

Triggered Star Formation in W5

Xavier P. Koenig¹, Lori E. Allen²

Harvard-Smithsonian Center for Astrophysics (1xkoenig@cfa.harvard.edu, 2leallen@cfa.harvard.edu)

INTRODUCTION

We report results combining Spitzer IRAC and MIPS (3-24µm) from our survey of the star forming region W5 in the Perseus spiral arm. We show evidence for a clear age separation between cavity and cloud in the HII region. We are investigating this age separation in terms of models of triggered star formation.

Step 1: Imaging, Source extraction and Classification:

FIGURE 2: Spitzer MIPS 24µm image of W5.

-IGURE 1: Spitzer IRAC 3-color composite image of W5 – 3.6µm blue, 4.5µm green, 8.0µm red.

FIGURE 3: Spitzer IRAC 5.8um image. Overlaid: 12CO contours + RED class I (protostars), GREEN class II (star+disk) points.

CLASSIFICATION

Combined IRAC and MIPS photometry enables classification via mid-IR colors using automated scheme (Gutermuth et al. 2007).

Step 2: Map Class I:Class II ratio

FIGURE 5: 12CO contours overlaid on map of Class I to Class Il ratio. **Darker** colors represent **higher** proportion of Class I (protostars) relative to Class II (stars with disks, e.g. T Tauri stars). O stars marked in blue; isolated O star marked with ★ point.

Spatial distributions of young stars suggestive of AGE SEQUENCE

1st Generation:

•Isolated O star, marked with \star in Figure 5. 2nd Generation:

•The three dense clusters of Class II objects visible in Figure 3, centered on the remaining O stars (• in Figure 5).

3rd Generation:

•The 'cloud' regions, as identified by ¹²CO emission in Figure 5 contain significantly higher fraction of Class I (protostars) relative to Class II (stars with disks) than in the HII region cavity. •Within the lowest contour of Figure 5 (integrated $\int T_A^* dv = 7.5 \text{ K}$ kms⁻¹) $N_I/N_{II} = 0.29$. Outside, $N_I/N_{II} = 0.06$.

FIGURE 4: Spitzer color-magnitude diagrams showing classification scheme for young stars: black - photospheres, green - class II, red - class I, blue - 'transition disks'

Step 3: Models for Triggering TRIGGERING

/ n. = :

÷.

•Age estimates for W5 range from <1.4 Myr (from stellar wind expansion models, Vallée et al 1979) to 4.5 Myr (Kharchenko et al. 2005, from M-S fitting).

•In order for triggering to be applicable as a model for the W5 age sequence, it must proceed on a similar time-scale.

- •We investigate the analytical model of Whitworth et al. (1994) for triggering initiated by expansion of stellar winds.
- •Input: O star parameters and canonical ISM properties
- •Output: time-scales and radii at which collapse to stars occurs:

Spitzer MIPS image. Radii at which each new generation of triggered stars should form marked with circles. O stars marked with ★ points. Timescale for each triggering event shown on figure. We have begun a spectroscopic survey to characterise stellar ages across W5.

REFERENCES Kharchenko et al. (2005) A&A 438, 1163 Vallee et al. (1979), A&A, 80, 186

Gutermuth et al. (2007), submitted Whitworth et al. (1994) MNRAS 268, 291 Hillwig et al. (2006) ApJ 639, 1069