

Water Pressure Broadening: A Never-ending Story

Georg Wagner, Manfred Birk

DLR – Remote Sensing Technology Institute, Oberpfaffenhofen, Germany

- Database for limb sounding with MIPAS/ENVISAT down to 6 km
 - \Rightarrow Linestrength range: 10⁻¹⁹ 2x10⁻²⁵ cm⁻¹cm²molecule⁻¹, >6 orders of magnitude
- Line positions, linestrengths, air broadening parameters + temperature dependence, lineshifts + temperature dependence
- Total pressure range: 0 200 hPa
- Temperature range: as large as possible
- Spectral range: 600 1800 cm⁻¹
- Linestrength accuracy <2%
- Broadening parameter accuracy <2%
- Lineshift accuracy tbd

- Pure water measurements for line positions, linestrengths, self broadening
 - Ambient temperature only
 - Short cell (0.25 m) without flow + White cell (20, 80 m) with flow
- Air-broadened measurements for air broadening parameters + temperature dependence, lineshifts + temperature dependence
 - Maximum accessible temperature range (vapour pressure limit)
 - White cell (20, 80 m) with flow
 - Water/air mixture generated in mixing chamber. Reason: Absolute linestrength assessment

Experimental setup - White cell - water+air

Laboratory setup for H₂O/air measurements

- Measurements at 50, 200 mb + few at 100, 400 mb
 - Reasons: Relevant pressure region, redundancy
- Temperature range: 208-316K
- Decreasing number of steps of factor 2-4 column amount from high to low T
- Most transitions covered by several measurements with differnet optical depth and line width required for quality assurance
- Column amounts ranging from 0.03 400 mb·m
- Due to discrepancies in initial analysis ambient temperature measurements added
- Pure water measurements at 272-316K added for self broadening
- Total number of measurements 47: High redundancy available

Generation of transmittance spectra

Problems

- Residual water in reference spectra
- Strong channeling from ZnSe windows, especially at low temperature due to high temperature drift sensitivity of White cell
- For last measurements these problems are reduced by windows with lower refractive index and turbo + cryo pumping of FT spectrometer
- Future measurements with wedged windows

Processing

- Detector non-linearity correction (new method)
- Channel removal by linear combination of several reference measurements
- Modelling of residual water spectra
- Few spectra had to be rejected

Line parameter retrieval

- FitMAS software: Non-linear least squares fitting with ILS⊗monochromatic transmittance (Voigt profile used)
- Automatic microwindow and fit parameter selection tool
- ILS parameters from Doppler-limited H₂O and N₂O measurements
- Line position, linestrength, Lorentzian linewidth, polynomial for baseline fitted
- Fully blended lines rejected in further data reduction
- After first run temperature/number density fit. Reference: Ambient temperature linestrengths of pure water -- ADVANTAGE: Average gas temperature retrieved
- Quality indicator: fitted number density of gas mixtures at non-ambient temperature in agreement with pressure measurements better than 1%.
- Second run with iterated experimental parameters resulting in Lorentzian widths at correct temperature

Measurements for γ: Number density/temperature fit Test of method for defined water air mixtures

T _{bath} /°C	T _{bath} /K	T _{mirror} /K	P _{tot} /mb	P _{H2O} /mb	VMR	Absorpt. path/m	T _{fit} /K	P _{H2O-fit} /P _{H2O}
44.15	317.29	313.43	50.51	0.04947	9.8e-4	20	316.256(83)	1.00535(72)
44.15	317.29	313.40	201.1	0.04936	2.5e-4	20	316.484(57)	0.99252(29)
44.15	317.29	313.48	50.51	0.2016	4.0e-3	20	316.085(59)	0.99802(68)
44.15	317.29	308.3-311.5	50.37	1.0050	2.0e-2	85	315.645(75)	0.99611(132)
44.15	317.29	312.58	50.44	2.534	5.0e-2	78	315.348(100)	0.99776(209)
44.15	317.29	313.11	200.7	0.2043	1.0e-3	78	316.131(45)	1.00739(55)
44.15	317.29	313.18	200.7	1.1597	5.8e-3	78	315.779(42)	0.99305(66)
44.15	317.29	313.27	200.7	2.505	1.2e-2	78	315.655(50)	0.99309(85)
21.45	294.59	295.36	50.37	0.2020	4.0e-3	78	293.756(88)	1.00400(146)
24.15	297.29	297.35	200.7	0.2017	1.0e-3	20	297.185(34)	0.99310(33)
24.15	297.29	297.50	200.7	0.2022	1.0e-3	78	297.307(41)	1.00344(56)
0.1	273.24	279.35	199.7	2.500	1.3e-2	85	274.595(46)	1.00047(111)

Remote Sensing Technology Institute

mgroup 24-001-2000 14.17

Inputs

• Lorentzian widths for different air/water pressures and temperatures

Model

$$b_{L} = p_{air} \cdot \gamma_{air} \cdot \left(\frac{296K}{T}\right)^{n_{air}} + p_{self} \cdot \gamma_{self} \cdot \left(\frac{296K}{T}\right)^{n_{self}}$$

Method

• Non-linear least squares fit

Outputs

• γ_{air} , n_{air} , γ_{self} , n_{self} with uncertainties

Pressure broadening parameter/temperature exponent determination

Software development

- IDL tool
- Data structures containing relevant measured and fitted data
- Reference/initial guess/default: HITRAN2004 database
- Complex process of selection of fit parameters as function of input data for a given transition
 Example: *n* fitted only if sufficient temperature range. If not, *n*(HITRAN) used
- Linestrength assessment: Linestrengths for all data in fit for a given transition averaged, outlier treatment

Statistical uncertainty of b_L is scaled with (deviation from mean)/ σ if deviation outside 4σ

If less than 2 transitions with linestrength fitted \Rightarrow transition excluded

- High and low opacity limits discrimination
- Generic: only **b**_L used with **uncertainty <20%**
- Non-linear least squares fit of γ_{air} , n_{air} , γ_{self} , n_{self} with outlier treatment

Pressure broadening parameter/temperature exponent determination

Software development

- Measurements with temperature/pressure ranges can be excluded by flagging
- Output flags: Exclude_flag, bad_gamma_fit, gamma_air_perturbed

show_fit_data - linestrength assessment

370 11	1348.756	7 2	1 13	1	13 13	2	12	
S Fit results:								
:	s_index	S_exp_a	S_exp_err_a	S_exp_b	S_exp_err_b	omc/sigma	a err_fa	ct opacity
WCEIAG_aisov3	0	2.0844e-023	4.1327e-025	2.0844e-023	4.1327e-025	-0.7	1.0	0.09
WDEIAA_aisov3	0	2.1186e-023	2.5673e-025	0.0000e+000	0.0000e+000	0.2	1.0	0.49
WEEIAA_aisov3	0	2.1361e-023	4.7025e-025	2.1355e-023	6.4660e-026	0.5	1.0	1.02
WCEIBG_aisov3	0	2.0817e-023	6.7737e-025	2.0817e-023	6.7737e-025	-0.5	1.0	0.05
wedhba_a	0	2.0185e-023	2.4018e-025	2.0185e-023	2.4018e-025	-3.9	1.0	0.26
weehba_a	0	2.0443e-023	2.4942e-025	2.0443e-023	2.4942e-025	-2.8	1.0	0.16
wefhba_a	0	2.1759e-023	3.2236e-025	2.1759e-023	3.2236e-025	2.0	1.0	0.09
wfdhba_a	0	2.0793e-023	1.3109e-025	2.0783e-023	1.2100e-025	-2.6	1.0	0.46
wfehba_a	1	2.1281e-023	2.0057e-025	2.1251e-023	1.4040e-025	0.9	1.0	0.30
wffhba_a	1	2.1271e-023	2.1070e-025	2.1372e-023	1.7057e-025	1.4	1.0	0.17
WEEJCA_aisov3	0	2.1189e-023	1.4890e-024	2.1208e-023	1.1835e-025	0.0	1.0	0.37
WDEJDA_aisov3	0	2.0450e-023	5.7829e-025	2.0450e-023	5.7829e-025	-1.2	1.0	0.10
WFAHAA_aisov3	0	2.1220e-023	8.0183e-026	2.1226e-023	6.8729e-026	1.1	1.0	1.16
WFAIAA_aisov3	-1	0.0000e+000	0.0000e+000	2.0418e-023	1.4862e-025	-4.8	1.0	4.07
WFAHCA_aisov3	0	2.1354e-023	1.4051e-025	2.1354e-023	1.4051e-025	1.6	1.0	0.42
WFAJCA_aisov3	1	0.0000e+000	0.0000e+000	2.1239e-023	7.3308e-026	1.5	1.0	1.64
H2OLHHLaisov3	0	2.1210e-023	1.4254e-025	2.1201e-023	1.3304e-025	0.6	1.0	0.77
s mean 2.1130e	-023 s	mean proz err	: 0.22	delta coudert	t proz: -0.	66 SYES		

Remote Sensing Technology Institute

HITRAN 2006 Conference, Cambridge MA, June 26th-28th 2006

Pressure broadening parameter/temperature exponent determination

Software development - show_fit_data

Gamma Fit results: fit index 370 nu 1348.756660 g air 0.0185 g self 0.1760 n 0.37 sqrt(chisq) 1.940e+000 pars 0.02015 0.61762 0.17253 0.28660 0.21273 0.00124 0.11029 par errs 0.00013 0.7 34.4 0.7 38.5 %par errs fit flag 1 1 1 1 npar eq nlines 0 gammas perturbed 0 n self fit canceled 0 bad gamma fit 0 id filename T fit P h2o abs_path w_exp w_err% w_calc omc/err P tot opac op excl rej 2WCEIAG aisov 316.121 200.70000 0.2077 78.620 0.003862 3.3 0.003863 -0.01 0.088 0 0 0 3WDEIAA aisov 316.144 200.70000 1.1598 78.620 0.003981 2.1 0.004004 -0.27 0.490 0 0 0 4WEEIAA aisov 315.738 200.70000 2.5095 78.620 0.004179 4.0 0.004207 -0.16 1.019 0 0 0 6WCEIBG aisov 297.290 200.70000 0.2050 78.620 0.004120 5.3 0.004012 0.50 0.054 0 0 0 7wedhba a 20.990 0.002111 2.5 0.002368 -4.91 0.261 0 295.700 99.95000 2.5185 0 0 8weehba_a 295.700 200.40000 2.5197 20.990 0.004292 1.9 0.004367 -0.91 0.162 0 0 0 9wefhba a 295.700 400.30000 2.5120 20.990 0.008573 2.1 0.008344 1.26 0.092 0 0 0 10wfdhba_a 295.700 100.57000 5.0295 20.990 0.002710 1.2 0.002758 -1.47 0.463 0 0 0 11wfehba a 295.700 199.60000 5.0134 20,990 0.004807 1.1 0.004726 1.57 0.304 0 0 0 12wffhba a 295.700 399.90000 5.0250 20.990 0.008920 1.2 0.008714 2.00 0.174 0 0 0 85.020 15WEEJCA aisov 274.890 199.70000 2.5140 0.00455311.3 0.004542 0.02 0.366 0 0 0 16WDEJDA_aisov 261.581 199.80000 1.0584 85.020 0.004378 4.4 0.004453 -0.39 0.102 0 0 0 20.990 26WFAHAA aisov 316.481 0.000848 1.3 0.000842 0.50 5.04200 5.0420 1.165 0 0 0 28WFAHCA aisov 273.483 20.990 5.02800 5.0280 0.000828 2.4 0.000876 - 2.410.418 0 0 0 29WFAJCA aisov 272.990 85.020 1.640 0 0 5.02400 5.0240 0.000890 1.1 0.000876 1.46 0 31H2OLHHLaisov 297.350 20.990 5.02500 5.0250 0.000813 2.5 0.000855 - 2.000.772 0 0 0 32H2OLHMHaisov 296.200 5.02200 5.0220 85.020 0.000870 1.7 0.000855 1.02 3.032 0 0 0

Software development quantum number cut

$$K_{a}^{\prime\prime} = 1$$

 $\Delta K_{a} = -1$
 $J^{\prime\prime} - K_{a}^{\prime\prime} - K_{c}^{\prime\prime} = -1$

P-branch

Q-branch

R-branch

Software development - quantum number dependence

- Smooth *m*-dependence only on first glance
- Polynomial approach was tried but failed
- P/R-branch transition with exchanged upper/lower vibrational state: differ outside uncertainty (especially at higher K_a)

Conclusion: In contrast to ozone water must be treated on single line basis

Reason: $H_2O \gamma$ variation > factor 10, O_3 factor 1.3

If water variations were reduced to a factor 1.3, quantum number dependence might look smooth within experimental uncertainty

Quality assessment

OMC file cuts

Example: T = 316 K

 $P_{H2O} = 0.22 \text{ mb}$

 $P_{tot} = 50.42 \text{ mb}$ Abs. path = 78.6 m

Systematically positive OMC for high opt. depth Systematically negative OMC for small γ_{air}

Binned OMC file cuts

Example:

T = 316 K

 $P_{H2O} = 0.20 \text{ mb}$

$$P_{tot} = 201.00 \text{ mb}$$

Abs. path = 21.0 m

 \Rightarrow no systematic error for all measurements with p≥200 mb

Binned OMC file cuts

Example:

T = 295.7 K

P_{H2O} = 2.52 mb

$$P_{tot} = 50.49 \text{ mb}$$

Abs. path = 21.0 m

⇒ systematic error at low width for all 50 mb measurements

 \Rightarrow 50 mb measurements rejected from fit

 $\begin{array}{l} \textbf{60000} \Rightarrow \textbf{40000} \\ \textbf{measured lines} \end{array}$

Quality assessment

 $[\gamma_{296} (p \le 50 \text{mb}) - \gamma_{296} (p > 50 \text{mb})] / [\gamma_{296} (p > 50 \text{mb})]$ Average -0.0180(4)

Remote Sensing Technology Institute

HITRAN 2006 Conference, Cambridge MA, June 26th-28th 2006

Deviations from Voigt: Example 50 mbar air-broadened measurement

Linefit shows strong residuals: Dicke narrowing

HITRAN 2006 Conference, Cambridge MA, June 26th-28th 2006

Deviations from Voigt: Line fit error

- Synthetic spectra of 50 mb measurements modelled
- Dicke narrowing simulated by lowering Doppler Temperature from 300 to 200 K
- Fit: Voigt with Doppler width @ 300 K used
- % differences of fitted γ with respect to small optical depth

Deviations from Voigt: Line fit error

- Optical depth of opaque lines weights information in line center and wings differently
- Reason: Strongly non-linear behaviour of exp(-optical depth) for optical depth>1
- Clearly different shape of residuals for opaque and non-opaque lines
- Explains dependence of fitted γ on optical depth

Quality assessment

- Intercomparison between hot cell measurements @296K and new data
- Different cell (16 cm), detector, beamsplitter, spectral resolution, pressure (500, 1000 mb), mixing chamber, pressure gauges
- Scalar difference (γ_{hot} γ_{calc})/ γ_{calc} on average -0.0172(3)
- Since only White cell measurement available in new data, strong lines covered better by hot cell
- \Rightarrow Hot cell measurements @296K included in analysis
- When included in fit scalar difference drops to -0.67%

Fit of self broadening parameter from airbroadened measurements only and compare to results from pure water measurements

averaged y	self difference ($\gamma_{self-air}$ - $\gamma_{self-pure}$)/ $\gamma_{self-pure}$:	•
average:	0.0245(29)	
chi:	1.6	
lines:	355	

Self broadening contribution to airbroadened lines is only small fraction!!

Fit of air broadening parameter from data with line center optical depth 0-0.5 and compare to results from 0.5-4

average:	0.00374(30)			
chi:	1.9			
lines:	390			

Error bars

- Error sources refer to $\gamma_{296K}/\gamma_{220K}$
- Statistical uncertainty from γ /n fit, scaled by χ
- **Pressure** Thermostated pressure gauges, 0.35%
- Temperature 0.5 K gives worst case 0.25%
- **Temperature inhomogeneity** see next viewgraph
- ILS -
 - ILS error: uncertainty in retrieved field stop diameter
 - Width error expressed as function of width and optical depth
 - $-\gamma$ for all lines fitted with and without width error
 - Error is difference
- (n_{HITRAN} use) -
 - From comparison of temperature exponents from this work and HITRAN maximum n error = 0.2
 - $-\gamma_{220K}$ calculated for $n_{\rm HITRAN}$ and $n_{\rm HITRAN}$ +0.2
 - Error is difference

Sample errors - Temperature inhomogeneity

Impact on pressure-broadened line width

- Water spectra modelled: 0.65x233K + 0.35x253K
- Linefit, differences to model input data
- Parameterisation of differences wrt E_{lower} and temperature exponent
- Plot of percentage line width error for 0.65xT + 0.35x(T+40K)

• Errors 1% to -3%

Generation of database

- **LR** HITRAN-type database with γ_{air} , γ_{self} , n_{air} , n_{self} (new column), combined errors for γ given at 296 and 220 K
 - Best-of flag: overall error < 5%, chi <2, ≥4 measured airbroadened data in fit
 - Additional updated parameters: line positions, line shift (+temperature dependence new), linestrengths
 - Beta version released: outliers: low quality lines (2 measurements in gamma-fit) with large systematic errors (blending, etc.) may be present but will be removed in next version

Number of updated line parameters, linestrength range 10⁻²³ - 10⁻¹⁹

	Yair	n _{air}	γ_{self}	n _{self}
H ₂ O	431	372	352	107
H ₂ O (020)-(010)	161	87	237	128
$H_2^{18}O$	169	116	253	152
$H_2^{17}O$	101	53	189	129
HDO	123	44	399	247
Total	985	672	1430	763

Generation of database

Overall uncertainty, main isotopomer, γ_{296} , γ_{220}

Quality assessment - new database

Model measured spectra with new database (linepositions, shifts, linestrenghts and broadening updated)

Comparison with HITRAN2004

DLR uncertainty <3%, γ_{296} (696 lines), γ_{220} (272 lines)

Comparison with HITRAN06_v7

DLR uncertainty <3%, γ_{296} (696 lines), γ_{220} (272 lines)

Remote Sensing Technology Institute

Comparison with Toth (n for γ_{220} from HITRAN2004)

DLR uncertainty <3%, γ_{296} (698 lines), γ_{220} (272 lines)

Conclusion

- Extensive measurement program conducted (1250-1750 cm⁻¹)
- New method for generating H₂O/air mixtures successfully tested
- Software tool developed for fitting of broadening parameters and temperature dependence from measured Lorentzian widths including linestrength assessment and filecuts for quality improvement/assessment
- Analysis had to be done on single line basis
- 50 mb measurements were excluded due to Dicke narrowing
- Further quality assessment performed
- Extensive error analysis performed including temperature inhomogeneities and instrumental lineshape errors
- New extended HITRAN type database including line positions, linestrengths, line shifts and broadening
- 12% of γ_{296} differ from HITRAN2004 by more than 5% (18% for γ_{220})
- 8% of γ_{296} differ from HITRAN06_v7 by more than 5% (13% for γ_{220})
- 9% of γ_{296} differ from Toth by more than 5%

Comparison $H_2^{16}O$ with Toth (n for γ_{220} from HITRAN2004)

DLR uncertainty <3%, γ_{296} (469 lines), γ_{220} (242 lines)

