Note: This is not a “presentation”, per se.
It is a Keynote file with “notes” use in the discussions of dendrogramming
the Pipe at the Grenada meeting (May 2009) organized by |.Alves.

Pendro Pipe

Alyssa Goodman
+Joao Alves, Jens Kautfmann*, Jaime Pineda** & Erik Rosolowsky

*special thanks to Jens for his “mass-radivs” & “AstroMed” work
**special thanks to Jaime for help with slides & all the CLUMPFIND work!
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CLUNMPFIND Vs. DENDROGRANMS

Non-hiearchical Hierarchical

CMF hard
...to nonsensical(?)
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crowded regions
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How good/bad is CLUMPFIND?

On the fidelity of the core mass functions derived from dust
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ABSTRACT

Aims. We examine the recoverability and completeness limits of the dense core mass functions (CMFs) denived for a molecular cloud
using extinction data and a core identification scheme based on two-dimensional thresholding. We study how the selection of core
extraction parameters affects the accuracy and completeness limit of the demved CMF and the core masses, and also how accurately
the CMF can be denived 1n varying core crowding conditions.
Methods. We performed simulations where a population of artificial cores was embedded into the vaniable background extinction
field of the Pipe nebula. We extracted the cores from the simulated extinction maps, constructed the CMFs, and compared them to the
imnput CMFs. The simulations were repeated using a vanety of extraction parameters and several core populations with diffening input
mass functions and differing degrees of crowding.
Results. The fidelity of the observed CMF depends on the parameters selected for the core extraction algorithm for our background.
e find that the observed CMF recovers the true CMF reliably
P g : ameter of the cores (f > 1). If this condition holds, the derived CMF
for the Pipe nebula background is accurate and complete above M > 0.8...1.5 M, depending on the parameters used for the core
extraction. In the simulations, the best fidelity was achieved with the detection threshold of 1 or 2 times the rms-no1se of the extinction
data, and with the contour level spacings of 3 times the rms-noise. Choosing larger threshold and wider level spacings increases the
limiting mass. The simulations also show that when f > 1.5, the masses of individual cores are recovered with a typical uncertainty
of 25...30 %. When f =~ 1 the uncertainty 1s ~ 60 %. In very crowded cases where f < 1 the core identification algorithm 1s unable
to recover the masses of the cores adequately, and the denived CMF 1s unlikely to represent the underlying CMFE. For the cores of the
Pipe nebula f ~ 2.0 and therefore the use of the method in that region 1s justified.

Key words. dust, extinction — ISM: clouds — ISM: structure — stars: formation — stars: luminosity function, mass function




How good/bad is CLUMPFIND?

THE PERILS OF CLUMPFIND: THE MASS SPECTRUM OF SUB-STRUCTURES IN MOLECULAR CLOUDS

JAIME E. PINEDA!. ERIK W. ROSOLOWSKY?2, AND ALYSSA A. GOODMAN!
Draft version 6.0, Apr/29/2009, JEP

ABSTRACT

We study the robustness of the mass spectrum derived using the CLUMPFIND algorithm. Both 2D
and 3D versions of the CLUMPFIND algorithm are tested, on 850 pm dust emission and *CO (1-0)
spectral-line observations of the Perseus Molecular Cloud Complex from the COMPLETE survey. To
quantify the algorithm’s performance, the two parameters in the algorithm are varied: threshold and
stepsize. The effects of varying stepsize are very different in the “2D” and “3D” cases. In the 2D
case, where emission in the 850 ym maps used is relatively isolated (associated with only the densest
peaks in the cloud), the variability in the mass spectrum is ne§h°1ble compared to the uncertainties
in the mass function fit. In the 3D case, however, where the **CO emission traces the bulk of the
molecular cloud, the number of clumps and the derived mass spectrum are highly correlated with the
stepsize used. In both the 2D and 3D case, the effect of using a different tlueshold is less important,
as it mamlv chzmcre‘; the numh : o

emission. In any “crowded” case, - derive mass

CLUMPFIND'’s output in the crowdod " case can still offer a statistical description of emission useful

in inter-comparisons, but the clump-list should not be treated as a robust region decomposition region

suitable for use in the construction of a physically-meaningful mass function.

Subject headings: ISM: clouds stars: formation ISM: molecules ISM: individual (Perseus
molecular complex)

I ———— e
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How good/bad is CLUMPFIND?
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How good/bad is CLUMPFIND?
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Pendro Pipe: What do we want to know?

1. Is pre-wavelet CLUMPFIND useful?

1. No. The structures identified do not correspond well to those seen by-eye,
or fo dense core positions.

2. s post-wavelet CLUMPFIND useful? (Yes, Joao says so!)

2.1. Are the clumps cores? (e.g. is NHs detected?)...answer from this AM.1?

2.2. Are the clumps physically possible? (Mostly, see Charlie’s discussion...)
3. What can dendrograwms tell us that CLUMPFIND cannot?

3.1. Nested-ness (hierarchy) of structure

3.2. Realistic “boundedness” of structures using spectral-line maps

4. How do CLUMPFIND ‘clumps” correspond to structures one can find with
dendrograms?

4.1. Relationship to “real” dense cores...
(What does “real” really mean?.. Is NHs enough? ... sub-mwm peaks?)
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Pre-Wavelet CLUMPFIND

Thanks to Jaime Pineda for this figure...
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Pre-Wavelet CLUMPFIND

Definition of hugly

hugly =
adjective
1. extremely ugly. An contraction of "hella ugly."
That girl is hugly!
Submitted by Rob E. W., DE, USA, Dec 31 2002.

Discover slang words with the same meaning:

e unattractive, ugly

Thanks to Jaime Pineda for this figure...
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Pre-WaveIet CLUMPFIND
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Thanks to Jaime Pineda for this figure...

Monday, May 11, 2009



Post-wavelet CLUMPFIND+unseeded dendro

L18 J. Alves et al.: The mass function of dense molecular cores and the origin of the IMF
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Fig. 1. Dust extinction map of the Pipe nebula molecular complex from Lombardi et al. (2006). This map was constructed from near-infrared
observations of about 4 million stars in the background of the complex. Approximately 160 individual cores are identified within the cloud and
are marked by an open circle proportional to the core radius. Most of these cores appear as distinct, well separated entities.

Monday, May 11, 2009



L18

Galactic Latitude

Post-wavelet CLUMPFIND+unseeded dendro
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Fig. 1. Dust extinction map of the Pipe nebula molecular complex from Lombardi et al. (2006). This map was constructed from near-infrared
observations of about 4 million stars in the background of the complex. Approximately 160 individual cores are identified within the cloud and

are marked by an open circle proportional to the core radius. Most of these cores appear as distinct, well separated entities.
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Post-wavelet CLUMPFIND+unseeded dendro

L18 J. Alves et al.: The mass function of dense molecular cores and the origin of the IMF
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Fig. 1. Dust extinction map of the Pipe nebula molecular complex from Lombardi et al. (2006). This map was constructed from near-infrared
observations of about 4 million stars in the background of the complex. Approximately 160 individual cores are identified within the cloud and
are marked by an open circle proportional to the core radius. Most of these cores appear as distinct, well separated entities.
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Post-wavelet CLUMPFIND+seeded Dendro

L18 J. Alves et al.: The mass function of dense molecular cores and the origin of the IMF
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Fig. 1. Dust extinction map of the Pipe nebula molecular complex from Lombardi et al. (2006). This map was constructed from near-infrared
observations of about 4 million stars in the background of the complex. Approximately 160 individual cores are identified within the cloud and
are marked by an open circle proportional to the core radius. Most of these cores appear as distinct, well separated entities.
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Post-wavelet CLUMPFIND+seeded Dendro

L18 J. Alves et al.: The mass function of dense molecular cores and the origin of the IMF
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Fig. 1. Dust extinction map of the Pipe nebula molecular complex from Lombardi et al. (2006). This map was constructed from near-infrared

observations of about 4 million stars in the background of the complex. Approximately 160 individual cores are identified within the cloud and
are marked by an open circle proportional to the core radius. Most of these cores appear as distinct, well separated entities.
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Post-wavelet CLUMPFIND+seeded Dendro

L18 J. Alves et al.: The mass function of dense molecular cores and the origin of the IMF
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Fig. 1. Dust extinction map of the Pipe nebula molecular complex from Lombardi et al. (2006). This map was constructed from near-infrared
observations of about 4 million stars in the background of the complex. Approximately 160 individual cores are identified within the cloud and
are marked by an open circle proportional to the core radius. Most of these cores appear as distinct, well separated entities.
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Full Original Pipe Dendrogram (Erik)
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3D (Onishi) data



DENDROGRANS
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The Astronomical Medicine Project Initiative in Innovative Computing at Harvard

The DendroStar Applet for L1448: Try me!

Harvard IIC Home

AM Project
overview
what's new?
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contact us
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35
Research
background
projects
papers
images
movies
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Software

overview 25
Slicer: getting started

Slicer 3 .
fits2itk
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User 10
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http://am.iic.harvard.edu/index.cgi/DendroStar/applet
http://am.iic.harvard.edu/index.cgi/DendroStar/applet

CLUNPFIND
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Clumpfind+Dendro '2CO
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CLUNMPFIND
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Clumpfind+Dendro '3CO
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Clumpfind+Dendro '3CO
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Clumpfind+Dendro '3CO
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Slicer demo...
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DENDROGRAMS

What about the Pipe CMF..from
extinction data leaves only?

(Jaime)
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Special Bonus

courtesy Jens Kauffmann...

(work in progress!!)
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Method: Analysis of nested Contours

Mass

effective radius:
R = (A/TT)!72

Effective Radius Jens Kauffmann (in prep.)
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Method: Analysis of nested Contours

stepping through all
contours...

Mass
+

| o | effective radius:
: ; 4 R= (A2
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Method: Analysis of nested Contours

stepping through all
contours...

v consideration of all
spatial scales

| o | effective radius:
: ; 4 R= (A2

Effective Radius Jens Kauffmann (in prep.)
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Regions Studied so far
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Regions Studied so far
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Interesting Trends
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Interesting Trends
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Related Cloud Physics

0.1 pc 1 pc
AN LI I R ) B
Taurus
10'E - Ophiuchus for nearby clouds...
F Perseus ® |arge-scale structure probably set by
- Orion galactic environment (pressure, etc.)
1000 Mgok ® increase of density towards cores,
: depends on cloud
® usual dense core models
E 10°F
10'F
I Mgk IRDCs =
Gl :
GI0
10_1'_IIIII l 1 1 1 IIIIII 1 1 1 IIIIII 1 1 1 IIII_' .
001 10 e e Jens Kauffmann (in prep.)

Monday, May 11, 2009 32



Related Cloud Physics

0.1 pc 1 pc
AN LI I R ) B
Taurus
10'E - Ophiuchus for nearby clouds...
F Perseus ® |arge-scale structure probably set by
- Orion — galactic environment (pressure, etc.)
1000 Mgok ® increase of density towards cores,
: depends on cloud
® usual dense core models
E 10°F
10'F
I Mgk IRDCs =
Gl :
GI0
10_1'_IIIII l 1 1 1 IIIIII 1 1 1 IIIIII 1 1 1 IIII_' .
001 10 e e Jens Kauffmann (in prep.)

Monday, May 11, 2009 32



Related Cloud Physics

0.1 pc 1 pc
AN LI I R ) B
Taurus
10'E - Ophiuchus for nearby clouds...
F Perseus ® |arge-scale structure probably set by
- Orion galactic environment (pressure, etc.)
1000 Mgok ® increase of density towards cores,
: depends on cloud
® usual dense core models
E 10°F
10'F
I Mgk IRDCs =
Gl :
GI0
10_1'_IIIII l 1 1 1 IIIIII 1 1 1 IIIIII 1 1 1 IIII_' .
001 10 e e Jens Kauffmann (in prep.)

Monday, May 11, 2009 32



Related Cloud Physics

0.1 pc 1 pc
T L L L) B
Taurus /'l 4
10'E - Ophiuchus J/ ,,{'f/_z for nearby clouds...
L Perseus / ® |arge-scale structure probably set by
- Orion galactic environment (pressure, etc.)
1000 Mgk _ ® increase of density towards cores,
: A / : depends on cloud
0 AY +— ® usual dense core models
N 7 i/ .": b/ o, /
EG 10°F s E
1ok "Bl Are cores surrounded by smooth
il column density profiles? Or is there
a sharp jump?
I Mgk IRDCs 3
Gl :
GI0
10_1'_IIIII , 1 1 1 IIIIII 1 1 1 IIIIII 1 1 1 IIII_' .
001 10 e e Jens Kauffmann (in prep.)

Monday, May 11, 2009 32



Related Cloud Physics

0.1 pc 1 pc
AN LI I R ) B
Taurus
10'E - Ophiuchus for nearby clouds...
F Perseus ® |arge-scale structure probably set by
- Orion galactic environment (pressure, etc.)
1000 Mgok ® increase of density towards cores,
: depends on cloud
® usual dense core models
E 10°F
10'F
I Mgk IRDCs =
Gl :
GI0
10_1'_IIIII l 1 1 1 IIIIII 1 1 1 IIIIII 1 1 1 IIII_' .
001 10 e e Jens Kauffmann (in prep.)

Monday, May 11, 2009 32



Related Cloud Physics
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Detailed Cloud Physics |

first m-r slope measurement using single tracer/single region
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Detailed Cloud Physics |

IRDCs
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