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Statements

The presentation is not a review of the RB 
formalism.

Rather our focus is on some problems in the 
original derivation and extensions remaining to be 
solved.

There is no intention to underestimate its success.



The RB formalism
• The RB formalism has been widely and successfully 

used in calculating half-widths and shifts for years.

• In comparison with the Anderson-Tsao-Curnutte 
formalism, it contains two new features:

– To eliminate a cutoff by using the Linked-Cluster 
Theorem.

– To replace straight lines by parabolic trajectories.

• There have been some improvements since 1979 when 
the RB formalism was initially developed. 



Improvements made previously 
• To adopt more complicated potential models and to 

consider their vibrational dependence.

• To use “exact” trajectories and so on.

However, the core part of the RB formalism has not 
been changed.

There are several questionable assumptions remaining 
from the very beginning. Some of them are unjustified 
and some add limitations in its application.

These cause main weakness of the RB formalism. See 
following examples.



Comparison between theories and measurements

For CO2 – Ar, based 
on a potential model 
(Parker et al. 1976),
values of the width 
from RB represented 
by a solid line ——
match data very well 
(J. Chem. Phys. 115, 
7436(2001)).

Can one conclude 
that predicted widths 
from the RB 
formalism are 
reliable? 



• For CO2 – Ar, based on an updated potential model (Hutson et al. 1996), 
results of the width from RB represented by ······ are in poor agreement with 
the measurements □. Meanwhile, values from the closed coupling method 
given by ● are good.

• Because the agreement is not as good, can one claim adopting a more 
accurate potential model goes to a wrong direction?



Convergence problem in the literature

Fig. 3 Calculated Raman Q line 
widths of N2 – N2 at 296 K. 
Values derived from 4th, 6th, 8th, 
10th, and 12th order cutoffs are 
presented by 5 curves from the 
bottom to the top. Experimental 
data are denoted by ×.

How fast the convergence 
goes depends on the 
molecular pairs. In general, it 
goes slowly.
The 4th order cutoff was used in 
many papers including the one 
(J. Chem. Phys. 95, 2379 (1991)) 
presented here.

Can one claim including more 
terms in the calculations goes 
to the wrong direction?



Modifications of the RB formalism
• The RB formalism is a theory, not empirical formulas. 

Every steps in the derivations must be sound.

• Recently, we have found two problems in their 
derivation process. 
– The first one is associated with how to apply 

the Linked-Cluster Theorem.
– The second one results from how to 

determine trajectories.

• We have found some results published in the literature are not 
converged yet. As a result, some conclusions in these papers may
not be valid. 



First Modification
• The Linked-Cluster theorem was originally developed 

by Bloch, a nuclear scientist, in Hilbert space.

where |0> is the non-degenerate ground state of the unperturbed 
Hamiltonian and U(t) is the time evolution operator.

• Its core part is to express the diagonal matrix element 
<0|U(t)|0> in an exponential form.

• This is equivalent to applying Kubo’s cumulant 
expansion by defining the diagonal matrix elements as 
the average.
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What has happened in deriving the RB 
formalism?

These authors have assumed the diagonal 
matrix elements <<Jf j2 Ji j2|Ŝ|Jf j2 Ji j2>> in Liouville 
space can also be expressed as

At first sight, their applying the Linked-Cluster 
theorem appears to be correct because 
<<Jf j2 Ji j2|Ŝ|Jf j2 Ji j2>> is diagonal in the Liouville
space. But, this assumption is not valid.
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What’s wrong in their derivation?
• Rules in the Liouville space could differ from those 

applicable in Hilbert space. A simple way to check is 
to rewrite everything back in Hilbert space.

• In Hilbert space, |j2j2>> is defined as

• In Hilbert space, <<Jfj2Jij2|Ŝ|Jfj2Jij2>> is given by 

• Conclusion: None of these matrix elements of SI and 
SF* are diagonal. Thus, one can not apply the Linked-
Cluster theorem at all.
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A correction
• The cumulant expansion is more general than the Linked-Cluster 

theorem. It states that

The average must satisfy the normalization condition <1> = 1.
• We apply the cumulant expansion here by defining the average as 

Thus, we are able to express < Ŝ > in an exponential form

where             is given by
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Expressions for the resolvent operator
•In the RB formalism,

•In the modified formalism,

where           means classical averages over the velocity v   
and the impact parameter b.

In the new expression, j2 and j2’ are treated more equally 
which is consistent with a fact that the bath average of Ŝ is 
carried out in a line space constructed by j2 and j2’.  
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Expressions for the half-width

• In the RB formalism

where f(v) is the Maxwell-Boltzmann function.

• In the modified formalism
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Expressions for the shift
• In the RB formalism

• In the modified formalism

In the RB formulas, the summation over j2 is outside of the 
cumulant expansion.
In the new ones, the summation over j2 is inside.
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Comments on the first modification
• Whether to adopt the modification or not is mainly 

determined by the following questions:
–Is there a mistake or not? Is the modification          
correct or not?
–Are effects from the modification significant or not?
–Is extra work needed to make the modification?
Comparisons with data are helpful. But they are not the 
only factor to make a judgment.

• For weakly interacting pairs, results differ slightly. For 
strongly interacting pairs, differences are larger. 
Calculated shifts could differ dramatically.

• There is no extra work required.



Numerical example for the widths

Fig. 4 Calculated half-widths of the 0-1 band of HF broadened by N2 at 296 
K. Values derived from the RB and the new formulas are denoted by ○
and ∆, respectively. Measurements at 295 K are given by +.



Numerical example for the shifts

Fig. 5 Calculated shifts of the 0-1 band of HF broadened by N2 at 296 K. 
Values derived from the RB and the new formulas are denoted by ○ and ∆, 
respectively. Measurements at 295 K are given by +.



Numerical example for the widths

Fig. 6 Calculated widths of the 0-1 band of HF broadened by HF at 296 K. 
Values derived from the RB and the new formulas are denoted by ○ and ∆, 
respectively. Measurements at 295 K are given by +.



Numerical example for the shifts

Fig. 7 Calculated shifts of the 0-1 band of HF broadened by HF at 296 K. 
Values derived from the RB and the new formulas are denoted by ○ and ∆, 
respectively. Measurements at 295 K are given by +.



Where does the Second Modification come from?

• In the RB formalism, they assume that the trajectories 
are determined by Viso(R(t),ξ=0) where the normalized 
vibrational coordinate ξ=(r – re)/re.

By setting ξ=0, the trajectories are vibrationally
independent.

• This assumption is not correct, especially in calculating  
vibrational dephasing because the latter results from 
the vibration-dependent isotropic potential Viso(R(t),ξ) 
itself.    



Physics basis of the second modification
• With the Born-Oppenheimer approximation, the 

translational motion R(t) is separated from the 
internal degrees α.

• R(t) is determined by potentials Vα

• Because Vα depends on the vibration quantum 
number, the trajectories are vibration-dependent.

• When one derives an expression for S1 defined by

this modification becomes important.
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Expression for S1 in the RB formalism

When Viso is given by the LJ model, the expression for S1 is 
given by

where
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A new expression for S1
• A new expression for S1

• In comparison with the RB formalism, there are extra 
terms W(y) in S1. These extra terms could be 
comparable with the original ones.

• How important the modification is depends on the 
molecular pairs. For those pairs with weak long-range 
interactions, effects could be significant. The shifts are 
more affected than the widths.
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Numerical comparisons for the shift

• Fig. 8 Calculated shifts in the 2 ← 0 band of CO broadened by N2. 
Values derived from the RB formalism and the new one are 
represented by○ and ∆.  Measurements are represented by ● and □. 



Numerical comparisons for the width

• Fig. 9 Calculated half-widths in the 2 ← 0 band of CO broadened by 
N2. Values derived from the RB formalism and the new one are 
represented by ○ and ∆. Measurements are represented by ● and □. 



Further refinement challenges

(1) To give up the assumption that the trajectories are only 
determined by the isotropic potentials.

Benefit: Couplings between the translation and internal 
motions are taken into account.
Challenge: It is a very difficult job because within the 
RB formalism the translational motion is treated 
classically, while the internal one is treated quantum 
mechanically.

(2) To give up the assumption that the resolvent operator is 
diagonal with respect to states of the absorber 
molecule.

Benefit: Line couplings are taken into account.
Challenge: One has to calculate a lot of off-diagonal 
matrix elements of the resolvent operator.  



Further refinement challenges

(3) To consider contributions from the third-order   
expansion of the Ŝ matrix. 
Benefit: one can get higher order contributions and 
make sure results are converged.
Challenge: One has to include many more terms in the 
calculations. We think that at least for pairs of two linear 
molecules, it is possible to solve this problem based on 
the coordinate representation.

We expect each of these refinements could 
significantly affect calculated widths and shifts.



Conclusions
• There is an urgent need to provide accurate theoretical 

results for line widths and shifts for many practical 
applications.

• It appears that one still needs to rely on the RB formalism 
to do calculations at present, because closed coupling 
calculations may not be possible for many collision pairs 
of interest.

• However, Unless the challenges mentioned above have 
been addressed, one can’t conclude with certainty that 
theoretically predicted values from the RB formalism are 
really reliable.

• These problems have been ignored or avoided for two 
decades. It is the time to take actions right now.
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