The western section of the Africa-Eurasia plate boundary zone: GPS-derived deformation field

J.M. Dávila ${ }^{1}$, R. Bennett ${ }^{2}$, D. Ben Sari ${ }^{3}$, J.L. Davis ${ }^{2}$, P. Elósegui ${ }^{2}$, J. Gárate ${ }^{1}$, V. Mendes ${ }^{4}$, D. Ouzar ${ }^{3}$, J. Pagarete ${ }^{4}$, R. Reilinger ${ }^{5}$, A. Rius ${ }^{6}$, J. Talaya ${ }^{7}$

${ }^{1}$ Royal Naval Observatory San Fernando, Spain; ${ }^{2}$ Harvard-Smithsonian Center for Astrophysics, USA; ${ }^{3}$ École Mohammadia d'Ingénieurs, Université Mohammed V, Morocco; ${ }^{4}$ Faculdade de Ciências da Universidade de Lisboa, Portugal; ${ }^{5}$ Massachusetts Institute of Technology, USA; ${ }^{6}$ Institut d'Estudis Espacials de Catalunya, Spain; ${ }^{7}$ Institut Cartogràfic de Catalunya, Spain

Tectonic Setting

The Africa-Eurasia plate boundary zone forms the western section of AlpineHimalayan colisional belt. The present-day tectonics is dominated by ongoing
north-northwestward direct push of the Africa plate against Eurasia. This complex region constitutes a distinct example of distributed deformation at a plate boundary
and contains a variety of tectonic processes at various degrees of evolution. The and contains a variety of tectonic processes at various degrees of evolution. The
western section of the Africa-Eurasia plate boundary marks the zone that runs from western section of the Africa-ELuastia plate boundary marks the zone that runs from
the Azores Islands on the mid-Atlantic ridge, through the Straits of Gibraltar, and into the western and central Mediterranean in southern taly.
Significant tectonic processes in this section include continental collision (Atlas, Betic-Rif Cordilleras, Pyrenees, Alps), ocean subduction (Calabrian arc), basin
formation (Alboran, Algero-Provencal, and Tyrrhenian basins), rifting (Azores, formation (Alboran, Algero-Provencal, and Tyrrtenian basins), rifting (Azores,
Straits of Sicily). Volcanism (e.g., Azores, Madeira, Eolian Islands or Vesuvius) and continuous low-to-moderate (M 55) seismicity, accompanied by a few high
destructive oarthquakes (eg Cape S. Vincente, Portugal, $1969, \mathrm{M}=8$; El-Asnam, destructive earthquakes (e.g.,. Cape S. Vincente, Portugal, $1969, \mathrm{M}=8 ; \mathrm{El}$-Asnam,
Algeria, 1980, $\mathrm{M}=7.3$, are also commonplace.
The Atlantic and Mediterranean Interdisciplinary GPS Observations (AMIGO; http:///mat.fc. ul.pt/amigooamigo. html) collaboration was formed to ascertain better

[^0]GPS Kinematic Field
GPS determination of present-day crustal deformation from between 1-3 years of permanent GPS data at several sites in Africa, Europe and the (error ellipses at the arrow tips) for these sites are shown relative to Eurasia.

Eurasia Reference Frame: We have realized the Eurasia
fixed reference frame by estimating and subtracting from the velocity field that rigid rotation which minimized the residual velocities of the 13 sites (blue) assumed to define a stable Eurasia plate. The deviations from zero velocity of the north and east components of velocity of these reference sites are all
ess than 2 and $1 \mathrm{~mm} / \mathrm{yr}$, respectively, and the rate weighted oot-mean-square is $1.1 \mathrm{~mm} / \mathrm{yr}$. The estimated velocities in the eastern Mediterranean are in agreement with other recent codetic measurements in that region.

Regional Deformation: Sites in the western section of the AfricaEurasia plate boundary zone with 95% confidence rates ellipses of $3 \mathrm{~mm} / \mathrm{yr}$ or less. At the level of resolution of our data $(\sim 2$ $\mathrm{mm} / \mathrm{yr})$, there is little motion of the stations in Iberia relative to
stable Eurasia. For example, the relative motion between stato stable Eurasia. Fort example, the relative motion between stations
immediately north and south of the Pyrenees mountains (TOUL and BELL) is $1.3 \pm 1.1 \mathrm{~mm} / \mathrm{yr}$ (N131 ${ }^{\circ} \mathrm{E}$). On the other hand, the weighted mean of the north and east components of velocity of
stations in the Iberia peninsula is -0.8 and $0.7 \mathrm{~mm} / \mathrm{yr}$, respectively stations in the Iberia peninsula is $-0.8 \mathrm{and} 0.7 \mathrm{~mm} / \mathrm{yr}$ respectively.
Their standard deviations are $0.6 \mathrm{and} 1.9 \mathrm{~mm} / \mathrm{yr}$. Therefore, these sites seem to define a rather coherent block at the $\sim 2 \mathrm{~mm} / \mathrm{yr}$.

Local Deformation: Sites in the Betic-Rif Cordilleras and Albora Sea with 95% confidence rates (ellipses) of $8 \mathrm{~mm} / \mathrm{yr}$ or less. Red
symbols mark the location of permanent (squares and circles) and symbos mark the location of permanent (squares and circes) be
campaign (triangles) GPS stations in this region that have not bee operating long enough to produce accurate velocity estimates and
have not ind have not included in this solution yet. The blue arrow indicat
NUVEL-1A motion relative to Eurasia at site MELI, on the southern shore of the Albooran Sea, which differs significantly from our GPS estimate of velocity at that site. Future data will help us
resolve the distribution of deformation in this region and compare resolve the distribution of deformation in this region and compare
present-day geodetic estimates of relative motion and modeled values based on geological data.

Some Purely Kinematic Questions - How rigid is Eurasia?
-Are present-day relative motions between Eurasia and Africa consiste
data?

Is deformation in this region confined to a narrow belt at the plate -

If distribut partitioned?

erters cons still coexist in the Betic-R egion and Alboran Sea?

And Some Answers

- We detect no deformation within (our definition of) stable Eurasia at
the $2 \mathrm{~mm} / \mathrm{yr}$ (weighted root-mean-square) level with 99% confidence. he $2 \mathrm{~mm} / \mathrm{yr}$ (weighted root-mean-square) level with 99% confidence, strain accumulation rate at the 1 nanostrain/yr level.
- We measure significant deformation along the Africa-Eurasia plat oundary zone. The pattern of deformation changes upon crossing
ifferent tectonics provinces. We find our velocity field to be generally consistent with other studies.
In the western Mediterranean, the Pyrenees mountains appear to not accomodate any significant deformation at the $2 \mathrm{~mm} / \mathrm{yr}$ level.
sites winhin the fberia pen sola seem to define a rather coherent
-The GPS-derived velocity at site MELI, in the Alboran region, and the velocity implied by NUVEL-1A circuit closure differ significantly.

[^1]
[^0]:

[^1]: We acknowledge use of data from about wwo years of ocontinuus GPS networks of
 the Real Obsservatoroio de la A Armada San Fernando (ROA) Institut Cartographic de

