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Essential Physical Properties of Dust

Size Distribution

— MRN: N(a) ~ a3>... how often applicable?
Composition

— effects emissivity, Q

» Qpr~l P

b=0 for pure blackbody; b~1 for amorphous, |ayer-
lattice material; b~2 for metals & crystalline dielectrics

Shape (“ Huffiness’, “ Compactness’)
— effects surface area & sticking properties




Size: Which Grains Matter Most?
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Figure 3.1 Plots of efficiency factars o and Qu, sgainst 1 for spheri
grains. Upper frame: m = 16— 0,08 Qege = Qe Lower frame: mo= 16 =104
salid curve 8 Qag, dashed curve is Q.
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Gran Size Distribution in the |SM

Computed :E;ﬁ_fﬁﬁzﬁ —N ( a) ~ a'35
Observed
' | (Mathis, Rumpl & Nordseick 1977)

7 HD 48099

e — both slope and
upper & lower size

———— cutoffs can effect R,
observed

) —R,, 1S observed to vary
e substantially in ISM!!

I/ % (um')

Fia. 4—Same as Fig. 3 except for the UV portion of the mean ra:al I - A — R E B_
Ry~dependent extinction law from eq, (4), The data at U, B, and ¥ from Fig. 3 . \/ \/
are also plotted. Again, the “error ™ bars in the lower inset represent the com-
puted standard deviation of the data about the best fit of A4V A(V) vs. B, 7!
with a(x) + bix)/R,. The open symbols in the insel represent the difference
between AL AF) from eq. (4) and the average curve of Seaton (1979) for
Ry = 3.2 The only serious deviation ocours for x = 7 em ' (see 1exl).

Cardelli, Clayton & Mathis 1989.




Size Distributions: What' s In-Between?
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SEDs & Mass Determination

Flux atAfor N particles of size a:
| B =0 blackbodies

l naZ 2hc? 1 amorphous, |attice-
F =N T) B(T)= b 1=
(D IRBM BM=T% oy Quik RS

dielectrics

Flux atAfor adistribution with N particles of each size a:

1 2
F (obs) = é I\Li T:;gg B, (T) (Note: same flux can be achieved using different

grein distribution combinations of size distribution and emissivity law!)

M ass determination:

_ 4sk D? l a U Using “appropriate = LR {2y
= : M, (true) = a LY
¢ 3B ( duSt)I Qx average of alQ?\' d ( ) gan & SBA( dust) | Qk,a%;

temperature distribution

"Wien's Law"" N = number of grains
a="typicd" grain size
€ 5 U_ .1 peakflux movesto D = distance from observer
Aoesc » 3000 Sﬁ-lrSHT longer | for smaller b. Taust =dust temperature
Q = emissivity
S = density of grain materid




Composition: Changes 3
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Decreasing p givesyou

more flux at any A, SO...
overestimating 3 will mean

more mass required to
produce observed flux

WARNING: In theory, § isonly a
property of individual grains, but
In“ practice” it has cometo
include size distribution



Essential Physical Properties of Dust

Size Distribution

— MRN: N(a) ~ a3>... how often applicable?
Composition

— effects emissivity, Q

» Qpr~l P

b=0 for pure blackbody; b~1 for amorphous, |ayer-
lattice material; b~2 for metals & crystalline dielectrics

Shape (“ Huffiness’, “ Compactness’)
— effects surface area & sticking properties




Evidence for Gran Growth in
Cirucumstellar Environments

Modification of , ak.a. “dust opacity index”
— opacity ~ ~(v/v,)P

_ B~2

_ B<<2

»

» (e.g. TTSDisks ; Mannings & Emerson 1994, see also
Beckwith & Sargent 1991)

— Low p'sareeasly




The Data: Low-b and Free-Free
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Chen, Zhao & Ohashi, 1995
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How (Big) Solids are Formed

Direct Coagulation of
Material, In-situ (Goldreich & Ward 1973; Cameron
1975, etc.)

Mixtures of
Materials formed in Environments, on
Varying

— e.g. as accomplished through
(seeF. Shu et al.)

or... some of both?




Making Big Dust(balls) by Coagulation

Requirements

— substantial rate of |ow-speed collisions
— “sticky” material (ices good)

— melting & other exotic possiblities

— established short of “big” dust
— evaporation & destruction by
» Within several A.U. of forming stars

— destruction by
» e.g. Infall, supersonic turbulence, etc.




Single Particle: Aggregate
of Similar Particles

Recall:

DUST AGGREGATE COLLISIONS cm/s  kmis
(c) 1996 100 0.001
C. DOMINIK and A. TIELENS 1000 001

10000 0.1

IYPE: GRAIN-CLUSTER 100000 1

MATERIAL: ICE
SBLZES: 1E-5 .. 1lE-5 CH




Single Particle :Aggregate
of Similar Particles

DUST AGGREGATE COLLISIONS
(c¢) 1996
C. DOMINIEK and 4. TIELEHNS

ITYPE: CRAIN-CLUSTER
MATERIAL: QUARTZ
SLZES : 1E-5 .. 1lE-5 CH




Single Particle: Aggregate
of MRN-like Particles

DUST AGGREGATE COLLISIOHNS
(¢) 1996
C. DOMINIEK and 4. TIELEHS

IYPE: GRAIN-CLUSTER
MATERIAL: ICE
SLZES: BE-b6 .. 2E-5 CH




Aggregate:Aggregate
(Each made of like particles)

DUST AGGREGATE COLLISIONS
(c) 1996
C. DOMINIK and A. TIELENS

TYPE: CLUSTER-CLUSTER
MATERIAL: ICE
SLZES: 1E-5 .. 1lE-5 CH
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For a Proper Model of Big Dust around Y SOs...

We' d need, all as functions of 3D position (and time)...
— “Initial” Size Distribution
— Velocity Distributions (of dust and gas)
» Including effects of binaries & shocks

— Temperature Distribution

» Including effects of “cloud surface” heating,
transient grain heating & shocks

— Composition Distribution
» €.g. more ices in colder regions?
— Serious Dedication & Brilliance




Observations to Constrain a M odel

Total Flux at agiven wavelength
Integrated (unresolved) SED

Spatial
Spatial
Spatial

Recoro

y resolved SED

y resolved multi-I polarimetry

y resolved maps of ice features

IN meteorites, comets & asteroids




Questions to Consider

How to make big dust?
— How long does it last in agiven environment?

How to best detect big dust?

How much big dust makes how much of a
differencein:

— SEDs

— mass calculations
— chemistry

— ISM




