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Basic transition line parameters
 Line position (or center frequency)
e Line intensity @ 296 K
o Lower state energy (for temperature dependence)
e Vibrational - rotational quantum assignment

Line shape parameters

e Pressure-broadened widths (usually Voigt)
& temperature dependence.

e Self-broadened widths

o Continua: collision-induced absorption (CIA)
(given as cross section files)
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Line-by-line parameters should be

COMPLETE and ACCURATE (ENOUGH)

ACCURACIES NEEDED FOR MANY APPLICATIONS

y  Positions: 0.00001 -1.0 cm! \

E" Lower states energies (from assignments): = 2%

S Line intensities: — 0.2 to10%

y  Pressure-broadening widths: — 0.2 to 20 %

n  Temperature dependence of widths: 10 to 40%

0 pressure-induced shifts: 22
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METHODS TO OBTAIN
SPECTROSCOPIC PARAMETERS

e Calculations based on successful theoretical modeling

(good for positions and intensities, but not line shapes)

e Predictions based on limited data and/or poorer
theoretical modeling (warning: extrapolations very poor?!)

e Empirical data retrieved line-by-line with some known
assignments (warning: no weak lines, larger uncertainties!)

e Absorption cross sections from lab spectra,
sometimes at different temperatures
(for unresolved heavy species and continua)
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Near-IR CH, (and CH;D): Positions and Intensities:
Difficult to model because energy levels perturb each other.

Triacontad: intractable:
empirical linelist with 1% assigned.

Icosad: almost intractable; one strong
band studied, empirical list

Tetradecad: mostly unassigned; no
public prediction; empirical linelist
Octad: new predictions coming for main
isotope only.

CH,D overtones/combination —
Pentad: 3 isotopes (fundamentals and
overtones) modeled;

Hot bands intensities are estimated.
Dyad: 3 isotopes good. Hot bands
intensities modeled to 8%.

GS: Intensities low by 15%.

CH,D prediction is old.
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The vibrational polyads of CH "

P_: Triacontad (30 levels)

P4: Tetradecad (14 levels)

P.: Octad

P_: Pentad (5 levels) |

Pl: Dyad (2 levels)

PO: Ground state (1 level) |
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Room temperature methane lab spectrum at 0.022 cm™! resolution
Retrieved 537 positions and intensities Line-by-line
Bottom panel is observed spectrum overlaid with synthetic; top 1s difference plot.
No known assignments: can not compute spectra at other temperatures
or attach broadening coefficients as a function of quantum numbers
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Oyanagi et al.

THE JOURNAL OF CHEMICAL PHYSICS 124, 064311 {2006)

Highly accurate potential-energy and dipole moment surfaces
for vibrational state calculations of methane

¢ Vibrational configuration-
interaction calculations of
energy levels and the

absorption intensities up to
9000 cm-!

¢ full-dimensional ab initio
potential-energy surface (PES)
and dipole moment surface for
methane

¢ Predicted energy levels within
10 cm! of observed
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FIG. 2. Theoretical vibrational spectra obtained from VI calculations using
the MSI(4th) potential-energy functions and dipole moment surfaces. Panels
(k) and (c) are scaled up for clarity.
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Identification of hot band transitions of CH,4 near 3000 cm’

C. Boursier®, J. Menard. A. Marquette, F. Menard-Bourcin

Double resonance
experiment

Assign higher
states via

hot band
transitions.

Accepted J. Mol.
Spectrosc.
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¢ Methane Hot bands Are Important

The methane Raman spectrum from 1200 to 5500 cm™ '

A first step toward temperature diagnostic using
methane as a probe molecule in combustion systems
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Far-IR CH , Intensities for ground state transitions
in HITRAN and GEISA low by 15% +?

CH4 Rotational lines R(3)-R(8)

3.0x107f ————— 1 | HITRAN intensities for Far IR
2.5510-5 [L—— e amin 1 |setby one “indirect method”,

i ] (calc.) [Hilico et al., J Mol
2.0x10=2

- hitran fit from Orton

Spec, 122, 381 (1987)] with

£
|
<
§  1.5x1075F claim of accuracy of + 30%.
5 1.0x109f )
8 ; Cassam-Chenai, [JQSRT,
S 5.0x1076f 82,251(2003)] predicts ab initio
5 N Q branch based on Stark
< _soxio-6F ] measurements [Ozier et al. Phys
R 50 20 oo | Rev Lett, 27, 1329, (1971)].
5 ARsins o 3R The intensities are 15% higher
sone \ A than HITRAN values.
= 2D U\ G | G |
A S I I R Lab data (left) confirms a
Lab Spectra of Far-IR CH4 (Wishnow) hlgh? TUEIUE I (R EAEN
manifolds.
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Models for Collision-Induced Continua

¢ http://www.astro.ku.dk/~aborysow/programs/

Borysow & Frommbhold calculate collision-induced spectra at
different temperatures and then form model spectra of cross

sections.

¢ Very useful models and software available for generating
synthetic spectra

H,-H,, H,-He, H,-CH,, H,-Ar, N,-N,,
CH,-CH,, N,-CH,, CH,-Ar, CO,-CO,

New work in progress for H,-H, by Gustafsson and Frommbhold
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Low temperature spectrum of methane
CH4 60 m path, 794 Torr, 113.5 K, 2.608 Am
3.0x10°5 T T T T T T T T T T T T T T T T ) .
C : — ] First observation of
- | absorption coefficient = ] R(3)-R(7) lines
’Tg 2.5%10-5 | -In(transmission) /
S - | (density"2 * path) Wishnow, Leung, Gush,
E 5ox10-5F Rev. Sci. Inst., 70, 23
- i ] (1999) at 0.24 and 0.06
S C - ] cm? resolution
2 1.5x1075 -
§ n , Ground State
€ 1.0x10°5F . transitions with calc.
= L ] Collision-Induced
S C 1 | absorption shows
£ 5.0x107°F 1 | need to improve the
L CIA parameters
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Dashed line: CH, Collision-Induced Absorption
(CIA) from Borysow.
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Air- and Self-broadened Widths of Methane
5 Bands of the OCTAD: 4100 to 4635 cm’!
Widths vary as a function of quanta and band symmetry
- Ak . Self..
;- 2o ;_,, biy, - v,+v, at 4220 cm:
¥o. by idpg, . Pa h i P 3-fold degenerate (F2).
. Thikeis, | £s " These widths are within 4% of v,
L ST B A values (at 3020 cm™) and other
B E bands with a 3-fold vibrational
. . i oo oW FHIFE L symmetry (F2).
RO TT Y b T
e R RRR ) S vy+v, at 4310 cm-l:
u e E; i, ‘ 9-fold degenerate band: variation of
= — — = widths at each J is much greater.
g . I - : L “‘L?I v,+v; at 4530 cm!:
3 'R £ . | <o
Ee o E [k 1T i 6-fold degenerate band: some
N s - i variation of widths at each J.
ety l.;*‘m Ty “* szl | Predoi-Cross et al. J. Mol. Spect.
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| {1 H i ﬁ %} Iff E{ % % ﬁ: {\h ﬁ é g {"| |Air-broadened
! { A pressure shifts: 5
. - 7 7 " " " |INO obvious patterns
© ° Vs quantum numbers
ﬁi :: E . %| {I
g a2y ? ; : } < ‘| | Pressure shifts can be
O . _ - estimated with a simple
R B linear expression:
0 o~ -1.97(24) x10¢ x v
5 where v is the vibrational
E 8 l H . } J , band center.
L - ' Is the scatter evidence
0 2 4.1 . 6 | 8 10 12 14 s | of line mixing?
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Studies to Understand Line Mixing in CH,
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Multispectrum fitting of line mixing in self-

and air-broadened v, methane (M. Devi)

Line Mixing Rules
Al <& A2  butnot A2 < A2
Fl < F2 butnot F2 < F2
E < E

Sum of mixing coefficients = 0.

First noticed in Raman spectra
Stimulated Raman 2v, Q-branch,
(Millot et al. 1991)

Most absorption studies at 3000 cm-!

1992-2003: Pine - measurements
1999-2001: Pieroni et al. - theory
2001-2002: Grigoriev — high pressure
2006: Tran, Hartmann et al.
(Two papers in press JQSRT)
Models at very high pressure
in both v, and v, with software
and database for air, N,, H,, Ar & He
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Collisional effects in CH, spectra, IR, Raman, and Atmospheres

Jean-Michel Hartmann,

Laboratoire de PhotoPhysique Moléculaire

e Individual IR line shapes

e Shapes of IR manifolds

e Shapes of IR branches and bands

e The IR wings

e The case of Raman spectra

e Collision induced absorption

e Effects on atmospheric transmission
e Effects on Jovian Emission

& 17 JPL



v; band, P(9) and P(6) manifold, CH,-N, at 300 K, 1 atm
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The “Enneadecad” of CH;D: 3300 to 4900 cm!

A. Nikitin, Laboratory of Theoretical Spectroscopy, Tomsk RUSSIA
L.R. Brown, Jet Propulsion Laboratory, Pasadena USA
J.P. Champion, Laboratoire de Physique, Dijon France

B Enneadecad = 19 vibrational states (37 vibrational sublevels)
B Global analysis of 8 sublevels at 2.9 um & hot bands at 3.3 um
B Measured Intensities between 3300 — 3700 cm!

B 441 effective Hamiltonian parameters fixed to values known from
prior analyses of the Ground State, Triad and Nonad of CH;D

B 144 extra effective Hamiltonian parameters fitted using newly
assigned “Enneadecad” and “Enneadecad — Triad” hot transitions

E 0.0008 cm™ Fit of positions (6! order) : 2702 cold & hot band transitions

B 45 % Fit of intensities (3" order) : more than 850 measurements
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The Enneadecad of CH;D Energy Levels

Reduced Energies (cm™)

Calculated

Nikitin et al. submitted

Observed

8 10 © 14 16 B8

Positions measured at 0.011 cm!
resolution using Kitt Peak FTS
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Transmission

3300

Spectrum Overview (Simulation)
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Recent Research: pressure broadening of CH;D

Extensive measurements of four lowest fundamentals
Several broadeners: Self, O,, N,, air, H,

Empirical expressions as a function of J,K

Theoretical calculations of widths beginning to match data

Measurements and theoretical calculations of N,-broadening and N,-shift coefficients in
the v, band of CH,D, Predoi-Cross et al. J. Mol. Spectrosc. 235 (1): 35-53, 2006

Measurements and theoretical calculations of self-broadening and self-shift coefficients in
the v, band of CH,D, Predoi-Cross et al. J. Mol. Spectrosc. 234 (1): 53-74, 2005

H,-broadening coefficients in the v, band of CH,D at low temperatures
Lerot et al. J. Mol. Spectrosc. 219 (2): 329-334, 2003

Diode-laser measurements and calculations of H,-broadening coefficients in the v, band of
CH,D. Lerot et al. J. Mol. Spectrosc. 217 (1): 79-86, 2003

Self- and N,-broadening, pressure induced shift and line mixing in the v, band of CH,D using a
multispectrum fitting techniques. Devi et al. J. Quant. Spectrosc. & Rad. Transfer 74 (1): 1-
41,2002 plus papers for air-broadening. Modeled with empirical expressions.

2 JPL



Room-temperature broadening and pressure-shift coefficients
in the v> band of CH;D-0O-: Measurements
and semi-classical calculations

Adriana Predoi-Cross #*, Kyle Hambrook #, Shannon Brawley-Tremblay 2,

Jean-Pierre Bouanich ®, V. Malathy Devi ©, Mary Ann H. Smith ¢
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Spectroscopy Needed for CH, and CH;D

¢ Far-IR:

¢ Far-IR:

¢ IR:

¢ IR:

¢ Mid-IR:

Improved accuracy for line-by-line intensities
Better models for CIA with different broadeners

Analysis of weaker hot bands (Octad-Dyad.,....)

¢ Near —IR: Extensive analyses for all isotopes

Models for pressure broadening coefficients

¢ Near-IR: Extensive broadening measurements

Line mixing measurements and models

24
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