Brains, Arteries, Sea Monsters, and the Future of Astronomy

Alyssa A. Goodman
Harvard-Smithsonian Center for Astrophysics

Evolution

Is the Academic Publishing Industry on the
Verge of Disruption?

Broins, Arteries (and star formation)

using 2D maps of column density. With this early 2D work \pm inspira-

Figure $2 \mid$ Conparisen of the 'dendrogzen' 2nd 'CUuMPFIND' festurereg ion of Persesus.a,3D visuliniztion of the surices ind iated by col ours

 carrespending too to sf figrivituing sobects have been hid highthed in in diow

 noie and small- <ale structure in the data. In the enline PDP F verion the 3 .
 the printed ve sion, the front fice of ecch 3 D abe (the heme viver in the

data, CLUMPHND typically findsfeatures ons limited range of scites, above but doseto the phyical reeslution of the data, and its resultsan be overty dependent on input parameers By turing CLUMPFND's two free prameten, the sme modecultr-line duts st "can be used to show e ethere that the frequency distribution of dump muss is the sume

(Supplementary Fig 1). werte proposed as a way to characterize doudr' hierarchical structure 2 tion, we have developed 1 strucureeidentifiction uhoorithm thai an etaily visulized repreentation called $A^{\text {a }}$ 'dendrogram ${ }^{100}$. Although well developed in other dut-intensive feld du' 1 ,1, it it curious that the
 and almost excusuively within the area of glidxy evolution, where "merget treer' are being used with increas ing frequency"
Figure 3 and its lesend explain the Construction of dendrograms ima of emission merge with each other, and its implementation is explained in Supplementary Mathods. Critically, the dendrogram is determined almost entirely by the data itself, and it has negigigib sensitivity to algorithm purameters To make griphical preesntation posible on paper and 2 D screens, we'flatten' the dendrog rims of 3D data (see Fig 3 and its kegend, by sorting their branche's to not
cros, whicheliminatees dimendional information on the x xis while presesving all information about connectivity and hierarchy Numbered 'billitrd halP libds in the figures let the reader match fanture betwen 12 D map (Fig. 1), an interactive 3D map (Fig $2 i$

A dendrogrum of 1 spectrill line ditat cube allows for theestimation

 the significance of the especially elongyted fetures seen in L.148 (Fig 2a). The luminosity is an approximute proay br mass, such that $M=-X_{1500} L_{300}$, whare $X_{1300}-8.0 \times 10^{-3} \mathrm{~cm}^{2} \mathrm{~K}^{-1} \mathrm{~km}^{-1}$ (reef 15 ; see Supplementary Methods snd Supplementary Fig 2). wed to estimute the olole of self-gravily 4 tech point in the hierarchy
 In principle, extended portions of the tree (Fig 2, yelow highlighting) where $a_{o b}<2$ (where grr vitutionil energy is compurabe to or lugge than linetic energy) crreepond to regions of $p p-1$ sptce whereself
 capturte exernal over-prasurre and/or mang netic feedsk, its messured value ehould donly be uese as 1 guide to the longerity (boundedneses) of any particular feature.

Figure 3 | Schematicilustration of the dendrogram processs Shown is the emission profilic (bladk). The dendrogram (bue) an be constrouted by
 areforond and connected sashown The inerexction of a testloel with this
 dinensionc The dendrogram of 3 D datu shown in F . 2 c is the direat ampogie of the tree chown bree, only construadod from Yesarfuaee nuther an a fiat page a s fully repreenting dendrograms far $3 D$ data cubes would require four dimencosions
exaos Moxmillan Pubsehhers Linitiod. All ighthe rosormed

"Astronomical Medicine"

" z " is depth into head
" z " is line-of-sight velocity
http://am.iic.harvard.edu/

High-Dimensional Data: "Cubes"

ATMOSPHERIC AND OCEANIC TEMPERATURE CHANGE

GENERALLY

I D: Columns = "Spectra","SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies"
4D: Time Series of Volumes = "3D Movies"

Star Formation in Persetr

C(OMPLETE

mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell et al. 2005, Kirk et al. 2006)

Spectral-Line Mapping

Spectral Line Observations

"Astronomical Medicine"

" z " is depth into head
" z " is line-of-sight velocity
http://am.iic.harvard.edu/
${ }^{13} \mathrm{CO}$ (Ridge et al. 2006)

AstronomicalMedicine@|C-MPLETE

Arteries

Michelle Borkin

Harvard School of Engineering \& Applied Science Ph.D. student, supervised by Alyssa Goodman (Astronomer) \& Hanspeter Pfister (Computer Scientist)

Patients Troubled Hearts, in 3D

Obtain patient CT data

Segment arteries

Generate patient geometries
\downarrow

How much does viz matter?

Borkin et al. 201 I

AcCURACY

Strong effect of dimensionality on accuracy

And strong effect of color...

Borkin et al. 201 I

EFFIIIENCY

Participants more efficient in 2D.

Rainbow color map has greater detriment in 3D.
10.2 sec/region
$5.6 \mathrm{sec} /$ region

$2.6 \mathrm{sec} /$ region
$2.4 \mathrm{sec} /$ region

BUT-3D still essential for sugical planning.

Borkin et al. 201 I

"Linked Views"

How?

Glue collaboration: Beaumont, Borkin, Goodman, Pfister, Robitaille

Principles of high-dimensional data visualization in astronomy

A.A. Goodman*

Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
Received 2012 May 3, accepted 2012 May 4
Published online 2012 Jun 15

Key words cosmology: large-scale structure - ISM: clouds - methods: data analysis - techniques: image processing techniques: radial velocities
Astronomical researchers often think of analysis and visualization as separate tasks. In the case of high-dimensional data sets, though, interactive exploratory data visualization can give far more insight than an approach where data processing and statistical analysis are followed, rather than accompanied, by visualization. This paper attempts to charts a course toward "linked view" systems, where multiple views of high-dimensional data sets update live as a researcher selects, highlights, or otherwise manipulates, one of several open views. For example, imagine a researcher looking at a 3D volume visualization of simulated or observed data, and simultaneously viewing statistical displays of the data set's properties (such as an $x-y$ plot of temperature vs. velocity, or a histogram of vorticities). Then, imagine that when the researcher selects an interesting group of points in any one of these displays, that the same points become a highlighted subset in all other open displays. Selections can be graphical or algorithmic, and they can be combined, and saved. For tabular (ASCII) data, this kind of analysis has long been possible, even though it has been under-used in astronomy. The bigger issue for astronomy and other "high-dimensional" fields, though, is that no extant system allows for full integration of images and data cubes within a linked-view environment. The paper concludes its history and analysis of the present situation with suggestions that look toward cooperatively-developed open-source modular software as a way to create an evolving, flexible, high-dimensional, linked-view visualization environment useful in astrophysical research.

The Bones of tive Willy Way

Alyssa A. Goodman (Harvard-Smithsonian Center for Astrophysics) with collaborators at (alphabetically by insitution):
Boston University: James Jackson
Caltech: Jens Kauffmann
Harvard - Smithsonian: Christopher Beaumont, Michelle A. Borkin, Thomas M. Dame Max Planck Insitute for Astronomy: Thomas Robitaille
U. Munich: Andreas Burkert
U. Vienna: Joao F. Alves
U. Wisconsin: Robert A. Benjamin

Alyssa Goodman, m:617-230-7080; url: milkywaybones.org

THE "NESSIE" NEBULA: CLUSTER FORMATION IN A FILAMENTARY INFRARED DARK CLOUD

James M. Jackson ${ }^{1}$, Susanna C. Finn ${ }^{1}$, Edward T. Chambers ${ }^{2}$, Jill M. Rathborne ${ }^{3}$, and Robert Simon ${ }^{4}$
${ }^{1}$ Institute for Astrophysical Research, Boston University, Boston, MA 02215, USA; jackson@bu.edu, sfinn@bu.edu
${ }^{2}$ Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA; e-chambers@ northwestern.edu
${ }^{3}$ Australia Telescope National Facility and Universidad de Chile, Santiago, Chile; rathborn@ das.uchile.cl
${ }^{4}$ I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany; simonr@ ph1.uni-koeln.de Received 2010 April 13; accepted 2010 July 21; published 2010 August 3

Abstract

The "Nessie" Nebula is a filamentary infrared dark cloud (IRDC) with a large aspect ratio of over 150:1 (1.5×0.01 or $80 \mathrm{pc} \times 0.5 \mathrm{pc}$ at a kinematic distance of 3.1 kpc). Maps of HNC (1-0) emission, a tracer of dense molecular gas, made with the Australia Telescope National Facility Mopra telescope, show an excellent morphological match to the mid-IR extinction. Moreover, because the molecular line emission from the entire nebula has the same radial velocity to within $\pm 3.4 \mathrm{~km} \mathrm{~s}^{-1}$, the nebula is a single, coherent cloud and not the chance alignment of multiple unrelated clouds along the line of sight. The Nessie Nebula contains a number of compact, dense molecular cores which have a characteristic projected spacing of $\sim 4.5 \mathrm{pc}$ along the filament. The theory of gravitationally bound gaseous cylinders predicts the existence of such cores, which, due to the "sausage" or "varicose" fluid instability, fragment from the cylinder at a characteristic length scale. If turbulent pressure dominates over thermal pressure in Nessie, then the observed core spacing matches theoretical predictions. We speculate that the formation of highmass stars and massive star clusters arises from the fragmentation of filamentary IRDCs caused by the "sausage" fluid instability that leads to the formation of massive, dense molecular cores. The filamentary molecular gas clouds often found near high-mass star-forming regions (e.g., Orion, NGC 6334, etc.) may represent a later stage of IRDC evolution.

Key words: ISM: clouds - stars: formation

Monster to Bone

There could be ~ 1000 more of these to find...a full skeleton perhaps? milkywaybones.org

Question Andi Burkert: Is Nessie "parallel to the Galactic Plane"?

Answer no one immediately knew the answer!

AG decides to look into this and...

"Is Nessie Parallel to the Galactic Plane?"

The Milky Way

The Milky Way (Artist's Conception)

Using Velocity Constraints

Why b<0?! Galactic Geometry: 1959 and Now

Drawing is schematic--NOT to scale

The equatorial plane of the new co-ordinate system must of necessity pass through the sun. It is a fortunate circumstance that, within the observational uncertainty, both the sun and Sagittarius A lie in the mean plane of the Galaxy as determined from the hydrogen observations. If the sun had not been so placed, points in the mean plane would not lie on the galactic equator.
[Blaauw et al. 1959]

Predicted Near \& Far Scutum-Centaurus Arm

Predicted Velocities match NH_{3} Cores in Nessie Perfectly

Predicted Velocities match NH_{3} Cores in Nessie Perfectly

black dots show HOPS NH_{3} velocities from Purcell et al. 20I 2; color is CO; line is log-spiral fit to full Scut-Cen Arm

Nessie is a Bone of the Milky Way

What does that mean?

simulations courtesy Clare Dobbs

"Diskovering" the Milky Way

HRDS

HII Region Discovery Survey

- Distances
- Distance Uncertainties
- Source Morphologies
- Data Table
- Details for Individual Region

Created and maintained by Loren Anderson. Last updated May 2012. Comments? Questions? Loren.Anderson@mail.wvu.edu This page made possible by JQuery, JQuery DataTables, JQuery QTip, JQuery Loading, and many other sites.

Loren Anderson (West Virginia University), Thomas Bania (Boston U.), Dana Balser (NRAO), Bob Rood (U. Virginia), and Trey Wenger (Boston U.)

The Future

seamless access to tools, data, analysis, discourse UNIVERSE3D.org

The Bones of fite Milky War: Geatils

Seamless Astronomy-style tools used in this project

authorea.com (open publishing)
theastrodata.org (open data)
glueviz.org (open source tools)
universe3d.org (collaborative data)
worldwidetelescope.org (universe information system) virtual observatory standards (international online information-sharing systems)
Supported by
Microsoft ${ }^{\circ}$

View and compare images from across the electromagnetc spectrum

Much more than "just" the sky at night!
3D features can take you to other planets, stars \& galaxies.

