Workshop Summary: Formation and Evolution of Stars Near the Galactic Center

Radcliffe Institute for Advanced Study

Nov. 13-15, 2003

A. Ghez: Observations of Stars Near the Galactic Center

- Contents of Galactic center on < 10 pc scale:
 - Mini-spiral inflowing stream of gas
 - $M=10^4 M_{\odot}$, R=1.5 pc circumnuclear disk; gas cavity around Sgr A* source
 - Sgr A* cluster of stars within 1" -> 0.04 pc
- Observations of Sgr A* cluster stars from IR AO imaging:
 - Proper motions of 200 stars tracked with Keck since <1998;
 first plane-of-sky velocities, then accelerations, then full orbits (~10)
 - 32 objects tracked within 1" of Sgr A*
 - Especially interesting stars: SO-2 (orbital period 15 yrs);
 SO-6 (highly eccentric orbit); SO-16 (periapse 80 AU from Sgr A*)
 - Based on independent orbit solutions, $M_{BH} = 3.7 \times 10^6 M_{\odot} (R_0/8 \text{kpc})^3$ $v_{BH} = 30 \pm 30 \text{ km/s}$
 - Eccentricities are consistent with isotropic distribution (but observational bias toward eccentric orbits)
- Spectroscopic observations of Sgr A* cluster stars stars:
 - Absence of CO absorption lines => young stars
 - For stars in close approach to Sgr A*, Br γ lines shifted by 1100-1500 km/s => can separate from local gas emission => consistent with OB star atmospheres

Ghez, cont.

- "Paradox of youth" :
- --How did such apparently young stars come to be found in an environment where SF is so difficult?
- --Same, but more extreme version of question for He I emission-line stars at 0.1 -0.5 pc from ctr.
- --Would need n > 10^{14} cm⁻³ at R=0.01 pc; n> 10^8 cm⁻³ at R=0.1 pc to form in situ given strong tidal gravity
 - --> larger than any observed gas densities
- Possible solutions include:
 - Tidal heating of atmosphere upon closest approach to BH (is thermal time long enough for atmosphere not to show variations?)
 - >>> Stars are actually stripped giants
 - » Stars are accreting compact objects
 - » Stars are merger products
 - Stars formed as bound clusters at larger distance (cf. Arches, Quintuplet at R~ 30 pc), migrated inward via dynamical friction

R. Genzel: Dynamics and Evolution of Nuclear Star Clusters

•

Observing galactic center stars with NAOS/CONICA and SPIFFI on the VLT

Data sets:

- 10^{3.7} stars observed
- 10³ proper motions obtained
- 10^{2.5} spectra and radial velocities
- 10^{2} stars with los v + proper motions
- 10⁻¹ stars with full orbits I Sgr A* cluster
- Central stellar distribution:
 - Surface density from counts of faint stars peaks directly at Sgr A* position
 - Central density $\rho_* = 3.7 \times 10^7 M_{\odot} (R/0.04 \text{ pc})^{-1.4}$ in inner region; $\propto R^{-2}$ further out
 - Total mass ~ $10^4 M_{\odot}$ in central cusp; sufficient density for stellar collisions

Stellar populations:

- From K luminosity fnct, *nuclear cluster* is either old metal-rich + young burst or constant SF rate pop
- Central cusp lacks HB stars
- Spectra are similar to massive stars in Arches, Quintuplet
- Star formation rate appears to have peak $\sim 10^{7}$ yrs ago

Genzel, cont.

- Dynamics of stellar components:
 - Proper motions =>

late-type stars consistent with isotropic distribution *early-type* stars preferentially (counter-) rotating in two inclined planes IRS 16 probably not a bound cluster; apparent clustering from inclined disk

--- Evidence that young stars migrated inwards as clusters and then dispersed

M. Reid: Is Sgr A* a SMBH at the dynamic center of the Milky Way?

- Is Sgr A* at the center of the stellar cluster?
 - -- yes, within 10 mas (orbit of S-2 has pericenter only 15 mas from Sgr A*)
- ◆ Is Sgr A* tied to the stellar cluster?
 - -- yes; comparing proper motions from IR, radio; velocity with 70 km/s
- Is Sgr A* at the dynamic center of the Milky Way?
 - -- yes, based on apparent motion of Sgr A* wrt background QSOs:
 - apparent motion is *almost* along IAU galactic plane
 - Sun's apparent galactic angular velocity is 29 km/s/kpc (compared to 27.3 from Hipparcos)
- Does Sgr A* have peculiar motions wrt the galactic ctr?
 - -- No; taking $v_z = 7$ km/s for Sun (Dehnen & Binney), Sgr A* $v_z = 0.8 \pm 0.9$ km/s
- Does Sgr A* contain all the mass in central ~ few 100 AU?
 - Yes, within 60%: $M_{lim} \sim GM(R)m/(RV^2)$; V< 2 km/s => M> 2 × 10⁶ M_☉ M= 3 × 10⁶ M_☉ from S-2's orbit, within 0.001 pc
- Could exotic dark matter dominate the Galactic center's mass?
 - No; less than 40% of the gravitational mass, based on radio proper motion, $M=2\times \ 10^6\,M_\odot \ {\rm within} \ 1 \ {\rm AU}$

A. Goodman: Overview of Star Formation in the Galaxy

- How fast is star formation?
 - Lifetimes of different stages of YSOs: log(t/yr)=4,5,6,7 for Class O, I, II, III based on relative populations;
 - *how fast do cores form/collapse? (relative populations of cores with vs. without embedded stars)*
 - *how fast do clouds form/evolve? (from correlation with spiral arms; stellar clusters)*
 - *Does fast=dynamic? (e.g. condensation from turbulent vs. gravitational compression)*
- How does the IMF vary with environment?
 - Taurus (nearby dark cloud with weak turbulence) has flattish IMF
 - IC 348 (stellar cluster in GMC with strong turbulence) has increase toward low mass; peak at few \times 0.1 M_{\odot}
 - Internal velocity dispersions systematically increase with size in main-disk clouds
- Lessons from PV Ceph:
 - Deceleration of knots in outflows => D/V tends to overestimate age
 - Relative positions of knots suggest very high velocity (20 km/s)
 - --- possible ejection from neighboring cloud
 - --- where did core surrounding star come from?
 - Implication of general lack of high-velocity stars for star formation mechanisms initial conditions and their effects; *do transient dense clusters really exist?*

M. Morris: Idiosyncrasies of Star Formation Near the Galactic Center

- Factors in the initial conditions within ~ 150 pc of GC that may affect SF; IMF
 - Gas surface density Σ~ 1000 M_☉/pc² (100 × outer galaxy), velocity dispersion σ_v~ 15 km/s (2 × outer galaxy) (*inter- or intra-cloud?*) ⇒ self-gravitating clouds should form more rapidly and be less massive:
 - $t_J \sim \sigma_v / G \Sigma (0.02 \times \text{outer galaxy}); M_J \sim \sigma_v ^4 / (G^2 \Sigma) (0.16 \times \text{outer galaxy})$
 - Magnetic fields $B \sim mG$ (100 × outer galaxy) (*ambient or within clouds?*)
 - \Rightarrow mass-to-flux for largest clouds ($\sim \pi \Sigma / B_{amb}$) similar to outer galaxy (marginally critical)
 - Temperature in molecular gas T~50-70 K (2-7 × outer galaxy) Effects for compressibility/minimum scale of overdense perturbations in cloud? (cf. σ_v)
- Circumnuclear disk: clumps possibly up to $n=10^{6}-10^{8}$ cm⁻³
- ♦ IMF
 - Mass segregation evident in Arches cluster (age 2.5 10⁶ yrs); flatter MF than Salpeter? Many high mass stars are present; is there evidence for different turnover in MF?
- Dynamical friction to carry star clusters into central pc
 - Need M>10⁶ M_{\odot} cluster for short enough timescale with drag against stars
 - Issues: too many evaporated young stars> 1pc; too many surviving young stars; IMBH helps
 - Could drag against gas disk help with limits? (cf. Ostriker 1999; Goldreich& Tremaine) $F_{DF}(gas) / F_{DF}(stars) \sim (\rho_{gas} / \rho_{*})(\sigma_{*} / \sigma_{gas}) / \ln \Lambda_{*} \sim 100(M_{gas} / M_{*}) / \ln \Lambda_{*}$

V. Bromm: Simulating Star Formation Through Cosmic Time

• Population III:

- No B-fields, no metals, initial conditions from CDM
- Were first stars very massive? -- may be necessary for early reionization (WMAP)
- Evolution from simulation: condense out clouds at T~ 200 K (H₂ cooling), $n \sim 10^3 - 10^4 \text{ cm}^{-3}$ (critical density) => M_J~ 10^3 M_{\odot}

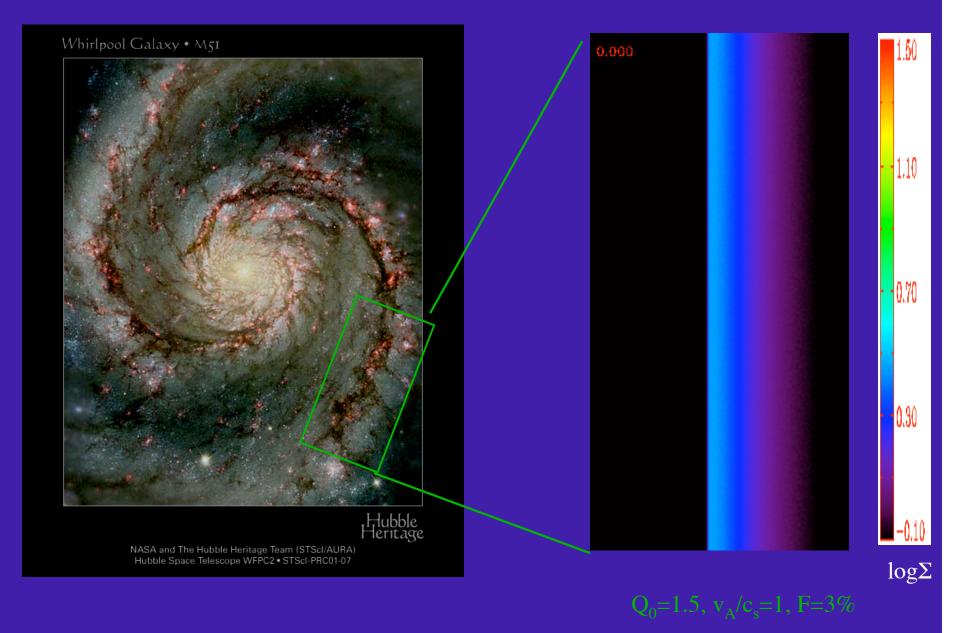
what sets the total efficiency of gas -> Pop III star conversion in these halos?

- Transition to Population II:
 - critical metallicity $Z=10^{-4}$ for "normal" interstellar coolants (C⁺)
 - Supernova explosions drive metals out of low-mass halos into IGM
 - Present-day star formation:
 - simulation of 50 M_{\odot} cluster formation; initial T=10K, R=0.4pc; supersonic turbulence
 - No magnetic fields
 - Result: formation of mix of stellar and BD-mass objects
 - Total SF efficiency is $\sim 40\%$
 - Close encounters kick stars out at up to 5 km/s
 Is SF efficiency too high? Are runaways so common? (initial density in phase space
 may be too large => cluster too compact)

F. Shu: The Stellar IMF

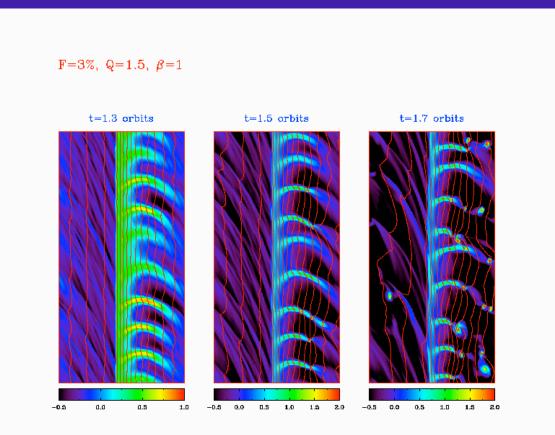
- ◆ Mass-to-flux
 - $M/\Phi = \Sigma/B$; critical value is $1/(2\pi G^{1/2})$
 - Typical apparent ratio $\sim 3 \times$ critical, but Σ overestimated, B underestimated from projection

 $\Sigma_{ISM}/B_{gal} \sim critical in Galactic disk; dynamo needs to make <math>(v_A) \sim c_s$ but how does it know about SF? Are B-fields necessary to make GMCs if Q is not <1? (YES)


A "false theory" of star formation:

- For supercritical collapsed core + subcritical magnetically-supported envelope, geometric mean of mass-to-flux ~ critical ; stellar mass is dimensionless constant X core mass
- Problems: this requires 10⁷ on stellar surface! And any rotation would ⇒ catastrophic magnetic braking of disk
- Solution: ambipolar diffusion (assisted by turbulence in cloud or disk)

What defines core masses => stellar masses?


- Jeans-mass core has $M \sim L_J^2 \Sigma$ with $L_J = (\sigma_v^2 + c_s^2)/(G \Sigma)$ if thermally+turbulently supported; magnetically critical $\Rightarrow 1/\Sigma \sim 2\pi G^{1/2}/B$; combine to obtain $M_{crit,turb} \sim \sigma_v^4/(G^{3/2}B)$
- For IMF, need total mass at each velocity and relation between v and B; mass(v) distribution from swept-up outflows with B \propto v yields Salpeter-like IMF slope, dN/dM \propto M^{-2.35}
- Final IMF needs shift in log(M) for each bin due to wind mass losses; suppression at high-mass end from radiation pressure

Cloud formation in magnetized spiral arm

Spiral arm MJI: formation and fragmentation of spurs

- Local reduced/reversed shear profile: dln Ω / d ln R= Σ/Σ_0 2
- MJI develops in dense region and is convected downstream out of arm; interarm shear creates "spur" shape; fragmentation follows
- Fragment mass \approx Jeans mass at spiral arm peak \Rightarrow few $\times 10^{6}$ M_{\odot}

L.Hartmann: Dynamic Star Formation

- ◆ From ages of associations in clouds, infer rapid onset of SF (<1Myr) after MC formation and rapid dispersal of cloud after SF (<5 Myr)
- Sco OB2: externally-driven sweep-up of gas into cloud (t_{cross} ~100 Myr, ages <15 Myr)
- Can molecular material appear so quickly? -- from 15 km/s shock, with n=3 cm⁻³, takes 10Myr to reach $A_v=1$ and build up CO, but H_2 may be present at lower A_v
- Taurus: paradigm of low-mass star formation
 - Turbulence not internally-driven since structure is dominated by large-scale filaments -- swept up

[but see movie -- gravity can produce filaments too]

- Filaments have internal core PA aligned with filament directions
- Stars are correlated with filaments; ages ~ Myr ⇒ velocity dispersions should be < 0.4 km/s

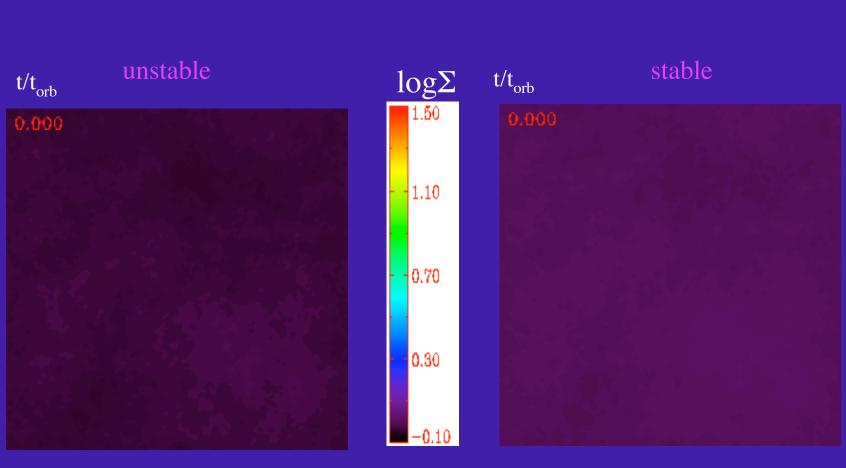
Do stellar velocity differences obey Larson's Law?

- Is the IMF environment-dependent?
 - Taurus (more quiescent, less dense cloud) has fewer low-mass stars than IC348 What sets lower-mass cutoff in IMF? Is initial smallest supersonic scale important?

Collapse of a turbulent, magnetized cloud

Simulation of evolution in magnetically supercritical selfgravitating cloud (Ostriker, Stone,& Gammie 2001)

T. Alexander: Orbital capture of stars by SMBH; tidal effects on stars


- How to collect massive MS stars: capture with dense cusp of stellar BHs
 - From mass segregation, # of smbh approaches # of MS within 0.01 -0.1 pc
 - Young star that forms far away is deflected onto orbit crossing through center; is captured in 3 body interaction involving smbh and SMBH
 - For each passage, require $P(\text{capture}) \sim 10^{-7}$ in order to maintain observed OB star population
 - Would this imply too many field OB stars within slightly larger volume?
- Orbital properties:
 - minimal apoapse is ~0.01pc due to disruption b SMBH
 - Distribution of eccentricities can probe SMBH mass
- Tidal effects on stars: a few % of stars have survived a close encounter with SMBH; been tidally heated
 - Star with smallest apoapse is the brightest in the sample

J. Goodman: Massive star formation in accretion disks

- The problem of GC SF: It's not that the tidal force is too large.... it's that the density is too low!
 - Binary stars deal with this problem by forming out of an accretion disk
 - Should eccentricities be small for objects formed in a disk? Not if the mass ratio of the two largest bodies is not too small
- Accretion rates and self-gravity
 - Toomre Q = $c_s \Omega / (\pi G \Sigma) \rightarrow M_{BH} / (2\pi R^3 \rho)$ for Q>1, or $[M_{BH} / (2\pi R^3 \rho)]^{1/2}$ for Q<1
 - $Q=3 \alpha c_s^{3}/(G dM/dt)$
 - "ISM accretion disk" (optically thin) : $c_s = 10$ km/s , $\alpha = 0.01$, and $Q = 1 \implies 0.007 M_{\odot}/yr$
 - Optically thick accretion at Eddington rate => outer disk always has Q<1
 - Initial mass that forms is $M_{Toomre} \sim \pi (H/R)^3 M_{BH}$
 - ♣ Mass can grow further until it reaches isolation mass ~ $(M_T M_{BH})^{1/2}$ corresponding to $10^3 M_{\odot}$ for Galactic center
 - Also would have inward accretion with the disk

Gravitational instability in shearing disk

Kim & Ostriker (2001a)

 $v_A/c_s = 0.3, Q = 1.0$

 $v_A/c_s=0.3, Q=1.5$

C.Clarke: Star-Disk Interactions in Galactic Nuclei

- Stars passing through a disk change their orbits:
 - $V >> c_s =>$ strong shock; crossection = physical area
 - Many passages through disk needed for significant change in orbit
 - Even if Σ_{disk} is maximal (function of T, R, M_{BH}), star will only become bound if within 100 AU
 - For captured stars, circularization timescale is shorter than inclination damping
 - Disk loses mass (slowly) be repeated perforations

Observable consequences:

Shock would produce 10⁸ K gas; if optically thin, seen as Bremss; if thick seen mostly as reprocessed IR

Is there a disk in GC, anyhow?

constancy of S2 in K band => disk either optically thin at K or large inner hole

L band excess possibly interpreted as reprocessing from disk

Overall conclusion: no current cold disk is present

B. Hansen: Is there a second BH in the GC?

- Fix the problem of slow migration by increasing mass: star cluster
- Fix the problem of tidal disruption before reaching center by high central density
- Fix the problem of core collapse/evaporation by putting a massive object in cluster
 - Massive object $(10^3-10^4 \text{ M}_{\odot})$ could have formed by physical collisions/runaway merger if segregation time < main sequence lifetime (would it collapse to IMBH?)
- DF only works to bring MS+ IMBH cluster to radius where $\rho_* \sim M_{BH} / R^3$; stalls at ~ 0.01 pc (gas would be better, if present!)

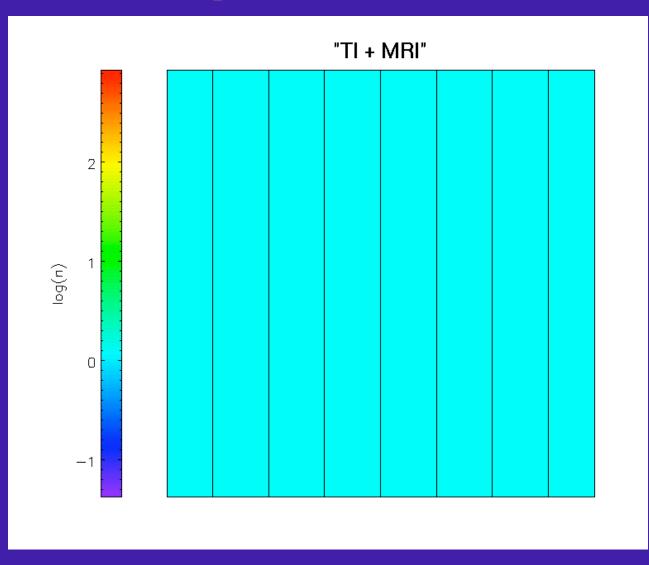
Where do stellar eccentricities come from? -- analogous situation to

Sun, Saturn, comets -> Oort cloud

IMBH may also be useful for ejecting excess other stars in central pc

Observable?

proper motion of Sgr A* from orbital reflex -- possibly observable with VLBA? gravitational wave source for LISA


X-ray source?

J. Grindlay: Stellar remnants in the GC

ChamPlane survey (Chandra ACIS-I)
 to assess accretion source population of galaxy (CV's, quiescent LMXB's, BH accreting from ISM)

- Log N vs log S => largest excess X-ray point sources is in Galactic bulge
- 300 faint Chandra sources with distribution consistent with extension of $1/\theta$ central cusp
- Also have "general bulge" distribution
- 7 hard-spectrum cusp sources possibly HMXBs
- Deep IR imaging is needed for identification of cusp sources

MRI in multiphase medium: ISM accretion

Thermal instability followed by MRI development in two-
phase disk(Piontek & Ostriker 2003)

Star formation *near* the Galactic center...

• gravitational instability develops more rapidly under weak-shear conditions (in bulge) than for strong shear conditions (outer-disk V_c =const) for given Σ_{gas}

• $t_{grav} \propto \sum_{gas}^{-1}$ may be shorter than stellar evolution time => more efficient star formation

...no problem!

Kim & Ostriker 2001a

Some questions for the future about star formation in the Galactic Center...

- For observation:
- Stars form from molecular clouds; what are the detailed properties of the GC clouds?
 - mass spectrum
 - Is thermal pressure confinement significant?
 - are they all self-gravitating? top-down or bottom-up formation?
 - do they obey Larson's Law's?
 - Evidence of subclumping from molecular excitations?
- ♦ Is there evidence of differing MF compared with outer Galaxy SF (esp low end turnover)? differing SF efficiency?

◆ For theory and simulation:

- How should/does mass spectrum of clumps, cores, stars depend on dimensionless parameters (M/M_J,c_s/v_A, v/c_s)?
- Are there aspects of GC conditions that would bias the IMF toward predominantly high masses?
- What determines the star formation efficiency?
- Given an "ISM accretion disk" feeding gas in at ~0.005-0.05 M_{\odot} /yr, what sort of disk could develop in the GC, and could it provide significant DF for clusters?