"Lifting the Dusty Veil"

Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics

COMPLETE

Holes in the Heavens?

5.5 hour exposure at Yerkes Observatory, 1907 Jan. 9, E.E. Barnard

Barnard: "Not Holes in the Heavens"

Bright & Dark: Clues to Star Formation

Visualization courtesy American Museum of Natural History, Hayden Planetarium

What's happened since Barnard?

+...moderately realistic computer simulations, c. 1990++

Glossary

for Alyssa Goodman's Observatory Night Talk, 9/18/03

- Extinction--the degree of "blackness" on the sky caused by dust between background objects and an observer
- Emission--photons *produced* by some physical process
- Absorption--removal of photons by some physical process
- Spectral line--emission or absorption over a very narrow wavelength range, caused by a change in the quantum mechanical state of a particular atom or molecule
- IRAS--Infrared Astronomy Satellite (1983)
- SIRTF--Space Infrared Telescope Facility (launched August 2003)
- COMPLETE Survey--COordinated Molecular Probe Line Extinction Thermal Emission Survey

More info:cfa-www.harvard.edu/~agoodman

"Velocity"

Star Formation Framework

How Dark=How Dense

Counts of stars per unit area measure how much material must be producing obscuration, gives "extinction."

What's hidden in the dark? How can we see through the dusty veil?

"Smoke"

would have been a better name!

"Wavelength"

Any photon that would have otherwise reached you but doesn't is "extinguished."

Advanced (but key) Tutorial: "Wavelength Dependence of Extinction" (a.k.a. How we see through the dusty veil.)

Market Construction of the second sec

Light Goes Right by & Reaches Us

The Secret to "Lifting the Dusty Veil"... Observe at a Wavelength LARGER than the Typical Dust Grain!

<0.1 μ M, a.K.a. "Optical"= BAD

>0.1 mm, a.k.a. "(Near) Infrared" = GOOD

The Dark Cloud B68 at Different Wavelengths (NTT + SOFI)

ESO PR Photo 29b/99 (2 July 1999)

© European Southern Observatory

"With these images, we are lifting the dusty veil of secrecy from star birth and star death."

--attributed by CNN on 5/12/97, to Rodger Thompson, Chief Scientist for Hubble's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS)

<u>http://www.cnn.com/TECH/9705/12/hubble/</u> (narrated by Rodger Thompson)

Optical image of Orion Nebula

"Lifting the Veil"

Means using near-IR imaging to see "embedded" sources otherwise shrouded from view.

These embedded sources are nearly all young and forming stars.

"The Veil" Emits, as well as Absorbs, Photons

Barnard's Optical Photograph of Ophiuchus IRAS Satellite Observation, 1983

The dust in dark clouds glows most brightly at far-infrared wavelengths.

Optical image of Orion Constellation

Image courtesy Akira Fujii

Infrared Emission

GAMMA RAYS

Infrared Region of the Electromagnetic Spectrum

INFRARED

MICROWAVE

VISIBLE

ÛV

X-RAYS

RADIO

(Far) Infrared Emission from a Dark Cloud Complex

Taurus as seen by IRAS (Arce & Goodman 1999)

Barnard's Taurus

5.5 hour exposure at Yerkes Observatory, 1907 Jan. 9

Color shows far-IR Dust Emission from IRAS

Color shows far-IR Dust Emission from IRAS

it is the second s

SIRTF

...more than 100x more sensitive than any before

NASA's Great Observatories

GAMMA RAYS

X-RAYS

ŰV

VISIBLE INFRARED

INFRARED MICROWAYE

WAYE RADIO

Quick Truths About Star Formation Research

We're (pretty) sure that...

Stars form in molecular clouds when pieces of the cloud get dense enough to collapse under their own weight (self-gravity).

We're reasonably confident that...

Most stars form in big clusters, and that star formation in clusters is more complicated than relatively "isolated" star formation.

We're nearly clueless as to...

Exactly how star formation gets started & how long it takes under specific conditions.

Star Formation >>101

MHD turbulence gives "t=0" conditions; Jeans mass=1 M_{sun}
50 M_{sun}, 0.38 pc, n_{avg}=3 × 10⁵ ptcls/cc
forms ~50 objects

•T=10 K

•SPH, no B or Λ, Γ

•movie=1.4 free-fall times

Bate, Bonnell & Bromm 2002

The COordinated

Extinction Thermal Emission Survey

How do Molecular Probe Lines Relate to this Image?

The Oschin telescope, 48-inch aperture wide-field Schmidt camera at Palomar

Red Plate, Digitized Palomar Observatory Sky Survey

What's a "Molecular Line Map"?

Radio Spectral-line Observations of Interstellar Clouds

Radio Spectral-line Observations of Interstellar Clouds

Alves, Lada & Lada 1999

But, spectral lines don't just say where the emission is on the sky... They give us a velocity.

The Value of "COMPLETE" Observations: B68

Dust Emission

Coordinated Molecular-Probe Line, Extinction & Thermal Emission Observations of Barnard 68

This figure highlights the work of Senior Collaborator João Alves and his collaborators. The top left panel shows a deep VLT image (Alves, Lada & Lada 2001). The *middle top* panel shows the 850 µm continuum emission (Visser, Richer & Chandler 2001) from the dust causing the extinction seen optically. The top right panel highlights the extreme depletion seen at high extinctions in $C^{18}O$ emission (Lada et al. 2001). The inset on the *bottom right* panel shows the extinction map derived from applying the NICER method applied to NTT near-infrared observations of the most extinguished portion of B68. The *graph* in the bottom right panel shows the incredible radial-density profile derived from the NICER extinction map (Alves, Lada & Lada 2001). Notice that the fit to this profile shows the inner portion of B68 to be essentially a perfect critical Bonner-Ebert sphere

<u>The</u> **CO**ordinated Molecular Probe Line **E**xtinction **Thermal E**mission Survey

Is this Really Possible Now?

The COordinated Molecular Probe Line Extinction Thermal Emission Survey

C C M PLETE

Alyssa A. Goodman, Principal Investigator (CfA) João Alves (ESA, Germany) Héctor Arce (Caltech) Paola Caselli (Arcetri, Italy) James DiFrancesco (HIA, Canada) Mark Heyer (UMASS/FCRAO) Di Li (CfA) Doug Johnstone (HIA, Canada) Naomi Ridge (CfA) Scott Schnee (CfA, PhD student) Mario Tafalla (OAS, Spain) Tom Wilson (MPIfR)

COMPLETE, Part 1

Observations:

2003-- Mid- and Far-IR SIRTE Legacy Observations: dust temperature and column density

SIRTF Legacy Coverage of

5 degrees (~tens of pc)

 > IO-degree scale Near-IR Extinction, Molecular Line
 and Dust Emission Surveys
 of Perseus, Ophiuchus & Serpens

Scier

COMPLETE Perseus

IRAS + FCRAO (73,000 ¹³CO Spectra)

What I do for kicks...

Amazing PV Ceph

a.k.a. "TV Set"

"Giant" Herbig-Haro Flow from PV Ceph

Image from Reipurth, Bally & Devine 1997

1

PV Ceph

Episodic ejections from a precessing or wobbling moving source

Goodman & Arce 2003

PV Ceph is moving at ~20 km s⁻¹

(from here to Concord in 1 sec)

Goodman & Arce 2003

"Lifting the Dusty Veil"

Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics

Perseus

Total Dust Column (0 to 15 mag A_V) (Based on 60/100 microns)

Dust Temperature (25 to 45 K) (Based on 60/100 microns)

Hot Source in a Warm Shell

COMPLETE Warm Dust Emission shows Great Bubble in Perseus

> $2 \times 10^{51} \text{ erg SN}$ into 10^4 cm^{-3} 5 pc in 1 Myr T=30K v_{exp} =1.5 km s⁻¹

BD+30 24 SVS8 The action of DEC (2000.0) 18 multiple H12 bipolar outflows in HH1 NGC 1333? SR33 HH7-11 15 SCUBA 850 mm Image shows N_{dust} (Sandell & Knee 2001) 31 12 HHS SK1 NGC1333 850µm Dotted lines show CO outflow orientations (Knee & Sandell 2000) 03^h29^m20^s 10^{s} $29^{m}00^{s}$ 50^{s} 40^{s} R.A. (2000.0)

рс

Telescopes Used in Our Mapping of the ISM

2011?

Space Infrared Telescope Facility

Infrared Great Observatory

- Background Limited Performance 3 -- 180
- 85 cm f/12 Beryllium Telescope, T < 5.5K
- 6.5µm Diffraction Limit
- New Generation Detector Arrays
- Instrumental Capabilities
 - Imaging/Photometry, $3-180\mu m$
 - Spectroscopy, 5-40um
 - Spectrophotometry, 50-100 μm
- Planetary Tracking, 1 arcsec/sec
- >75% of observing time for the
- General Scientific Community
- 2.5 yr Lifetime/5 yr Goal
- Launched August 2003!! (Delta 7920H)
- Solar Orbit
- \$450 M Development Phase Cost Cap

Cornerstone of NASA's Origins Program

SIRTF Legacy Survey

COMPLETE, Part 2 (2003-5)

 ^c <arcminute-scale core maps to get density & velocity
 ^s structure all the way from >10 pc to 0.01 pc