Infrared Laboratory Spectroscopy of CH₄ and CH₃D for Atmospheric Studies

Linda R. Brown

Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109

<u>linda.brown@jpl.nasa.gov</u>

The part of the research was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology under contract with the National Aeronautics and Space Administration with many enthusiastic co-investigators

ASTRONOMICAL REMOTE SENSING

NAS

Basic transition line parameters

- Line position (or center frequency)
- Line intensity @ 296 K
- Lower state energy (for temperature dependence)
- Vibrational rotational quantum assignment

Line shape parameters

- Pressure-broadened widths (usually Voigt)
 - & temperature dependence.
- Line mixing
- Pressure-induced frequency shifts
- Self-broadened widths
- Continua: collision-induced absorption (CIA)

(given as cross section files)

Line-by-line parameters should be COMPLETE and ACCURATE (ENOUGH)

- **ACCURACIES NEEDED FOR MANY APPLICATIONS**
- v **Positions:**

0.00001 - 1.0 cm⁻¹ \

??

- **E**" Lower states energies (from assignments): $\approx \frac{1}{2}\%$
- S Line intensities: $\rightarrow 0.2$ to 10%
- γ Pressure-broadening widths: \rightarrow 0.2 to 20 %
- η Temperature dependence of widths: 10 to 40%
- δ pressure-induced shifts:

METHODS TO OBTAIN SPECTROSCOPIC PARAMETERS

- <u>Calculations</u> based on <u>successful</u> theoretical modeling (good for positions and intensities, <u>but not line shapes</u>)
- <u>Predictions</u> based on limited data and/or poorer theoretical modeling (warning: extrapolations very poor!)
- <u>Empirical data</u> retrieved line-by-line with some known assignments (warning: no weak lines, larger uncertainties!)
- <u>Absorption cross sections</u> from lab spectra, sometimes at different temperatures (for unresolved heavy species and continua)

Near-IR CH₄ (and CH₃D): Positions and Intensities: **Difficult to model because energy levels perturb each other.**

Triacontad: intractable: empirical linelist with 1% assigned.

Icosad: <u>almost intractable</u>; one strong band studied, empirical list

Tetradecad: mostly unassigned; no public prediction; empirical linelist <u>Octad</u>: new predictions coming for <u>main</u> isotope only.

CH₃D overtones/combination → Pentad: 3 isotopes (fundamentals and overtones) modeled; Hot bands intensities are estimated. Dyad: 3 isotopes good. Hot bands intensities modeled to 8%. GS: Intensities low by 15%. CH₃D prediction is old.

Room temperature methane lab spectrum at 0.022 cm⁻¹ resolution Retrieved 537 positions and intensities Line-by-line Bottom panel is observed spectrum overlaid with synthetic; top is difference plot. No known assignments: can not compute spectra at other temperatures or attach broadening coefficients as a function of quantum numbers

Highly accurate potential-energy and dipole moment surfaces for vibrational state calculations of methane

- Vibrational configurationinteraction calculations of energy levels and the absorption intensities up to 9000 cm⁻¹
- full-dimensional ab initio potential-energy surface (PES) and dipole moment surface for methane
- Predicted energy levels within 10 cm⁻¹ of observed

FIG. 2. Theoretical vibrational spectra obtained from VCI calculations using the MSI(4th) potential-energy functions and dipole moment surfaces. Panels (b) and (c) are scaled up for clarity.

Identification of hot band transitions of CH₄ near 3000 cm⁻¹

C. Boursier*, J. Menard, A. Marquette, F. Menard-Bourcin

Methane Hot bands Are Important

The methane Raman spectrum from 1200 to 5500 cm⁻¹: A first step toward temperature diagnostic using methane as a probe molecule in combustion systems

Fig. 10. Simulation without, and with hot bands in the region 2911-2914 cm⁻¹. The band centered at 2913 cm⁻¹ is $v_1 + v_4 - v_4$.

*Far-IR CH*₄ *Intensities for ground state transitions in HITRAN and GEISA low by 15% ± ?*

Lab Spectra of Far-IR CH4 (Wishnow)

HITRAN intensities for Far IR set by one "indirect method", (calc.) [Hilico et al., J Mol Spec, 122, 381 (1987)] with claim of accuracy of \pm 30%.

Cassam-Chenai, [JQSRT, 82,251(2003)] predicts ab initio Q branch based on Stark measurements [Ozier et al. Phys Rev Lett, 27, 1329, (1971)]. The intensities are 15% higher than HITRAN values.

Lab data (left) confirms a higher value for R branch manifolds.

Models for Collision-Induced Continua

http://www.astro.ku.dk/~aborysow/programs/

Borysow & Frommhold calculate collision-induced spectra at different temperatures and then form model spectra of cross sections.

• Very useful models and software available for generating synthetic spectra

H₂-H₂, H₂-He, H₂-CH₄, H₂-Ar, N₂-N₂,

 CH_4 - CH_4 , N_2 - CH_4 , CH_4 -Ar, CO_2 - CO_2

New work in progress for H_2 - H_2 by Gustafsson and Frommhold

Low temperature spectrum of methane

Dashed line: CH₄ Collision-Induced Absorption (CIA) from Borysow.

Air- and Self-broadened Widths of Methane 5 Bands of the OCTAD: 4100 to 4635 cm⁻¹ Widths vary as a function of quanta and band symmetry

 v_1+v_4 at 4220 cm⁻¹: **3**-fold degenerate (F2). These widths are within 4% of v_3 values (at 3020 cm⁻¹) and other bands with a 3-fold vibrational symmetry (F2).

 v_3+v_4 at 4310 cm⁻¹: 9-fold degenerate band: variation of widths at each J is much greater.

 v_2+v_3 at 4530 cm⁻¹: 6-fold degenerate band: some variation of widths at each J.

Predoi-Cross et al. J. Mol. Spect.

Air-broadened pressure shifts: δ

NO obvious patterns vs quantum numbers

Pressure shifts can be estimated with a simple linear expression:

 $\delta \sim -1.97(24) \times 10^{-6} \times v$ where v is the vibrational band center.

Is the scatter evidence of line mixing?

Studies to Understand Line Mixing in CH₄

Multispectrum fitting of line mixing in selfand air-broadened v_4 methane (M. Devi) Line Mixing Rules

A1 \leftrightarrow A2but notA2 \leftrightarrow A2F1 \leftrightarrow F2but notF2 \leftrightarrow F2E \leftrightarrow E

Sum of mixing coefficients = 0.

First noticed in Raman spectra Stimulated Raman $2v_2$ Q-branch, (Millot et al. 1991)

Most absorption studies at 3000 cm⁻¹ 1992-2003: Pine - measurements 1999-2001: Pieroni et al. - theory 2001-2002: Grigoriev – high pressure 2006: Tran, Hartmann et al. (Two papers in press JQSRT) Models at very high pressure in both v_4 and v_3 with software and database for air, N_2 , H_2 , Ar & He

Collisional effects in CH₄ spectra, IR, Raman, and Atmospheres

Jean-Michel Hartmann,

Laboratoire de PhotoPhysique Moléculaire

- Individual IR line shapes
- Shapes of IR manifolds
- Shapes of IR branches and bands
- The IR wings
- The case of Raman spectra
- Collision induced absorption
- Effects on atmospheric transmission
- Effects on Jovian Emission

v₃ band, P(9) and P(6) manifold, CH₄-N₂ at 300 K, 1 atm

NAS

The "Enneadecad" of CH₃D: 3300 to 4900 cm⁻¹

A. Nikitin, Laboratory of Theoretical Spectroscopy, Tomsk RUSSIA L.R. Brown, Jet Propulsion Laboratory, Pasadena USA J.P. Champion, Laboratoire de Physique, Dijon France

- Enneadecad = 19 vibrational states (37 vibrational sublevels)
- Global analysis of 8 sublevels at 2.9 μm & hot bands at 3.3 μm
- Measured Intensities between 3300 3700 cm⁻¹
- 441 effective Hamiltonian parameters <u>fixed</u> to values known from prior analyses of the <u>Ground State</u>, <u>Triad</u> and <u>Nonad</u> of CH₃D
- 144 extra effective Hamiltonian parameters fitted using newly assigned "<u>Enneadecad</u>" and "Enneadecad – Triad" hot transitions
- 0.0008 cm⁻¹ Fit of positions (6th order) : 2702 cold & hot band transitions
- **4.5 %** Fit of intensities (3rd order) : more than 850 measurements

Spectrum Overview (Simulation)

Transmission

Recent Research: pressure broadening of CH₃D

Extensive measurements of four lowest fundamentals Several broadeners: Self, O₂, N₂, air, H₂ Empirical expressions as a function of J,K Theoretical calculations of widths beginning to match data

- Measurements and <u>theoretical calculations</u> of N₂-broadening and N₂-shift coefficients in the v₂ band of CH₃D, Predoi-Cross et al. J. Mol. Spectrosc. 235 (1): 35-53, 2006
- Measurements and <u>theoretical calculations</u> of self-broadening and self-shift coefficients in the v₂ band of CH₃D, Predoi-Cross et al. J. Mol. Spectrosc. 234 (1): 53-74, 2005
- ♦ H₂-broadening coefficients in the v₃ band of CH₃D at low temperatures Lerot et al. J. Mol. Spectrosc. 219 (2): 329-334, 2003
- Diode-laser measurements and calculations of H₂-broadening coefficients in the v₃ band of CH₃D. Lerot et al. J. Mol. Spectrosc. 217 (1): 79-86, 2003
- Self- and N₂-broadening, pressure induced shift and line mixing in the v₅ band of CH₃D using a multispectrum fitting techniques. Devi et al. J. Quant. Spectrosc. & Rad. Transfer 74 (1): 1-41, 2002 plus papers for air-broadening. <u>Modeled with empirical expressions</u>.

Room-temperature broadening and pressure-shift coefficients in the v₂ band of CH₃D–O₂: Measurements and semi-classical calculations

Adriana Predoi-Cross^{a,*}, Kyle Hambrook^a, Shannon Brawley-Tremblay^a, Jean-Pierre Bouanich^b, V. Malathy Devi^c, Mary Ann H. Smith^d

Fig. 5. Variation of measured, empirically derived, and theoretically calculated Ω_2 -broadening coefficients with [m] for (A) K = 3; (B) K = 6; (C) K = 2(D) K = 0; (E) K = 1; (F) K = -2; (G) K = -4; and (F) K = 5 or a given [m], the theoretical broadening coefficients for the OP and OP lines are very nearly the same. The broadening coefficients connected with smooth line are obtained using calculation 1 and those connected with dotted line are obtained using calculation 2.

Spectroscopy Needed for CH₄ and CH₃D

- Far-IR: Improved accuracy for line-by-line intensities
- Far-IR: Better models for CIA with different broadeners
- ♦ Mid-IR: Analysis of weaker hot bands (Octad-Dyad,....)
- Near –IR: Extensive analyses for all isotopes
- IR: Models for pressure broadening coefficients
- ♦ Near-IR: Extensive broadening measurements
- IR: Line mixing measurements and models

