## WorldWide Telescope

worldwidetelescope.org









LIBERACT introduction/demonstration by Alyssa Goodman, Harvard

## 3500 years of Observing

Stonehenge, I500 BC


Ptolemy in Alexandria, I 00 AD


Observatory Tower,
Lincolnshire, UK, c. I300



## WorldWide Telescope



Curtis Wong \& Jonathan Fay
Microsoft Research
(1ve 时 Alyssa Goodman \& Patricia Udomprasert
11Tssi. Harvard-Smithsonian Center for Astrophysics

# Gains in Student Interest and Understanding ("Traditional Way" vs "WWT Way") 

What is your level of interest in Astronomy?<br>What is your level of interest in Science?

Group B (Traditional) Group A (With WWT)
$N_{\text {before }}=77 ; N_{\text {ofter }}=75$
$N_{\text {before }}=75 ; N_{\text {offer }}=\Omega 1$
do you have about astron-
"Cooler than
e.
visualize
rroon relationships?

How interested are you in using a real telescope?


Effect Size: Gain (or Loss) in Units of Pre-Test Standard Deviation (Error bars show $\pm$ I Standard Error of the Mean)

## Microsoft ${ }^{\circledR}$ Research

WorldWide Telescope


View and compare images from across the electromagnetc spectrum

Much more than "just" the sky at night!
3D features can take you to other planets, stars \& galaxies.

## Finder Scope



NGC224

RA: 00h42m42s Magnitude: Dec: 41 : 16 : 00 Distance: Alt: $70: 06$ : 26 Rise: Az: 275: 42:17 Transit:

Classification:
Spiral Galaxy in Andromeda

Finder Scope links to Wikipedia, publications, and data, so you can learn more


## Seamless Astronomy



Alberto Accomazzi, Christopher Beaumont, Douglas Burke, Raffaele D’Abrusco, Rahul Davé, Christopher Erdmann, Pepi Fabbiano, Alyssa Goodman, Edwin Henneken, Jay Luker, Gus Muench, Michael Kurtz, Max Lu, Victoria Mittelbach, Alberto Pepe, Arnold Rots, Patricia Udomprasert (Harvard-Smithsonian CfA); Mercé Crosas (Harvard Institute for Quantitative Social Science); Christine Borgman (UCLA); Jonathan Fay \& Curtis Wong (Microsoft Research);Alberto Conti (Space Telescope Science Institute) Research

## Evolution



## Evolution


[demo]

## WorldWide Telescope

worldwidetelescope.org






$\dagger \mathrm{B}$




(8)


禺 ...

5


## Galileo Galilei

## (I564-I642)



On the third, at the seventh hour, the stars were arranged in this juence. The eastern one was i minute, 30 seconds from Jupiter closest western one 2 minutes; and the other western one wa
ast * * * Wer

0 minutes removed from this one. They were absolutely on th ame straight line and of equal magnitude.
On the fourth, at the second hour, there were four stars arour upiter, two to the east and two to the west, and arranged precisel
East * * $\quad * \quad * \quad$ Wes
on a straight line, as in the adjoining figure. The easternmost wa listant 3 minutes from the next one, while this one was 40 second rom Jupiter; Jupiter was 4 minutes from the nearest western one d this one 6 minutes from the westernmost one. Their magnitude ere nearly equal; the one closest to Jupiter appeared a little smalle, an the rest. But at the seventh hour the eastern stars were only 0 seconds apart. Jupiter was 2 minutes from the nearer easteri
East ** $\quad * *$ Wes
one, while he was 4 minutes from the next western one, and this one was 3 minutes from the westernmost one. They were all equal and extended on the same straight line along the ecliptic.

On the fifth, the sky was cloudy.
On the sixth, only two stars appeared flanking Jupiter, as is seen

$$
\text { East * } \quad \text { * }
$$

in the adjoining figure. The eastern one was 2 minutes and the vestern one 3 minutes from Jupiter. They were on the same straight fine with Jupiter and equal in magnitude

On the seventh, two stars stood near Jupiter. both to the east.

## [demo]

## Seamless Astronomy: ADS All Sky Survey



Historical Image Layer
Extracted from ALL. ADS holdings. (astrometry.net.\& Zooniverse)

ADS-Seamless-astrometry.net-MSR-Zooniverse

## Seamless Astronomy: ADS All Sky Survey



## Prototype of Arricles on the Sky (2010)



## Reviving "Dead" Data



Home You Organize
Actions - Share this * Astrometry.net * Never a older $\rightarrow$


## barnardoph

E.E. Barnard's image of Ophivchus
wuw lierary gatech edubpoibpdi. php

Comments and faves astrometry.net
-. astrometry net 6 days ago 1 reply 1 delate
Helo, this is the bind astrometry solver. Your resuls are: (RA Dec) cemter(246, 421305149.-23.6749319397) degrees Orientation: 178.34 deg E of N Pixel scale 52.94 arcsec/pixel Party:Reverse (Lleft-handed") Field size $9.41 \times 9.41$ degrees
Your field contains:
The star Antares ( $(\mathrm{SCO}=0)$
The star Graftias ( $(\beta 1 \mathrm{Sco})$
The star $A$ Niy
The star $A$ Niyat ( $\sigma S c o$ )
The star TSco
The star $\omega 1 \mathrm{Sc}$
The star $v$ Sco
The star $\omega 2$ Sco
The star 0 Oph
The star 13 Sco
The star oSco
IC 4592
IC 4601
NGC $6121 / \mathrm{M}$
IC 4603
IC $4604 /$ tho 0 Oph nebula


- Dew in World Wide Telescope -


# like this one <br> ＞1 Million Articles， 

lable 1
Extended

INVESTIGATING THE COSMIC－RAY IONIZATION RATE NEAR THE SUPERNOVA REMNANT IC 443 THROUGH H $3^{+}$OBSERVATIONS ${ }^{1,2}$

Nick Indriolo ${ }^{3}$ ，Geoffrey A．Blake ${ }^{4}$ ，Miwa Goto ${ }^{5}$ ，Tomonori Usuda ${ }^{6}$ ，Takeshi Oka $^{7}$ ，T．R．Geballe ${ }^{8}$ ，Brian D． Fields ${ }^{3,9}$ Benjamin J．McCall

Draft version October 18， 2010

## ABSTRACT

Observational and theoretical evidence suggests that high－energy Galactic cosmic rays are primarily accelerated by supernova remnants．If also true for low－energy cosmic rays，the ionization rate near a supernova remnant should be higher than in the general Galactic interstellar medium（ISM）．We have searched for $\mathrm{H}_{3}^{+}$absorption features in 6 sight lines which pass through molecular material near IC 443－a well－studied case of a supernova remnant interacting with its surrounding molecular material－for the purpose of inferring the cosmic－ray ionization rate in the region．In 2 of the sight lines（toward ALS 8828 and HD 254577）we find large $H_{3}^{+}$column densities，$N\left(\mathrm{H}_{3}^{+}\right) \approx 3 \times 10^{14} \mathrm{~cm}^{-2}$ ， and deduce ionization rates of $\zeta_{2} \approx 2 \times 10^{-15} \mathrm{~s}^{-1}$ ，about 5 times larger than inferred toward average diffuse molecular cloud sight lines．However，the $3 \sigma$ upper limits found for the other 4 sight lines are consistent with typical Galactic values．This wide range of ionization rates is likely the result of particle acceleration and propagation effects，which predict that the cosmic－ray spectrum and thus ionization rate should vary in and around the remnant．While we cannot determine if the $\mathrm{H}_{3}^{+}$absorption arises in post－shock（interior）or pre－shock（exterior）gas，the large inferred ionization rates suggest that IC 443 is in fact accelerating a large population of low－energy cosmic rays．Still，it is unclear whether his population can propagate far enough into the ISM to account for the ionization rate inferred in diffuse Galactic sight lines．
Subject headings：astrochemistry－cosmic rays－ISM：supernova remnants

## 1．INTRODUCTION

As cosmic rays propagate through the interstellar medium（ISM）they interact with the ambient material． These interactions include excitation and ionization of atoms and molecules，spallation of nuclei，excitation of nuclear states，and the production of neutral pions（ $\pi^{0}$ ） which decay into gamma－rays．Evidence suggests that Galactic cosmic rays are primarily accelerated by super－ nova remnants（SNRs）through the process of diffusive shock acceleration（e．g．Drury 1983；Blandford \＆Eichler 1987），so interstellar clouds in close proximity to an SNR should provide a prime＂laboratory＂for studying these

Some of the data presented herein were obtained at the W．M． Keck Observatory，which is operated as a scientific partnership among the California Institute of Technology，the University of tion．The Observatory was made possible by the generous finan－ cial support of the W．M．Keck Foundation
${ }^{2}$ Based in part on data collected at Subaru Telescope，which is operated by the National Astronomical Observatory of Japan． ${ }^{3}$ Department of Astronomy，University of Illinois at Urbana－
Champaign，Urbana，IL 61801 ${ }^{4}$ Division of Geological and Planetary Sciences and Division of Chemistry and Chemical Engineering，MS
Institute of Technology，Pasadena，CA 91125
Institute of Technology，Pasadena，CA 91125
5 Max－Planck－Institut für Astronomie，Königstuhl 17，Heidel－ ${ }^{5}$ Max－Planck－Institut f
berg D－69117，Germany
${ }_{6}^{\text {berg D－69117，Germany }}$ Subaru Telescope， 650 North A＇ohoku Place，Hilo，HI 96720 ${ }^{7}$ Department of Astronomy and Astrophysics and Depart－ ment of Chemistry，University of Chicago，Chicago，IL 60637 ${ }_{8}$ Gemini Observatory， 670 North A＇ohoku Place，Hilo，HI 96720
${ }^{9}$ Department of Physics，University of Illinois at Urbana－ Champaign，Urbana，IL 61801 Champaign，Urbana，IL 61801
interactions．IC 443 represents such a case，as portions interactions．IC 443 represents such a case，as portions eighboring molecular clouds．
IC 443 is an intermediate age remnant（about 30，000 yr；Chevalier 1999）located in the Galactic anti－cente region $(l, b) \approx\left(189^{\circ},+3^{\circ}\right)$ at a distance of about 1.5 kp in the Gem OB1 association（Welsh \＆Sallmen 2003） and is a particularly well－studied SNR．Figure 1 shows the red image of IC 443 taken during the Second Palo－ mar Observatory Sky Survey．The remnant is composed of subshells A and B；shell A is to the NE－its cen ter at $\alpha=06^{\mathrm{h}} 17^{\mathrm{m}} 08.4^{\mathrm{s}}, \delta=+22^{\circ} 36^{\prime} 39.4^{\prime \prime} \mathrm{J} 2000.0$ is marked by the cross－while shell B is to the SW．Adopt ing a distance of 1.5 kpc ，the radii of subshells A and $B$ are about 7 pc and 11 pc ，respectively．Between the subshells is a darker lane that runs across the remnan from the NW to SE．This is a molecular cloud which has been mapped in ${ }^{12} \mathrm{CO}$ emission（Cornett et al． 1977 Dickman et al．1992；Zhang et al．2009），and is known to be in the foreground because it absorbs X－rays emitted by the hot remnant interior（Troja et al．2006）．Aside rom this quiescent foreground cloud observations of the $J=1 \rightarrow 0$ line of ${ }^{12} \mathrm{CO}$ also show shocked molec lar material coinident with IC 443 shocked molec lar material 1986；Dick we 1902；Waill uang t al．1986，Dicknan et al．1992，Wang \＆Scovill 992）．These（1979）and by DeNoyer（1979）and Huang et al．（1986）in CO have also been observed in several atomic and small molec ular species（e．g．White et al．1987；Burton et al． 1988 van Dishoeck et al．1993；White 1994；Snell et al．2005） and are thought to be the result of the expanding SNR interacting with the surrounding ISM．While many of the shocked clumps are coincident with the quiescent gas，it
$\qquad$

|  |  |
| :---: | :---: |
| o <br>  <br>  | 撮品品品心的路。 <br>  |
| $\underline{\underline{\omega}} \underline{\underline{\omega}}$ N． <br>  | $\omega$ No <br>  |
|  |  |

$\begin{array}{cc}\text { Vass } & \begin{array}{c}\text { Momentum } \\ \left(M_{\odot} \mathrm{km} \mathrm{s}^{-1}\right)\end{array}\end{array} \begin{gathered}\text { Kinetic Energy } \\ \left(10^{2 t} \text { erg }\right)\end{gathered}$

Multiple NGC 1333 , near HH 338
Multiple NGC 1333, near HH 338
Near HH 750 and HH 743, SSTC2JU032835.03+302009.9 or
Near HH 750 and HH 743, SSTC2dJ032835.03+302009.9 or
SSTC2dJO32906. $05+3030399.2$

SST 2 dJ $0322844.09+312052.7$
STTC CdJO328334.53+310705.5
SSTC2dJ032843.24+311042.7
Multiple in N GCC 1333
Multiple in NGC 1333
SSTc2dJO32850.62+304244.7 or SSTc2dJ032852. $17+304505.5$
SSTc2dJ032850.62+304244.7 or SSTC22dO328552.17+304505.5
HH 18A, multiple in NGC 1333
Near HH 497, HH 336, multiple in NGC 1333
NH 764 , multiple in NGC 1333

| HH 764, multiple in |
| :--- |
| IRAS $03262+3123$ |

    Multiple NGC 1333
    HH 767 SST 2 dU03302408

| $\mathrm{N}^{\mathbf{N}}$ | Identifier $\Delta \nabla$ | Otype $\Delta \nabla$ | ICRS（J2000）ICRS（J2000）  <br> $\mathbf{R A}$ $\mathbf{D E C}$ <br> $\Delta \nabla$ $\Delta \nabla$ | Sp type <br> $\Delta \nabla$ | $\begin{gathered} \text { \#ref } \\ 1850-2011 \\ \Delta \nabla \end{gathered}$ | fnotes <br> $\Delta \nabla$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ＊zetPer | V＊ | $035407.9215+315301.088$ | B1］ | 706 | 1 |
| 2 | CCDM $103554+3103 \mathrm{~A}$ | ＊＊ | $035523.0773+310245.014$ | O9．5IIIe－B0Ve | 720 | 0 |
| 3 | NAMEELNATH | ＊i＊ | $052617.5134+283626.820$ | B7III | 287 | 1 |
| 4 | ＊zet Tau | $\mathrm{Be}^{*}$ | $053738.6858+210833.177$ | B2IV | 592 | 0 |
| 5 | Ass Gem OB 1－ | As＊ | $0609.8+2135$ | $\sim$ | 118 | 0 |
| 6 | TYC 1877－287－1 | ＊ | $061613.3409+224548.634$ | sdo | 9 | 0 |
| 7 | HD 254577 | ＊ | $061754.3853+222432.928$ | B0．5II－III | 30 | 0 |
| 8 | HD 43582 | V＊ | $061800.3459+223929.995$ | B0IIIn | 21 | 0 |
| 9 | IC 443 | SNR | $061802.7+223936$ | S | 729 | 2 |
|  | HD 254755 | ＊ | $061831.7741+224045.125$ | O9Vp | 33 | 0 |



Figure 3．Abundance map of the core of AWM 4 ，with GMRT 610－MI contours overlaid．Rectangular regions were used to examine the variati in abundance across and along the jet．The white cross marks the positi of the radio core．

