nDS ALL SKY surver

View in Aladin • View in WorldWide Telescope adsass.org
here is a 180 -degree heatmap of article density on all kinds of objects, on the Sky, over all time
FILTER BY
Object
AII Stars Galaxies H
Nebulae Other
Band
Radio Infrared Ultrav
Custom
Harvard
Year

TOGGLE BASE LAYER
Optical Mellinger GALEX AIS DSS2 Red IRIS 2MASS Halpha VTSS

let's zoom in (on Ophiuchus)

Object

AII Stars Galaxies HII regions Nebulae Other

12000

Band
Radio Infrared Ultraviolet X-ray

Custom
Harvard
Year

TOGGLE BASE LAYER
Optical Mellinger GALEX AIS DSS2 Red IRIS 2MASS Halpha VTSS

Select tool

1651 13.53-19 3357.76

(3)

now, let's toggle on the "Mellinger" view of the Sky
 ...to see a nice optical image of Ophiuchus

FILTER BY
Object
All Stars Galaxies HIl regions
Nebulae Other
Band
Radio Infrared Ultraviolet X-ray
Custom
Harvard
Year

```
TOGGLE BASE LAYER
Optical Mellinger GALEX AIS
DSS2 Hec Inा= ErviASS Halpha
VTSS
```


to add markers for SIMBAD sources, we can click the Select Tool

FILTER BY
Object
All Stars Galaxies HIl regions
Nebulae Other
Band
Radio Infrared Ultraviolet X-ray
Custom
Harvard
Year

TOGGLE BASE LAYER

Optical Mellinger GALEX AIS DSS2 Fer inio 2 IVASS Halpha VTSS

Select tool

[^0]
panning over a bit, we can center our region of interest

FILTER BY

Object

AII Stars Galaxies HII regions Nedulae Other

Band
Radio Infrared Ultraviolet X -ray
Custom
Harvard
Year
toggle base layer
Optical Mellinger GALEX AIS DSS2 Red IRIS 2MASS Halpha VTSS

Select tool

Fon 8.29
let's change the color table from rainbow to greyscale to make sources more apparent

Band
Radio Infrared Ultraviolet X-ray

Custom
Harvard

Year

TOGGLE BASE LAYER
Optical Mellinger GALEX AIS
DSS2 Red IRIS 2MASS Halpha VTSS

Select tool

1637 37.05-20 20 37.47

Yar

lei's look now at the distribution of articles about "HIl regions" and select an area we're curious about

when we release the selection rectangle, we get a pop-up list of papers (ADS) mentioning these objects, or a list of the objects (CDS/SIMBAD) we highlighted

Object

All Stars Galaxies Hill recions
Nebulae Other
Band
Radio infrared Uitraviolet X-ray
Custom
Havarard
Year
togale base layer
Optical Mellinger GALEXAIS DSS2 Red IRIS 2MASS Halpha VTSS

selecting "Open Papers in ADS" opens the paper list in ADS Labs

(From here, we can filter the list more, and more. e.g. clicking "SIMBAD Objects" lets us see particular objects in context on the Sky in WWT or Aladin.)

let's try "Open WWT Version," so we can see this same view in WWT, and use a transparency slider
The ADS All Sky Survey What About Watch videos © Tour ©゙ Open WWT version

All Stars Galaxies HII regions Nebulae Other

TOGGLE BASE LAYER
Optical Mellinger GALEX AIS
DSS2 Red IRIS 2MASS Halpha
VTSS

Select tool

let's try the transparency (layer) slider in WorldWide Telescope

dust is nice, but we're curious about HIll regions, let's change view to H-alpha

Object All Stars Galaxies HII regions Nebulae Other
Band Radio Infrared Ulitraviolet X-ray

Custom Harvard/All

BACKGROUND LAYER
Optical 2MASS WISE SFD IRIS GLIMPSE H-alpha ROSAT Fermi VLSS

now we want to find X-ray observations and see if any are near the HIll regions, so we can slide between H-alpha and X-ray

now let's zoom in, and try "Show Sources" to see what the SIMBAD X-ray sources really are

select an
interesting source

and, we can have plenty of information on the source, via CDS/SIMBAD or via ADS.

Credifis

 funding NASA ADAP program PI: Alyssa Goodman, Harvard-CfA Co-I: Alberto Pepe, Harvard-CfA \& Authorea Co-I: August Muench, Smithsonian-CfA withAlberio Accomazzi, Smithsonian Institution, NASA/ADS Christopher Beaumont, Harvard-CfA Thomas Boch, CDS Strasbourg Jonaihan Fay, Microsoft Research David Hogg, NYU, astrometry.net Alberio Conti, NASA/STScl, Norihrup Grumman

soce

Experience WorldWide Telescope, free from Microsoft Research at worldwidetelescope.org

VISUALZATION N ASTRONOMY:

FROM GALLEO TO

 THE ZOONVERSEALYSSA A. GOODMAN HARVARD-SMTHSONAN CENTER FOR ASTROPHYSCS
@AAGE

Authorea
.astroñomy

COLLABORATORS

...including ADS team (Alberio Accomazzi, Michael Kurtz, Edwin Henneken, et al.) and Wolbach Library staff (Christopher Erdmann et al.)

Nathon-Sunders

Pat Udomprasert
CfA
Chris lintoti
Zooniverse, Oxford

Curtis Wong
Microsoff Research

RELATIVE STRENGTHS

Patitern Recognition Creativity

Calculations

LINKNG VISUALIZATION \& UNDERSTANDNG N ASTRONOMY

.astrọiomy

GALILEO GALIEE (1564-1642)

On the third, at the seventh hour, the stars were arranged in this fuence. The eastern one was I minute, 30 seconds from Jupiter : closest western one 2 minutes; and the other western one wa

ist * * * * Wer
0 minutes removed from this one. They were absolutely on th ame straight line and of equal magnitude.
On the fourth, at the second hour, there were four stars arout upiter, two to the east and two to the west, and arranged precisel

$$
\text { East } \quad * * \bigcirc \quad * \quad * \quad \text { Wes }
$$

nn a straight line, as in the adjoining figure. The easternmost wa tistant 3 minutes from the next one, while this one was 40 second rom Jupiter; Jupiter was 4 minutes from the nearest western one d this one 6 minutes from the westernmost one. Their magnitude are nearly equal; the one closest to Jupiter appeared a little smaller ian the rest. But at the seventh hour the eastern stars were only 0 seconds apart. Jupiter was 2 minutes from the nearer easteri
East ** $* *$ Wes
me, while he was 4 minutes from the next western one, and this fone was 3 minutes from the westernmost one. They were all equal and extended on the same straight line along the ecliptic.

On the fifth, the sky was cloudy.
On the sixth, only two stars appeared flanking Jupiter, as is seen

$$
\text { East * } \quad \text { * }
$$

in the adjoining figure. The eastern one was 2 minutes and the vestern one 3 minutes from Jupiter. They were on the same straight fine with Jupiter and equal in magnitude
On the seventh, two stars stood near Jupiter. bnth to the east.

GALILEO GALILE

GALILEO'S "NEW OR

Created by Alyssa Goodman, Curtis Won with advice from Owen Gingerich and D.
.

Galileo's New Order, A WorldWide Telescope Tour by Goodman, Wong \& Udomprasert 2010

GALILEO GALLEE

January 11, 1610

FROM GALLLEO

\longrightarrow TO THE ZOONVERSE

BIG DATA

BIG DATA And HUMAN-ADED COMPUTNG

THE MILKY WAY PROJECT

What do you see in this image?

Nothing
to mark

BIG DATA and HUMAN-ADED COMPUTNG

example here from: Beaumont, Goodman, Kendrew, Williams \& Simpson 2014; based on Milky Way Project catalog (Simpson et al. 20 I3), which came from Spitzer/GLIMPSE (Churchwell et al. 2009, Benjamin et al. 2003), cf. Shenoy \& Tan 2008 for discussion of HAC; astroml.org for machine learning advice/tools

WIDE DATA

CompleTE

mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell

BIG ano WIDE DATA

chat

Movie:Volker Springel, formation of a cluster of galaxies

"DATA. DIMENSIONS. DISPLAY"

ID: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies"
4D: Time Series of Volumes = "3D Movies"

WOE DATA NOD

mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell
et al. 2005, Kirk et al. 2006)
${ }^{13} \mathrm{CO}$ (Ridge et al. 2006)
mid-IR IRAC composite
from c2d data (Foster,
Laakso, Ridge, et al.)
: Optical image (Barnard 1927)

2009 3D PDF INTERACTVITY IN A "PAPER"

Figure $\mathbf{2} \mid$ Comparison of the 'dendrogram' and "CLUMPFIND' featureidentification algorithms as applied to ${ }^{13}$ CO emission from the L1448 region of Perseus. a, 3D visualization of the surfaces indicated by colours gravitating structures in the region corresponding to the leaves of the dendrogram; pink shows the smallest surfaces that contain distinct selfgravitating leaves within them; and green corresponds to the surface in th data cube containing all the significant emission. Dendrogram branches corresponding to self-gravitating objects have been highlighted in yellow over the range of T_{mb} (main-beam temperature) test-level values for whi
the virial parameter is less than 2 . The $x-y$ locations of the four 'selfgravitating' leaves labelled with billiard balls are the same as those shown in Fig. 1. The 3D visualizations show position-position-velocity ($p-p-v$) space, RA, right ascension; dec., declination. For comparison with the ability of dendrograms (c) to track hierarchical structure, \mathbf{d} shows a pseudodendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As 'clumps' are not allowed to belong to larger labels used in
structures, each pseudo-branch in dis simply a series of lines connecting the maximum emission value in each clump to the threshold value. A very large number of clumps appears in \boldsymbol{b} because of the sensitivity of CLUMPFIND to noise and small-scale structure in the data. In the online PDF version, the 3D cubes (\mathbf{a} and \mathbf{b}) can be rotated to any orientation, and surfaces can be turned the printed version, the front face of each 3D cube (the 'home' view in the interactive online version) corresponds exactly to the patch of sky shown in Fig. 1, and velocity with respect to the Local Standard of Rest increases from front $\left(-0.5 \mathrm{~km} \mathrm{~s}^{-1}\right)$ to back $\left(8 \mathrm{~km} \mathrm{~s}^{-1}\right)$.
data, CLUMPFIND typically finds features on a limited range of scales, above but close to the physical resolution of the data, and its results can be overly dependent on input parameters. By tuning CLUMPFIND's two free parameters, the same molecular-line data set ${ }^{8}$ can be used to show either that the frequency distribution of clump mass is the same as the initial mass function of stars or that it follows the much shal(Supplementary Fig. 1)
(Supplne the).
ere propose before the advent of CLUMPFIND, 'structure trees' 64
using 2D maps of column density. With tt $\quad \omega_{v} 2 \mathrm{D}$ work as inspiration, we have developed a structure-id abstracts the hierarchical structure of a an easily visualized representation calle well developed in other data-intensive application of tree methodologies so f_{f} and almost exclusively within the
merger trees are being used with
Figure 3 and ima of emission merge with each malained in Supple determined almost entirely by tt sensitivity to algorithm paramet possible on paper and 2 D screen data (see Fig. 3 and its legend cross, which eliminates dimen preserving all information Numbered 'billiard ball' lab features between a 2D map online) and a sorted dendri A dendrogram of a spect of key physical properties surfaces, such as radius (
(L). The volumes can have any shape,
the significance of the especially elongated features
(Fig. 2a). The luminosity is an (Fig. 2a). The luminosity is an approximate proxy for mass, ${ }^{\text {on }}$ that $M_{\text {lum }}=X_{13 C O} L_{13 C O}$, where $X_{13 C O}=8.0 \times 10^{20} \mathrm{~cm}^{2} \mathrm{~K}^{-1} \mathrm{~km}^{-1}$ ref. 15; see Supplementary Methods and Supplementary Fig. 2), The derived values for size, mass and velociy dispersion can to via calculatione the role of seff varis ateach pont in the hierarchy, In principle extended portions of the tree (Fig 2 yellowhighlighting) where $\alpha_{\text {ab }}<2$ (where gravitational energy is comparable to or larger than kinetic energy) correspond to regions of $p-p-v$ space where selfgravity is significant. As $\alpha_{\text {obs }}$ only represents the ratio of kinetic energy to gravitational energy at one point in time, and does not explicitly capture external over-pressure and/or magnetic fields ${ }^{16}$, its measured value should only be used as a guide to the longevity (boundedness) of any particular feature.

Figure $\mathbf{3} \mid$ Schematic illustration of the dendrogram process. Shown is the construction of a dendrogram from a hypothetical one-dimensional 'dropping' a test constant emission level (purple) from above in tiny steps (exaggerated in size here, light lines) until all the local maxima and mergers are found, and connected as shown. The intersection of a test level with the emission is a set of points (for example the light purple dots) in one dimension, a planar curve in two dimensions, and an isosurface in thre
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct dimensions. He dencorme than 'point' intersections. It has been sorted and flattened for representation on a flat page, as fully representing dendrograms for 3D data cubes would require four dimensions.

Goodman et al. 2009, Nature, cf: Fluke et al. 2009


```
    (4)1

\title{
A role for self-gravity at multiple length scales in the process of star formation
}

\author{
Alyssa A. Goodman \({ }^{1,2}\), Erik W. Rosolowsky \({ }^{2,3}\), Michelle A. Borkin \({ }^{1} \dagger\), Jonathan B. Foster \({ }^{2}\), Michael Halle \({ }^{1,4}\), Jens Kauffmann \({ }^{1,2}\) \& Jaime E. Pineda \({ }^{2}\)
}

Self-gravity plays a decisive role in the final stages of star formation, where dense cores (size \(\sim 0.1\) parsecs) inside molecular clouds collapse to form star-plus-disk systems \({ }^{1}\). But self-gravity's role at earlier times (and on larger length scales, such as \(\sim 1\) parsec) is unclear; some molecular cloud simulations that do not include self-gravity suggest that 'turbulent fragmentation' alone is sufficient to create a mass distribution of dense cores that resembles, and sets, the stellar initial mass function \({ }^{2}\). Here we report a 'dendrogram' (hierarchical tree-diagram) analysis that reveals that self-gravity plays a significant role over the full range of possible scales traced by \({ }^{13} \mathrm{CO}\) observations in the L1448 molecular cloud, but not everywhere in the observed region. In particular, more than 90 per cent of the compact 'pre-stellar cores' traced by peaks of dust emission \({ }^{3}\) are projected on the sky within one of the dendrogram's self-gravitating 'leaves'. As these peaks mark the locations of already-forming stars, or of those probably about to form,

overlapping features as an option, significant emission found between prominent clumps is typically either appended to the nearest clump or turned into a small, usually 'pathological', feature needed to encompass all the emission being modelled. When applied to molecular-line


\section*{Astrobetter}
Blog About Archives Support Wiki

\section*{Tutorial for embedding 3D interactive graphics into PDF}
by Guest on March 7, 2012

\section*{Search}

To search, type and hit enter
Josh Peek (@joshuaegpeek) is a Hubble Fellow at Columbia University, specializing in the ISM in and around disk galaxies. He has a fascination with data presentation and design.

As an astronomer studying the complex three-dimensional structures of the interstellar medium, l've been taken with the idea of presenting that information in a compelling and interactive way to readers. The major mode of communication for astronomers is the refereed journal article, as distributed through PDF, so I got interested in how one can package interactive 3D scenes with the papers we write. Interactive graphics can be embedded in PDFs that can be rotated, panned, and zoomed.


Follow AstroBetter
ถ Subscribe
© Subscribe by Emall
f Facebook
EFFollow on Twitter

\section*{Contributors}
- Kelle (187)

Jane (43)
- Jessica Lu (41)
- Guest (39)
saurav (17)
- Planck (8)
- Laura Troulle (8)
- contentmgr (2)
- Jess K (1)




\section*{AND. SOON.HUMANS WILL SEE THE INVIBBLEI}


No. 1, 1998
ORIGIN AND EVOLUTION OF THE CEPHEUS BUBBLE


FIG. 1.-Peak intensity of CO \(1-0\) emission. The gray scale represents antenna temperature values scaled linearly between 0 and 3.5 K . The strongest FIG. 1.-Peak intensity of CO \(1-0\) emission. The gray scale represents antenna temperature values scaled linearly between 0 and 3.5 K . The strongest
emission occurs at the S 140 region and globule A of IC 1396 , where the peak antenna temperature is about 10 K . The position offsets are measured from emission occurs at the S140 region and globule A of
\(x(1950)=21^{1} 18^{\circ} 00^{\circ}, \delta(1950)=59^{\circ} 3000^{\circ}\), near \(S 129\).

Patel et al. I 998, page 243, Figure I, with markup (orange) to be made by a citizen scientist using oldAstronomy tools

slide courtesy of Alberto Pepe


\section*{TRY IT AT ADSASSORG}
```

choose meatmap
Otect All Stry Gatuves Hllregins Nebulae Other
Cry) Rado infared Ulravoler Xrim
Hanvegal
OH
mackemound layen

```

```

MHTO

```


Aladin \& WWT versions are both javascript.
No plugins required, use any browser, any platform

Filter by
Object
All Stars Galaxies HII regions Nebulae Other

\section*{Band}

Radio Infrared Ultraviolet X-ray

Custom
Harvard

\section*{Year}
toggle base layer
Optical Mellinger GALEX AIS DSS2 Red IRIS 2MASS Halpha VTSS

Select tool



\section*{THE RVETNG SEOUEL}


LINKED VEWS OF HIGH-DIMENSIONAL DATA


Video \& implementation: Christopher Beaumont, CfA; inspired by AstroMed work of Douglas Alan, Michelle Borkin,AG, Michael Halle, Erik Rosolowsky

\section*{LINKED VEWS OF HIGH-DIMENSIONAL DATA}


\section*{LINKED VEWS OF HIGH-DIMENSONAL DATA GLUE}





Monochrome © RGB
Contrast Visible
\(\begin{array}{llll}\text { Red } & \text { AV } & \text { : } & 0 \\ \text { Green } & \text { AV } & \vdots & \square\end{array}\)
Blue TEMP : © \(\quad \downarrow\)


\section*{8 Tab 1} col 13 - PRIMARY



Contrast


\section*{THE RIVETNG SEOUEL}


\title{
(GLLEDOPPO:AUTHOREA)
}


\author{
\(\leftarrow\) C @ https://www.authorea.com/users/2786/articles/4039/_show_article
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Authorea & BROWSE & ABOUT & CONTACT & PLANS & FEEDBACK & HELP & JOSH PEEK * \\
\hline
\end{tabular}


\section*{THE FUTURE IS IN ONLINE}
\begin{tabular}{|llll}
\hline Authorea
\end{tabular}

\section*{I Aroce ven \\ 4 Nemstred veew}

9 Chat view (0)
Article index
Introduction
国 Catio
Auel 1. bve your dita
Rule 2 share duta onete
Rule 3 data neuse in mind
Rive 4 . publsh workfow as contex PDie 5 Inik data to pobications \begin{tabular}{l} 
Rime 6 . publsh your coce \\
Rile 7 be exploh about cel \\
\hline
\end{tabular}
2 Aule 8 use cemminity derar mpos. ) Ale 9 reward data shoring Rule 10: help essablish diva so.
> Appendions
Achnowtedgement
Authre contributions

Last update: 1 day ago.
Tr Ouick adt O Wiach me atorix) - of Sering

\section*{BUT WE DO} NEED TO FIGURE OUT HOW NOT TO LOSE IT.
Authorea BROWSE ABOUT CONTACT PLANS FEEDBACK HELP ALYSSA COODMAN -
.astrọ은y
m PREPRINT GOPEN SCOENCE ARTICLE B AUTMOREACOM/3410
10 Simple Rules for the Care and Feeding of Scientific Data
\(\pm\) Export © Fork (oopn) © 0 comments
Alyssa Goodman, Alberto Pepe, Alexander W. Blocker, Christine L. Borgman, Kyle Cranmer, Merce Alyssa Goodman, Alberto Pepe, Alexander W. Blocker, Christine L_ Borgman, Kyle Cranmer, Merce
Crosas, Rosanne Di Stefano, Yolanda Gil, Paul Groth, Margaret Hedstrom, David W. Hogg, Vinay Kashyap, Ashish Mahabal, Aneta Slemiginowskik, Aleksandra Slavkovie

\section*{Introduction}

In the early 1600 s, Galileo Galilei turned a telescope toward Jupiter. In his log book each night, be drew to-scale schematie diagrams of Jupiter and some oddly-moving points of light near it. Galileo labeled each drawing with the date. Eventually he used his observations to conclude that the Earth orbits the San, just as the four Galilean moons orbit Jupiter. History shows Galileo to be much more than an astronomical bero, though. His clear and careful record keeping and publication style not only let Galileo understand the Solar System, it continues to let anyane understand how Galineo did it. Galieo's notes directy integrated his data (drawings of Jupiter and its moons), key metadata (conclusions) Critically, integration of text, data and metadata was preserved, as shown in Figrue 1 Galileo's work advanced the "Srientific integration of text, data and metadata was preserved, as shown in Figure 1 Galileo's work advanced the "Scientific "Scientific Method" (Cullei 1698, Dreke 1957), "Scientific Mehod" (Cailie 1618, Drake 1957),
Today most research projects are considered complete when a journal article based on the analysis has been written and published. Trouble is, unlike Galileo's report in Siderius Nuncius, the amount of real data and data description in modern publications is almost never sufficient to repeat or even statistically verify a study being presented. Worse, researchers wishing to baild upoa and extend work presented in the literature often have troable recovering data recover the data associated with their ome published works. recover the data associated with their own published works.


\section*{WHAT'S AN "ACID-FREE" DIGITAL RECORD?}
tinyurl.com/adidfreedigitial

\section*{THE FUTURE IS N 3D}

yt viz from ALMA data (Turk, Rosolowsky)

\author{
Glue "for" JWST \\ (Beaumont ef al., NASA)
}


\section*{THE FUTURE IS MODULAR. OPEN-SOURCE. AND NOT (JUST) ON THE DESKTOP}


\section*{THE FUTURE OFFERS NEW WAYS TO LEARN}

\section*{WorldWide Telescope Ambassadors}

\section*{Higher Ed}


Seamlessly explore imagery from the best ground and space-based telescopes in the world
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Explore & Guided Tours & Search & View & Settings & & & \\
\hline \multicolumn{9}{|l|}{Collections \(>\) All-Sky 5 _rveys \(\gg\)} \\
\hline  & Digitized & VLSS: VL & & Year & SFD Dust Map (Inf & IRIS: Improved Re & 2MASS: Two Micro & Hydrogen Alpha Ft \\
\hline \multicolumn{9}{|l|}{sly explore} \\
\hline \multirow[t]{2}{*}{rom the best space-based in the world} & & & & & & & & : \\
\hline & Expert & tours of & & & Control & e to study ho & * ** . & \(\checkmark\) \\
\hline & the & verse & & & the nig & sky changes & & \\
\hline
\end{tabular}

View and compare images from across the electromagnetc spectrum

Much more than "just" the sky at night!
3D features can take you to other planets, stars \& galaxies.

\title{
GAINS IN STUDENT INTEREST AND UNDERSTANDING \\ ("Traditional Way" vs "WWT Way")
}
Group B (Traditional)
\(N_{\text {before }}=77 ; N_{\text {ofter }}=75\)

Group A (With WWT)
\(N_{\text {before }}=75 ; N_{\text {offer }}=\Omega 1\)
What is your level of interest in Astronomy?

What is your level of interest in Science?

How much factual knowledge
do you have about astron-


Effect Size: Gain (or Loss) in Units of Pre-Test Standard Deviation
Perkin Lobby and Wolbach Library, 60 Garden Street

TIME
11-12 for drop-in demos 12-12:45 lunch for students \& their guests

Preview
hitp://ay201b.wordpress.com/topical-modules


\section*{CHALLENGES}


What can we afford?
Whot do we teach?
Is visualization, and computation more generally, the new "instrumentation"? How do we value visualization specialists? How much customizution?
Will tools be preserved?
How much organization (orchestration) is too much?
 ASTRONOMY: FROM GALLEO TO THE ZOONVERSE


\section*{extra slides (not shown)}


https://www.cfa.harvard.edu/~agoodman/seamless/

\section*{Supported by Neseartran \\ \(\square\)
}


\section*{MEANNGFUL ABSTRACTION IS OFTEN BETTER THAN REALISM.}

G. Johnson et al. 20 I I: http://video.sciencemag.org/VideoLab//423692 I3000 I/I

\section*{A great photographic nebula near pi and delta Scorpif.}

Barnard, E. E.
Astrophysical Journal, 23, 144-147 (1906)
Published in Mar 1906
DOI: 10.1086/141311

\section*{A GREAT PHOTOGRAPHIC NEBULA NEAR \(\pi\) AND \\ \(\delta\) SCORPII \\ by e.e.barnard}

Through the courtesy of Professor Hale and the generosity of Mr. John D. Hooker, of Los Angeles, I spent the past spring and summer in photographic work at the Solar Observatory of the Carnegie Institution on Mount Wilson, California, at an altitude of 6000 feet. Mr. Hooker's generous grant made it possible to transport the Bruce Photographic Telescope of the Yerkes Observatory to Mount Wilson, where it was installed from February until September, 1905. It is hoped that the results may later be published in full, with reproductions of the principal photographs. At this time I wish to call attention to an especial region in Scorpio.

The main object of the work at Mount Wilson was to secure the best possible photographs of the Milky Way as far south as the latitude would permit. But little time was available for independent investigations in other parts of the sky, though the conditions for such work were often superb.
A few exposures were made, however, at various points in a search for diffused nebulosities. The extraordinary nebulosities in Scorpio and Ophiuchus which I found by photography in 1894-those of p Ophiuchi, v Scorpii, etc.--suggested the immediate region of the upper part of the Scorpion as a suitable hunting-ground. Trial plates were exposed on \(\rho\) Scorpii, and \(\pi\) Scorpii, and elsewhere. The photographs of the region of \(\pi\) showed a very remarkable, large, straggling nebula extending from \(\pi\) to \(\delta\) Scorpii, with branches involving several other naked-eye stars near.

With the exception of the great curved nebula in Orion and some of the exterior nebulosities of the Pleiades, this nebula is quite exceptional in its extent, and in the peculiarities of its various branches. A simple description of it would be inadequate to give a fair conception of these features.

htip://www.worldwidetelescope.org/webclient/default.ospx?wiml=htitp\%30\%2f\%\%fwww.worldwidetelescope.ory\%\%2fwwiweb\%2FShowimage.aspx\%\%3freverseparity\%3ditrue\%26scale\%3d13.4575\%26nome\%3d1906ApJ....23

```


[^0]: FoV: 8.29°

