Beauty is in the Eye of the Beholder




“Tastlng” Models
of Star Fcrmatlon
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How long does it take to form a star?

Depends on mass flux onto a forming star/core system, and where it

comes from...
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What forces matter most on what scales?




Changes of Heart, rather than in Physics...
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Taste Tests

Analytic Ideas

aste

Tests

Simulations

“Taste Tests”? We frame this project by analogy.
How does a great chef, making a complicated
dish, know if she has created what she originally
intended when she is done cooking? She “tastes.”
She informs her cooking with her extensive
knowledge of food chemistry (analytic theory),
uses all the cooking equipment (simulations) she
has in the kitchen to try to make something edible
and tasty (starforming, and realistic), and then
she uses her senses (observations) to see if what
she made tastes as intended. “Tasting” in cooking
actually encompasses the joint action of many
senses: we propose here a combination of
statistical techniques that we call ‘taste tests.”
The tests will allow us to discerningly decide if
what we sense (observe) and what we can cook
(simulate) might actually be tasty (form stars), and
how (analytic theory) that happens.
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2MASS-based extinction (5' res)
map of Perseus with IRAC-based
extinction contours (2' res) overlain

1 degree

Bolocam intensity
map (31" res)

Column density derived
from IRAS and MIPS
images (40" res)

A Dark Secret | el
of Observer’s R N R
Kitchens: . |

WYSIIN)WYG

What you see is NOT
what you get

1 degree

GNICER ground-based
extinction (90" res)

Bolocam thermal
emission (31" res)
r@) i“

Figure 1: Overview of data avail-
able for one cloud (Perseus) and a
sample analysis of one dense core
(in L1451). The top three panels
show the large-scale datasets and
the context in which L1451 is
embedded. We zoom into this
region on the right and show
column density cuts every 5
degrees for a high-resolution
extinction map and the Bolocam
thermal emission map, converted
to the same scale. See text for
further discussion.
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Theorists’ Kitchens now cooking many
Simulations sophisticated enough to “taste’...
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see Padoan, P, Goodman,A., Draine, B., Juvela, M., Nordlund, A. and Rognvaldsson, O.E. 2001 for polarimetry “tastes™



Star Formation Taste Tests

rmation Taste Tests > Overview
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What theorists are used to...

“Three-dimensional visualization of density structure in a turbulent cloud”

Courtesy Eve Ostriker, im Stone & Charles Gammie



What theorists are used to...

Dimensions: 82500. AU Time: O.yr

-1.4 -1.2 -1.0 -0.8 -0.6 =0.4 =0.2 0.0
Log Column Density [g/em’] Matthew Bate

Competitive Accretion Model for Star Formation
Bate, Bonnell & Bromm, 2002



...but, alas, we observers cannot live in that space.



What can we (observers) offer for tasting!?

Table 2: Reading Nature's Menu This table shows which tools are best for deteriming

Today, mostly:

*maps of Emission, Extinction & Scattering
due to dust
(for column density & temperature)

*maps of radio-frequency spectral lines from gas
(for kinematics)

Broadband Emission S
Optically-Revealed -
(Proto) Stars Spectra = --=-

Astrometry




C @ /\[\P L ET E — COordinated Molecular Probe Line Extinction Thermal
Emission Survey of Star-Forming Regions
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Radio Spectral-line Observations of Interstellar Clouds

'Radio Survey:
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Radio Spectral-line Observations of Interstellar Clouds
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Imension

Velocity as a "Fourth™ D
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_ Spectral Line Observations _
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For Taste S, D | R W g
Testing,
We can use —
Synthetic T
Spectral Line  —7- ="~ S
Maps from A .
Simulations
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Figure based on work of Padoan, Nordlund, Juvela, et al.
Analytic Ideas Excerpt from realization used in Padoan & Goodman 2002.

Observations




The Taste-lesting Process

Enabled
Indirectly

<=

Nature

Radiative

Transfer
(+Chemistry)

Code(s)

Synthetic
Observing
System
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o
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Taste
Tests

Observing System

Observed Data
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SCF: A Sample Taste Test
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Appetizer #1| :The “Spectral Correlation Function”

SCF tastes included... , ———

R —
— Projection to 2D sky plane,or  os v \ )
“3D” of spectral-line data cubes °>[ ros o o2 ‘T::;fjjj
. . . % ne Polaris aurus
— Radiative Transfer for a variety “°7[ =~ \US;
L1812
of chemical “tracers” O L1340
. . . 1
— Adding appropriate noise -
— Imposing observing osf
. L. a4 7 we=20 7
characteristics of a telescope 1090
0.3 Mg=10
2.5pc
8 0.2 0.62pe e
Mg=2.5
0.16pc ot o
1 : 0.04pc Mo 0.6
g1 | | | | Ill 11.10
Sal1pc)

Figure: Padoan, Goodman & Juvela 2003;
original SCF: Rosolowsky et al. 1999.



Note: SCF 1s One of Many...

Inspired by the "Theory Cube”

 Power Spectra (of density,

velocity)
* pdfs
 Autocorrelation Functions
* A-Variance

e Structure Functions

Analytic Ideas

Data-Uriented

o
aste

Tests

Wavelet Analysis
Spectral Correlation Function
Structure Trees

Velocity Centroid Analysis
VCA (see also VCS]

Principal Component Analysis

Simulations



Appetizer #2: “Taste Test” of
Competitive Accretion

By comparing decaying SPH hydrodynamic simulations to Walsh et al. 2004
results for NGC 1333, Ayliffe et al. (2007) show that motions indicative of
competitive accretion may not be obvious in tracer-to-tracer velocity offsets,
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Figure 3. AsinFig. 2, except that the simulation has been smoothed to mimic the resolution of the observational taken by Walsh et al. (we assumed a FWHM
resolution of 50 arcsec at 140 pc). Both the column-density contours (left-hand panel) and velocity spectra (right-hand panel) are smoothed slightly from those
in Fig. 2.
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9 o Entree |: Column
What’s for Dinner? Density “Lognormals?”

Tasty Side:
“Hot Sauce”
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Entree 2: Dendrograms & Gravity



Turbulence theory & simulations generally predict that

Column density “tastes” log-normal(ish) on 10’s of pc scales

Results from MHD simulations
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Example: log-normal column density distribution

(Ostriker, Stone & Gammie 2001)
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The (secret)
uncertainties
inherent in
column density

mapping.

Goodman, Pineda & Schnee 2008
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What Causes the
Variations!

Errors introduced by the assumption of
iIsothermal dust along each line of

sight

Variable fraction of emission from
transiently heated very small dust
grains

Variable dust properties (e.g. emissivity
or emissivity spectral index)
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0.0
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2MASS/NICER

Schnee, Bethell & Goodman 2006



Perseus

Total Dust Column (0 to 15 magA,) Dust Temperature (25 to 45 K)
(Based on 60/100 microns)

(Based on 60/100 microns)




Imagine you look from the “side’...

Column
Density Temperature
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o »




Recovering Temperature from “Color” of Dust Emission

9 60/100 ]
MmICron

C
o)
g
= 1.0 ) ﬁggﬁ i
O e o
H- xﬁ'
<':> ;

0.1 | Lo . L

0.1 1.0 10.0
True A,

10.0
C
o
)
R,
5
1.0
=
O
| -
L
>
<
0.1

MHD Simulation + Radiative Transfer + NO NOISE gives...

100/240 micron .

%ﬂ*
et ++

e = ZiZinpg
3 ,".3 "
o ." g
+ -l A
s

...and the correlation
gets tighter still
at longer \'s

0.1

1.0
True A,

10.0




A, From Emission

Tasting Line of Sight Temperature Fluctuations

simulation + radiative transfer + realistic NOISE

raal
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A, from NIR

10.0 0.1
V.U

_______

110.0

J ~all scatter is introduced by the assumption of isothermal dust along each line of sight
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Entree |: Column

Back to the Main Dish... Density “Lognormals?”

Tasty Side:
“Hot Sauce”
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Mean

Brand New Results from 5123 “ATHENA” Simulations
(Lemaster & Stone 2008)
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Side dish for those with a fine palette...
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Tasty Side:“Cloudshine”
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“Cloudshine”=Scattered Ambient Starlight

L106 FOSTER & GOODMAN Vol. 636

» . b
o 3'~40.22 pC
-

Fic. 1.—L1448 1n false color. Component images have been weighted ac-
cording to their fiux in units of MJy sr™*. J is blue, H is green, and K_ is red.
Outflows from young stars glow red, while a small fan-shaped reflection nebula
in the upper right 1s blue-green. Cloudshine, in contrast, is shown here as a
muted glow with green edges. Dark features around extended bright objects
(such as the reflection nebula) are the result of self-sky subtraction.

2006

Fi1G. 2.—L1451 in false color. Again, each component image has been scaled
to the same fiux scale in units of MJy sr™'; and J is blue, H is green, and K,
1s red. A smaller map of 1.2 mm dust emission contours from COMPLETE
(M. Tafalla 2006, in preparation) has been overlaid, showing that the color of
cloudshine is a tracer of density. Redder regions have high dust continuum
flux, and the edges of cloudshine match the edges of the dust emission. Dark
edges around bright features (particularly noticeable along the northern edges)
are the result of self-sky subtraction.



“Tasting” a Very Simple Recipe

Data: Radial Profile Model: Radial Profile

0.25 i 1 — 1 0.25 |

0.20 — 0.20 + y ]

0.15

MJy/sr

0.10

MJy/sr

005 £, 11 ~ Hea 005 |- —Kmodel
NN - -~ Jdata IRy
000 Lt tl v ' : - 0.00 | 1 l !
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Foster &
Fractional Radius Fractional Radius Goodman

2006

Data Used in Constructing Core Profile =~ Data Radial Profle ~ Model Radial Profile

Fi1G. 3.—Model of cloudshine in one core as reflected interstellar radiation. The lower left panel shows the roughly circular feature we chose to model as a
sphere. Due to the surrounding structure, only the left half of the circle was used to derive an angle-averaged radial profile. The comparison between this radial
profile and our best-fit model (an »~* density profile and a total optical depth of 120 mag of visual extinction) is shown in two ways: above as radial flux profiles
in individual bands and in the lower right as a synthetic color-composite image that allows for an overall comparison. Although the fit is good, the central region
of the core 1s darker than predicted by the model. Some of this may be due to self-sky subtraction in the image (which causes dark edges around bright features)
and a nonspherical, nonisotropically illuminated core, and some may be due to a failure to adequately model the density structure at the center of the core.



N{(fit)/N

1.8

Theorists doing the Tasting!

.« N{linear)

- N{eapomential

'l.."_"_': _‘,r

i s
» R T

L4
il E;F

b Ioudshlne Fi
gﬂ!
Scatterlng;

H-band
flux only

N [em—3

Aéd [arcmin]

Simulation

Aa [arcmin]

Tastes “right”, with 20% scatter; at | <A, <I0, for NIR.

Padoan et al. 2006
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Let’s finish Dinner...

Entree 2: Dendrograms & Gravity
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The Taste-lesting Process

Simulated *CO
Emission

Simulated Column Density
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(+Chemistry) § Observing
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Value of Dendrograms

Yellow highlighting= “self-gravitating”

“Self-gravitating” here just means ovir (=50,R/GMum) < 2
(a la Bertoldi & McKee 1992)

Rosolowsky et al. 2008 (Ap));
Goodman et al. 2008 (Nature, submitted)



Dendrograms

local max

test level | ‘ ‘ |

Y
@®
local max Q@
0 ‘S
o Mmerge 3
>
%)
c Jlocal - max =
= s
= ©
“= S
L)
merge

m—triiNk

|-D: points; 2-D closed curves (contours); 3-D surfaces enclosing volumes
see demo at http://aerial.client.fas.harvard.edu/~nessus/dendrostar/



Value of Dendrograms

Yellow highlighting= “self-gravitating”

“Self-gravitating” here just means ovir (=50,R/GMum) < 2
(a la Bertoldi & McKee 1992)

Rosolowsky et al. 2008 (Ap));
Goodman et al. 2008 (Nature, submitted)
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A, The online PDFs of these insets
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Tmb (K)

Tmb (K)
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CLUMPFIND vs. Dendrograms: Synthetic Data

Dendrogram Analysis
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The online PDFs of these insets are
interactive, offer additional surfaces,
and can be rotated and manipulated by
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Taste-Testing Gravity

Sample Taste Test

Simulated Column Densit
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S{dr rormation i|aste 1ests > All vViessages
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Back to Dashboard | Switch to a different project
Star Formation Taste Tests cfa

Overview RIEFEUCEE To-Do  Milestones Writeboards Chat Time  Files

All Messages Expanded view List view

THURSDAY, 19 JUNE 2008

Column Density Paper

A paper entitled: "The "True” Column Density Distribution in Star-Forming Molecular Clouds”, by Goodman, Pineda &
Schnee, is now available, on astro-ph, at http://adsabs.harvard.edu/cqgi-bin/nph-data guery?
bibcode=2008arXiv0806.3441G&db key=PRE&link type=ABSTRACT&high=485efe37dd27343. Here’s a copy.

goodman pineda schnee08.pdf (PDF, 927}
C h a | | e n g e Posted by Rahul Shetty in Publications | Edit | Post the first comment

THURSDAY, 10 APRIL 2008

fr'O I I Fra n k Frank Shu’s “Test of the Test” Idea: Are Dendrogram Identified Cores really
Self-Gravitating?
We have been investigating the use of Dendrograms (http://arxiv.org/abs/0802.2944) to identify self-gravitating regions in
u molecular clouds. As a test, Frank Shu has suggested that we apply this method to simulation cubes of molecular clouds.

We can perform a dendrogram analysis on simulation cubes at early times, before the clumps have completely collapsed. We
will then verify whether the dendrogram identified self-gravitating clumps do indeed collapse by inspecting the simulation
cubes at later times. In order to carry out this test, we are requesting simulation data cubes of star forming clouds (where
the calculation of self-gravity is included); we would certainly appreciate a wide variety of simulations for a thorough test of
the dendrogram analysis. Please let us know if you are able to contribute your simulation data cubes for this test. We are
also happy to collaborate if you'd like to go through this kind of analysis with us together.

Posted by Rahul Shetty in Collaboration Projects | Edit | Post the first comment

TUESDAY, 1 APRIL 2008

Cosmic Dust & Radiative Transfer
a workshop devoted to radiative transfer coding

. Cosmic:Dust& Radlatff!e Tr %nsfer

. .a workshoB devoted to radl sfef co
= S =
. - '|‘ -
15-17 Sep 2008 ; A MPIA Heidg!berg, Go_r.many




Either Algorithm is an Example of Tasting in Observational-Space

Observed
Reality

Taste Tests

“Observed”
Simulations

T ——

(Dendro)Surfaces “CLUMPFIND”

- ————
-

(uoneuipaq) KA, LIS

work of Rosolowsky, Pineda, Kauffmann, Borkin,Padoan, Halle & Goodman;
figure from Goodman & Rosolowsky NSF “Star Formation Taste Tests” Proposal, Fall 2006



Which “stars” “form” from what gas, when?

J.H.K Near-IR image

of Cloudshine
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stars form from what gas, when?

S. Schmeja and R. S. Klessen: Evolving structures of star-forming clusters

Serpens Taurus
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What stars form from what gas, when?

Radial Velocity Study of Orion (Furesz et al. 2008)
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What really matters where...and when?

http://www.cfa.harvard.edu/~agoodman/tastetests/
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“Tastlng” Models
of Star Fcrmatlon
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Optional



State of Affairs, Now

Thermal support: thermal emission and gas excitation measures of dust
temperature confirm low temperatures, but show significant structure (e.g. Scott
Schnee’s work)

B-fields: most geometrically relevant at low densities (fluff) and at very high
densities (star+disk), less-so in-between (TAURUS example)

Turbulence: apparently dominant (morphologically) at ~all scales bigger than
cores...but it must have an energy source. (AGREED.)

Radiation: You don’t need H Il regions for radiation field to be critical to
chemistry, heating/cooling, etc. Asymmetry may be critical. (See
CLOUDSHINE....see also recent work by Pineda et al. on chemical abundances.)

Outflows/Winds: Oops! What about stars that are not newborn or

dying...what are all those spherical winds? We think they are 10x more important
than bi-polar flows. (See COMPLETE/3D analysis by Arce, Borkin, et al.)

Gravity: Can and often does matter at all scales--but not everywhere! Obviously
critical at smallest scales, for collapse. (Taste-Testing with DENDROGRAMY)




Are you hungry yet?

Star Formation Taste Tests > Overview

ral K9 A A + | 89 https://iic.grouphub.com/projects/700257/project/log ~ Q- cadac padoan

Dashboard | Choose a project Settings | My info | Log-out -

Star Formation Taste Tests cfa

I Messages To-Do Milestones Writeboards Chat Time Files People Search Permissions

Project overview & activity New message New to-do list New milestone New file I IC

Welcome to the Tasting Room

E) This project's RSS feed

Subscribe to your project RSS feed and be
notified when someone posts a message,
comment or file, or adds or completes a to-do
item or milestone in this project. What's RSS?

People on this project

Harvard lIC

. . . i . . Alyssa Goodman
This is the collaborative space for those who do simulations of star forming regions, and those ‘

who observe them. It was inspired, in the Fall of 2006, by the NSF proposal entitled “Star Helene Tingle
Formation Taste Tests,” by A. Goodman & E. Rosolowsky. Today, it is used to host conversations

about and short descriptions of simulatons, along with links to longer descriptions (e.g. Journal Douglas Alan
articles & web sites). In the future, we are planning to connect more enhanced descriptions of

those simulations directly to online code bases and sample outputs (likely with help from our Michelle Borkin

friends at NCSA and SDSC). So, stay tuned.
Jens Kauffmann

Felice Frankel

Notes on KITP Simulation Talks Alyssa G

Emily Lohmann

Tim Clark
archived Announcment for NSF Reviewers (from Fall 2006) Alyssa G

¢
m Computational Astrophysics Data Analysis Center (CADAC) to be piloted at Alyssa G Michael Halle

KITP Workshop

American Museum of Natural History

Taking a Cue from Climate Modelers

Héctor Arce

Mordecai-Mark Mac Low




Let’s not let food go to waste, even if
it is full of artificial ingredients...

The Astrophysics Simulation Collaboratory:

A Science Portal Enabling Community Software Development

Michael Russell Gabrielle Allen” Greg Danes' lan Foster™ Tom Goodale®

Edward Seidel” Jason Novotny! John Shalf* Wai-Mo Suen
Gregor von Laszewski®

April 4, 2001 http://ascl.net/

Abstract

We describe the design and implementation of the Astrophysics Simulation Collaboratory Web Portal.

Data formats, software, middleware, and infrastructure matter.


http://ascl.net
http://ascl.net

Let’s not let food go to waste, even
it is full of artificial ingredients...

Computational Astrophysics Data Analysis Center

il eS| A Al|+]  http://cadac.sdsc.edu/ '~ Q- cadac padoan

ANAYA
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CADAC

home

help

The Computational Astrophysics Data Analysis Center

The Computational Astrophysics Data Analysis Center (CADAC) collects and stores results of large
astrophysical simulations and provides data analysis resources to researchers worldwide. Because
only a fraction of computational resources is typically available for data-analysis, early publication
and sharing of large computational datasets are not commonplace in astrophysics.

The CADAC is a worldwide service that provides powerful data-storage and data-analysis resources
to the astrophysical community, encouraging the early publication of complete numerical datasets.
The CADAC will foster a new system and culture whereby data-analysis tools and computational
data are shared. Its use will encourage scientific collaboration, increase the impact of numerical
experiments, and facilitate the review process of journal papers based on computational
simulations.

More Information

Read more about the CADAC.

Find out who is a member.

Get some help joining.

Visit the wiki pages for the KITP workshop Star Formation Through Cosmic Time.
Read the CADAC announcement.

SDSC 21ICSD l C a ?:::x?:)i‘f.':(:ﬂu

SAN DIEGO SUPERCOMPUTER CENTER Astrophysics




A Challenge for the Next Round
of Cooking



Perseus Outflows

| ) Initial results: < 8 known outflows extended
T s | - 32 new potential outflows
' « 9 potential new shells
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Borkin, Arce, Ezt&ggodman 2008 in prep

Right ascension

Red Shifted points () New outflows > IRAS Sources

()  Known outflows

: : Known QOutflow Sources
Blue Shifted points Many small known outflows <>

X HH Objects () Outflow extensions . New shells



Powerful(!) Shells in Perseus

Borkin, Arce & Goodman 2008



Spitzer (MIPS) View

c2d MIPS (24pm) maps of Perseus
Rebull et al. 2007
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Preliminary Numbers say
Shells are Much MORE Important than Outflows

Table 2. Perseus Cloud Properties

Mass Momentum Kinetic Energy

(Me) (Mg km s™1) (10?2 ergs)
Perseus (Global) 11,050 e e
All Shells 608 908.24 31,713.43
All Outflows 34.33 79.83 2,373.32
Outflows (New) 17.58 33.44 708.97
Outflows (Known) 14.99 42.24 1,535.98
Outflows (New Extensions) 1.76 4.15 128.37
Note. Thus outflows comprise 0.31% of the total mass in Perseus, shells

comprise 5.5% of the total mass in Perseus, and shells are injecting ~11 times

the momentum and ~13 times the energy that outflows are injecting into the
cloud.

Borkin, Arce, & Goodman 2008 in prep



