_{air}$  |  |  |  |
| *                        | A1           | Flag for line-coupling algorithm                                                                            |  |  |  |
| g', g"                   | <b>2F7.1</b> | Upper and Lower statistical weights                                                                         |  |  |  |

**160-character total** 

### Table summarizing species

| #  | Molecule              | No. of lines | #  | Molecule                      | No. of lines | #  | Molecule                      | No. of lines |
|----|-----------------------|--------------|----|-------------------------------|--------------|----|-------------------------------|--------------|
| 1  | H <sub>2</sub> O      | 62894        | 14 | HF                            | 107          | 27 | C <sub>2</sub> H <sub>6</sub> | 4749         |
| 2  | CO <sub>2</sub>       | 62913        | 15 | HC1                           | 613          | 28 | PH <sub>3</sub>               | 11790        |
| 3  | <b>O</b> <sub>3</sub> | 311481       | 16 | HBr                           | 1293         | 29 | COF <sub>2</sub>              | 70601        |
| 4  | N <sub>2</sub> O      | 47835        | 17 | HI                            | 806          | 30 | SF <sub>6</sub>               | 22901        |
| 5  | CO                    | 4477         | 18 | ClO                           | 7230         | 31 | H <sub>2</sub> S              | 10071        |
| 6  | $CH_4$                | 251440       | 19 | OCS                           | 19920        | 32 | НСООН                         | 24808        |
| 7  | <b>O</b> <sub>2</sub> | 6428         | 20 | H <sub>2</sub> CO             | 2702         | 33 | HO <sub>2</sub>               | 38803        |
| 8  | NO                    | 102280       | 21 | HOCI                          | 16276        | 34 | Ο                             | 2            |
| 9  | SO <sub>2</sub>       | 38853        | 22 | N <sub>2</sub>                | 120          | 35 | CIONO <sub>2</sub>            | 32199        |
| 10 | NO <sub>2</sub>       | 104223       | 23 | HCN                           | 4253         | 36 | NO <sup>+</sup>               | 1206         |
| 11 | NH <sub>3</sub>       | 29084        | 24 | CH <sub>3</sub> Cl            | 31119        | 37 | HOBr                          | 4358         |
| 12 | HNO <sub>3</sub>      | 271166       | 25 | H <sub>2</sub> O <sub>2</sub> | 100781       | 38 | C <sub>2</sub> H <sub>4</sub> | 12978        |
| 13 | OH                    | 42373        | 26 | $C_2H_2$                      | 3517         | 39 | CH <sub>3</sub> OH            | 19899        |

Total = 1,778,549 !

Future Requirements of Database

Extended Spectral Coverage (more bands)

Additiona Weak transitions of combination bands (CH<sub>4</sub>, etc)

 Additional Parameters Other foreign-gas broadeners (H, He, etc)
 Higher: Temperature Gapability Temperature-dependence parameters
 Collision-Induced Absorption
  $\alpha_L(p,T) = \left[ \begin{array}{c} \mu_{2\overline{a}H}(p_0, \overline{d}_0)(1-\chi) \\ \gamma_{air}(p_0,T_0)(1-\chi) \\ \end{array} \right] \left[ \begin{array}{c} \chi_0 \\ T \end{array} \right]^{\frac{n}{4}air} \gamma_{self}(p_0,T_0) \chi_1 \\ + \gamma_{self}(p_0,T_0) \chi_2 \\ \end{array} \right] \left[ \begin{array}{c} \mu_1 \\ \mu_2 \\ T \end{array} \right] p$  Additional Parameters

### More Issues

Improved database managing

Improved documentation

Validation, Comparisons, Recommendations, Acquisition

Continuity, Funding

### **HITRAN** International Advisory Committee











