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I. Introduction and Motivation

In star formation generally, we are trying to find out how
interstellar gas turned into the solar system we know today.
Some of the big questions:

1. What is the initial mass function?

2. What is the star formation rate?

3. How do binaries form?

4. How do planets form?

5. What is the engine that drives protostellar outflows?
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There is a long list of physical processes going into each of
these problems, but many of the processes (like hydrodynam-
ics and magnetohydrodynamics, which go into the formation
of molecular clouds), share some common attributes:

1. Nonlinearity. [In the hydrodynamic equations, the term
(v · ∇)v.]

2. Nonstationary (time-dependent). [e.g. large velocity fluc-
tuations in molecular clouds]

3. Combinations of multiple, equally important effects. [e.g.
magnetic fields + gravity + pressure + random motions]

Some are even nonlocal, like radiative transfer! These prob-
lems will not be solved by hand in any generality. (There are
not even many nonlinear ordinary differential equations that
can be solved by hand.)

Occasionally by making drastic assumptions, such as ∂t →
0, or self-similarity, one can reduce a particular problem to
solving an ordinary differential equation numerically.

So we are driven to numerical simulations.
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II. What makes a numerical paper interesting?

A. Accuracy. Discussion of code tests, or reference in astro-
nomical literature containing code tests. In particular:

1. linear theory tests.
2. tests on exactly solvable problem.
3. Convergence tests on the problem at hand.
But convergence cannot be blindly applied: all relevant scales
must be resolved. Example: isothermal collapse calculations
in star formation.

In all cases, look for quantitative comparison, and quantita-
tive controls on errors.

B. Fidelity. Does the approximate problem solved ever corre-
spond to reality in any limit?

C. Relevance. Is there anything that is abstracted from the
numerical solution that will ever be used by another
researcher? Avoid the implicationless simulation.

A final word of warning: the “I have a dream” speech.
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III. An Example: MHD Turbulence in Molecular Clouds.

Gammie & Ostriker 1996 (ApJ 466, 814) studied the dy-
namics of molecular clouds using a numerical model. Ask:
Can nonlinear hydromagnetic waves support clouds against
collapse along field lines?

Model is “1 2/3” D; slab-symmetric, but transverse veloci-
ties and magnetic fields allowed. Simulation done along the
direction of the mean field.

Model contained the following essential features of cloud
dynamics:

1. Magnetic fields strong enough that VA/cs ' 10.

2. Random velocities with δV/cs ' 10.

3. Self-gravity.

These features put “protostellar” turbulence outside regimes
that are usually studied, e.g., incompressible, homogeneous
turbulence.

The simulation parameters are VA/cs, δV/cs, and nJ = num-
ber of Jeans lengths in simulation.

Can nonlinear hydromagnetic waves support clouds against
collapse? Yes.

Now going on to more complicated two and three dimensional
models of the ISM.
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IV. Numerical Fundamentals: Hydro.

Momentum equations:

Dv

Dt
=

∂v

∂t
+ v · ∇v = −∇p

ρ
.

Mass conservation:

∂ρ

∂t
= −∇ · (ρv).

Isothermal equation of state:

p = c2sρ.

Can rewrite the momentum equations, using the continuity
eqtn., in “conservative form”:

∂t(ρvi) = −∂j(pδij + ρvivj).

Much of the work in solving this equation goes into dealing
with the final term on the right.

Eulerian and Lagrangian schemes. Eulerian schemes dis-
cretize on spatial grid, while Lagrangian resolution elements
follow the fluid. Examples: ZEUS and SPH.
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Courant Condition. Stability condition:

∆t ∼<
∆x

vc
,

where vc is a characteristic velocity (the sound speed when
vx/cs is small, and vx in the opposite limit) and ∆x is a
characteristic distance (e.g. zone size). Signal cannot prop-
agate across more than 1 zone / timestep. MHD: similar
condition, w/ Alfvén speed.

Implication: consider a 3D Eulerian hydro simulation with
fixed spatial size over a fixed time interval.

CPU time ∼ (∆x)−4.

Roundoff error and Truncation error. Roundoff error is
caused by the finite accuracy of numerical representations of
real numbers. It is unavoidable.
Truncation error is scheme-dependent. Should be uniform
across the grid.

Numerical Dissipation All schemes must also have numerical
dissipation. Nonlinear terms in the hydro equations naturally
transfer energy to small scales. Cannot allow it to accumu-
late! Can be handled by artificial viscosity or other, more
indirect methods.

See Numerical Recipes, 2nd ed., §19.1, for an introduction
and references.
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V. Numerical Zoology

Most numerical simulation papers relevant to star formation
are concerned with just a few pieces of physics: gravity, hy-
drodynamics, and magnetohydrodynamics.

Here is a resume of some of the codes and algorithms most
commonly used in astrophysics.

1. Gravity

Solve

∇2φ = 4πGρ.

This can be done by

Fast Fourier Transform (FFT). See
Hockney & Eastwood 1982, Computer Simulations Using
Particles.
“O(N log N)”, meaning CPU time scales as N logN
Useful for periodic boundary conditions; other boundary
conditions can be more difficult to implement, although
there is a simple method for an isolated system.
Important advantage: existence of highly optimized,
canned FFT routines.

Other Basis methods. See, e.g.,
Weinberg 1996, ApJ, 470, 715.
Hernquist & Ostriker 1992, ApJ, 386, 375.
O(N log N)
Multipole for angular component plus some basis for radial
components. Weinberg’s method can be optimal for cer-
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tain slowly evolving systems, e.g. near-equilibrium galaxy
models.

Tree. See, e.g.
Barnes & Hut 1986, Nature, 324, 446.
Barnes & Hut 1989, ApJS, 70, 389.
Hernquist & Katz ApJS 70, 419.
O(N log N)
Works well for approximate systems with a large range
in spatial scales; e.g. collapse problems such as galaxy
formation.
Subtleties: building the tree, especially on vector or paral-
lel machines, or in periodic geometry.

Fast Multipole Method. See
Greengard & Rokhlin 1987, JCP 73, 325.
O(N)
Essentially a variant of the tree method. Not yet used in
astro. Fast in principle, but the overhead is so large that
in practice it is not faster except for very large numbers of
particles.

Multigrid potential solver (start w/ Numerical Recipes).
O(N)
Fast but complicated. Particularly useful when solution is
desired on an irregular grid.

Direct summation.
O(N2)
Easy to program in its naive form. This is sometimes com-
petitive w/ other methods for specialized computers, e.g.
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the GRAPE chip (see J. Makino papers).
In less naive forms this can be extremely complex.
Aarseth’s NBODY5, for example, contains special algo-
rithms for accurately evolving close encounters and evolv-
ing binary systems, and is designed to study small clus-
ters.
Integration of planetary orbits is also a specialized prob-
lem.

Combination, e.g. P3 M; see the nice review of
Bertschinger 1991, in After the First Three Minutes, p.
297.

2. Hydrodynamics

Smoothed particle hydrodynamics. See
J.J. Monaghan, ARAA 30, 543.
Hernquist & Katz ApJS 70, 419.
Invention credited to Lucy, Monaghan, similar idea were
floating around in 70s. N-body like method. Pressure gra-
dients on particle i is:

dvi
dt

= . . .−
∑

j

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
∇iW (|xi − xj |, h)

W is a smoothing kernel and h is a smoothing length. “La-
grangian” method: resolution elements follow the fluid.

Problems:
Noisy: not appropriate for problems with nearly uniform
density distributions, e.g. linear and mildly nonlinear evo-
lution of modes in disks. Large numerical viscosity.
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Poor shock resolution.
Don’t believe 1D tests.

Advantages: Galilean invariant. Conservation properties.
Capable of resolving many orders of magnitude in linear
scale. Used to advantage in studies of stellar collisions (e.g.
Rasio & Shapiro, Hernquist & Goodman).

Memory-intensive: 1 kbyte/SPH particle.

ZEUS, and similar codes. See
Stone & Norman 1992, ApJS, 80, 791 et seq.
Eulerian.
Operator-split: updates one piece of equation at a time.
Staggered mesh: velocities live on zone faces, while density
lives at zone center.
Advection is generally done w/ “Van Leer” method. see
Stone & Norman.

This is a widely tested, robust, and reliable method that is
now publicly available from the National Center for Super-
computing Applications (NCSA), a supercomputer center
at UIUC. See
http://www.ncsa.uiuc.edu/Apps/SoftwareListing.html

This method is second-order, meaning that the errors scale
as ∆x2 for linear problems.

Constraints: fixed grid, so cannot resolve large variation
in spatial scales. Largest simulations to date have ' 5123

zones.
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PPM, and similar codes. see
Woodward & Colella 1984 JCP, 54, 174–201.
Eulerian, Operator-split.
Zone-centered: all variables live at middle of zone.
Godunov-type scheme: Solves Riemann problem at each
zone interface. Riemann problem is the flow away from a
hydrodynamic discontinuity, and is exactly solvable.
Variables are representation is piece-wise parabolic.

Several publicly available versions of this code. See
http://www.icemcfd.com/cfd/CFD codes p.html
http://fermi.clas.virginia.edu/∼gl8f/VH-1.html.

Excellent resolution of discontinuities.
Convergence rate is more complicated.
Multidimensional, operator-split methods cannot formally
do better than second order. See
Porter & Woodward 1994, ApJS, 93, 309.

Largest simulations to date have 10243 zones.

Spectral methods.
Operate by decomposing fluid variables into, e.g., Fourier
components.

Not many astrophysical applications for these kinds of
methods, since they do not handle discontinuities well
(Gibbs phenomenon). Useful for studying flows with linear
or quasilinear perturbations.

Often used for studies of incompressible flow, where they
have excellent convergence properties.
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Unstructured mesh.
This is a method often used in engineering applications for
studying, e.g., flow around airfoils.

It has been adapted for astronomy by Guohong Xu. See
http://xxx.lanl.gov/abs/astro-ph/9610061

Adaptive mesh.
e.g. Klein et al. adaptive mesh code.

Quasi-lagrangian schemes e.g.
Pen, preprint.
Gnedin & Bertschinger 1996, ApJ, 470, 115.
Pen’s scheme is publicly available.

3. MHD

Solve hydro equations, with new force in momentum equa-
tions

Dv

Dt
= . . .− ∇B2

8πρ
+

(B · ∇)B

4πρ
,

and an equation for evolving the magnetic field (the “induc-
tion equation”):

∂B

∂t
= ∇× (v ×B).

Ambipolar diffusion is more difficult. Diffusion equations
generally have a restrictive stability condition for explicit
schemes:

∆t ∼<
∆x2

ν
where ν is a diffusion coefficient. Handle implicitly. See
MacLow et al., 1995, ApJ 442, 726.
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MOC-CT. “Method of characteristics” for evolving the trans-
verse components of the field, together with “constrained
transport” for evolving total field. This is the algorithm
embodied in the ZEUS code.

MOC means that the transverse components of the field
are evolved along characteristics.

CT means that the field is evolved in a clever way that
automatically conserves ∇ ·B = 0. See
Evans & Hawley, 1988, ApJ 332, 659.

Memory requirements: for a 3D isothermal MHD simula-
tion, 7 global arrays of 4 bytes × 2563 ' 470 Mbytes.

PPMHD. Extension of PPM scheme to MHD flows.
Ryu & Jones 1995, ApJ 442, 228,
Ryu, Jones, & Frank 1995, ApJ 452, 785,
Dai & Woodward 1994, JCP 115,485.

Difficulties: it is much more difficult to solve the MHD
Riemann problem than the HD Riemann problem. Also,
the solution is degenerate.

It is not clear how to preserve ∇ · B = 0 in PPM type
scheme, where variables are zone-centered. Various meth-
ods are used: flux cleaning, or see-no-evil approach. See
Brackbill & Barnes, 1980, JCP, 35, 426
for a discussion of the issue.

SPMH: based on SPH method, adds in terms for evolving
magnetic field. Gammie, Katz.

14



Phillips and Monaghan 1985, MN 216, 883.

Problems: no way to ensure no monopoles. Noisy. Does
not work.
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VI. Hardware

National Supercomputing Centers:
Pittsburgh (C90, T3D). http://www.psc.edu
NCSA (CO2000, CM-5). http://www.ncsa.uiuc.edu
San Diego (C90). http://www.sdsc.edu
Cornell (IBM SP2). http://www.tc.cornell.edu/ctc.html

Vector and Parallel machines.

For a crude idea of current machine performance is, look
under
Performance Database Server at
http://netlib2.cs.utk.edu/

For example, LINPACK benchmarks:
C90, 16 proc: 11 Gflops
T3D, 512 proc: 51 Gflops
CM-5, 512 proc: 30 Gflops
DEC Alpha 200MHz: 155 Mflops
Sun Ultra: 63 Mflops
Apple PowerMac 8500/132: 22 Mflops
Apple Mac: 0.004 Mflops

Remember, you never get all 16 processors on a C-90, or all
512 nodes on a CM-5. All publicly accessible supercomputers
are highly oversubscribed, so turnaround time is long. Also,
these are not hydro codes. Real peak performance depends
on code, optimization, load.

Allocations are applied for like grants. No money involved.
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Small amounts of time, ' 10 hr., are easy to come by.
Maximum awards in the range of few ×103 hr/yr to groups
like Grand Challenge cosmology consortium.

Coding for a vector machine is relatively easy. Coding for
a parallel machine can be easy or hard, depending on how
it is done. Fortran 90, HPF, Message-passing libraries.
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