Astronomy as an "Archetype for Online Science"

$$
-(6 x+3)
$$

3500 years of Observing

3500 years of Observing

Stonehenge, I 500 BC

Ptolemy in Alexandria, 100 AD

Observatory Tower, Lincolnshire, UK, c. I300

3500 years of Observing

Stonehenge, I 500 BC

Ptolemy in Alexandria, I 00 AD

Observatory Tower,
Lincolnshire, UK, c. I300

Galileo, I 600

3500 years of Observing

Stonehenge, I 500 BC

Ptolemy in Alexandria, I 00 AD

Observatory Tower,
Lincolnshire, UK, c. I300

Galileo, I 600

3500 years of Observing

3500 years of Observing

Ptolemy in Alexandria, 100 AD

Observatory Tower,
Lincolnshire, UK, c. I300

Galileo, I 600

- The "Scientific Revolution" -

Reber's Radio
Telescope, 1937

3500 years of Observing

Stonehenge, I 500 BC

Ptolemy in Alexandria, I 00 AD

Observatory Tower,
Lincolnshire, UK, c. I300

Galileo, I 600

-The "Scientific Revolution"

Reber's Radio
Telescope, I937

3500 years of Observing

NASA/Explorer 7 (Space-based Observing) 1959

3500 years of Observing

Ptolemy in Alexandria, 100 AD

Observatory Tower,
Lincolnshire, UK, c. I300

Galileo, I 600

-The "Scientific Revolution"

Reber's Radio
Telescope, 1937

3500 years of Observing

Ptolemy in Alexandria, I 00 AD
NASA/Explorer 7 (Space-based Observing) 1959

Observatory Tower,
Lincolnshire, UK, c. I300

- The "Scientific Revolution"

Reber's Radio
 Reber's Radio

Telescope, 1937
Galileo, I 600

Long-distance remote-control/
"robotic"
telescopes
I990s

3500 years of Observing

Ptolemy in Alexandria, I 00 AD

NASA/Explorer 7 (Space-based Observing) I959 1959

Observatory Tower,
Lincolnshire, UK, c. I300

3500 years of Observing

Stonehenge, I500 BC

Ptolemy in Alexandria, I 00 AD

Observatory Tower, Lincolnshire, UK, c. I300

- The "Scientific Revolution"

Reber's Radio
Telescope, 1937

NASA/Explorer 7 (Space-based Observing) 1959
"The Internet"

Long-distance remote-control/ "robotic" telescopes I990s
"Virtual Observatories"
2 Ist century

2001:aspaceodyssey
 Super Panavision ${ }^{\text {² }}$ and Metrocolor

The World-Wide Telescope, an Archetype for Online Science

Jim Gray
Microsoft Research
Gray@Microsoft.com

Abstract

Most scientific data will never be directly examined by scientists; rather it will be put into online databases where it will be analyzed and summarized by computer programs. Scientists increasingly see their instruments through online scientific archives and analysis tools, rather than examining the raw data. Today this analysis is primarily driven by scientists asking queries, but scientific archives are becoming active databases that selforganize and recognize interesting and anomalous facts as data arrives. In some fields, data from many different archives can be cross-correlated to produce new insights. Astronomy presents an excellent example of these trends; and, federating Astronomy archives presents interesting challenges for computer scientists.

Introduction

Computational Science is a new branch of most disciplines. A thousand years ago, science was primarily empirical. Over the last 500 years each discipline has grown a theoretical component. Theoretical models often motivate experiments and generalize our understanding. Today most disciplines have both empirical and theoretical branches. In the last 50 years, most disciplines have grown a third, computational branch (e.g. empirical, theoretical, and

Alex Szalay
The Johns Hopkins University
Szalay@jhu.edu

statistics among sets of data points in a metric space. Pairalgorithms on N points scale as N^{2}. If the data increase a thousand fold, the work and time can grow by a factor of a million. Many clustering algorithms scale even worse. These algorithms are infeasible for terabyte-scale datasets.

The new online science needs new data mining algorithms that use near-linear processing, storage, and bandwidth, and that can be executed in parallel. Unlike current algorithms that give exact answers, these algorithms will likely be heuristic and give approximate answers [Connolly, Szapudi].

Astronomy as an Archetype for Online Science

Astronomy exemplifies these phenomena. For thousands of years astronomy was primary empirical with few theoretical models. Theoretical astronomy began with Kepler is now co-equal with observation. Astronomy was early to adopt computational techniques to model stellar and galactic formation and celestial mechanics. Today, simulation is an important part of the field - producing new science, and solidifying our grasp of existing theories.

Astronomers are building telescopes that produce terabytes Tuesday, July 31, 2012

Hidden Metadata astrometry.net + flickr + WWT

flickri -yousot
Youcoor
Home you - Organize \& Create

barnardoph

E.E. Bamard's image of Ophinchus
wuu lierary gatech edutupdibpdi. phe
comments and faves astrometry.net

- astrometry net 6 days ago 1 reply 1 delete
-1. Helo, this is the Bind astrometry solver. Your resuls are: (RA Dec) cemter(240. 421305149, 23.6742319397) degreess (RA Deo) oenter (HMAS, DM: S) (16:25:41.128, 23:40:20.856) iertation: 178.34 deg E of Pixel scale 52.94 arcsecppixel Parity:Reverse ("Left-handed") Field size 9.41×9.41 degrees Your field contains: The star Antares ((Sco) The star Graffias ($\left(1 \mathrm{~S}_{\mathrm{Sco}}\right)$ The star A Niyat (σ Sco) The star $T \mathrm{Scoc}$ The star $\omega 1 \mathrm{Sco}$
The star $v S c o$ The star r Sco
The star $\omega 2$ Sco The star ω Oph The star 13 Sco
The star oSco IC 4592 IC 4601 IC 4601
NGC $6121 / \mathrm{M} 4$
IC 4603
IC 4604 / tho Oph nebula
Wew in Whord Mofide Telescope

Hidden Metadata astrometry.net + flickr + WWT

Organize

barnardoph

E.E. Bamard's image of Ophinchus

Ewu lierary gatech edubpdibpdi.php
comments and faves astrometry.net

- astrometry net 6 days ago 1 reply 1 delete
- Helo, this is the Bind astrometry solver. Your resuks are:

II (RA Dec) cemter(246. 421305149, 23.6740819397) degrees (RA Deo) oenter (HMMS, DM: S) (16:25:41.128, 23:40:20.906) rentation: 170.34 deg E of Pixel scale 52.94 arcsecppixel Parity:Reverse ("Left-handed") Field size 9.41×9.41 degrees Your field contains: The star Antares ((Sco) The star Grafias ($(11 \mathrm{Sco})$ The star A Niyat (σ Sco) The star TSCO
The star $\omega 1 \mathrm{~S}$ The star $\omega 1 \mathrm{Sco}$
The star $v S c o$ The star $v 8 \mathrm{Sco}$
The star $\omega 2 \mathrm{Sco}$ The star ω Oph The star 13 Sco
The star osco The star
IC 4592 IC 4601 NGC $6121 / \mathrm{M} 4$ IC 4603
IC 4504 / IC 4604 / tho Oph nebula
IC 4605

1 Vew in tiond Wide Telescope

Hidden Metadata

 astrometry.net + flickr + WWWTflickr'- -wato
Organiz

barnardoph

E.E Banard's image of Ophivchus

Eary gatech.edurpañplipp
comments and faves astrometry.net
\square astrometrynat 6 days ago 1 reply I delate

- Helo, this is the Blind astrometry solver. Your resuls are:
 Orientation:178.34 deg E of N Pixel scale 52.94 arcsec/pixel Parity:Reverse ("Left-handed") Field size 9.41×9.41 degrees Your field contains: The star Antares ($(\mathrm{SCO}=0)$ The star Giaffias ($(1 \mathrm{Sco})$ The star A Niyat (σ Scoo) The star TSco
The star $\omega 1 \mathrm{Sc}$ The star v Sco The star $\omega 2$ Sco The star $\omega 0 \mathrm{ph}$ h The star 13 Sco
The star osco The star
IC 4592 IC 4892 NGC $6121 / \mathrm{M} 4$ IC 4603
IC $4604 /$ / IC 4604 / tho Oph nebula
\qquad
vew in itord Mide Telescope

AG \& "Online Science"

Research

In my Astronomy research, I am primarily interested in how the gas in galaxies constantly re-arranges itself over huge time spans to constantly form new stars. I have also had a long-standing interest in data visualization, and in improving the use of computers in all aspects of scientific research. I teach a course at Harvard called "The Art of Numbers," and I am very involved in the WorldWide Telescope Project, which brings astronomical data to everyone through an interface that demonstrates data delivery for the 21st Century of "e-Science."

Astronomical Medicine Exploiting the intersection of astronomical and medical image display and analysis needs to accelerate insight in both fields.

Visualization
Improving the communication of science through imagery and animation

Star Formation Taste Tests
A community of theorists, numericists, and observers working together to compare "observed" simulations with the real Universe.

To sign up email rshetty AT cfa.harvard.edu

WorldWide Telescope A beautiful portal to all of Astronomy, for astronomers of all ages and skill levels http://www.cfa.harvard.edu/WWTAmbassadors

Science for Everyone

Enhancing the public understanding of science

AG \& "Online Science"

Research

In my Astronomy research, I am primarily interested in how the gas in galaxies constantly re-arranges itself over huge time spans to constantly form new stars. I have also had a long-standing interest in data visualization, and in improving the use of computers in all aspects of scientific research. I teach a course at Harvard called "The Art of Numbers," and I am very involved in the WorldWide Telescope Project, which brings astronomical data to everyone through an interface that demonstrates data delivery for the 21st Century of "e-Science."

tar Formation Taste Tests A community of theorists, numericists, and

Simulation

WorldWide Telescope A beautiful portal to all of Astronomy, for astronomers of all ages and skill levels http://www.cfa.harvard.edu/WWTAmbassadors

Visualization

Improving the communication of science through imagery and animation

[^0]http://www.cfa.harvard.edu/~agoodman/

AG \& "Online Science"

Research

In my Astronomy research, I am primarily interested in how the gas in galaxies constantly re-arranges itself over huge time spans to constantly form new stars. I have also had a long-standing interest in data visualization, and in improving the use of computers in all aspects of scientific research. I teach a course at Harvard called "The Art of Numbers," and I am very involved in the WorldWide Telescope Project, which brings astronomical data to everyone through an interface that demonstrates data delivery for the 21st Century of "e-Science."

The COordinated Molecular Probe

Simulation

WorldWide Telescope
A heautiful nortal to all of Actronomv for

Science for Everyone

Outreach

http://www.cfa.harvard.edu/~agoodman/

Publishing

Data \quad Simulation

e-Science Tools \quad Viz \quad Outreach

Publishing

Data \quad Simulation

VAS

e-Science Tools
 Viz
 Outreach

Publishing

Data \quad Simulation

VAS
 30

e-Science Tools
 Viz
 Outreach

Publishing

Data Simulation

回
WorldWide Telescope

e-Science Tools
 Viz
 Outreach

Publishing

Data Simulation

veo

回
WorldWide Telescope Ambassadors

e-Science Tools
 Viz
 Outreach

Publishing

Data

Simulation

vao

四
WorldWide Telescope Ambassadors

e-Science Tools
 Viz
 Outreach

Why?

Star Formation

Star (and Planet, and Moon) Formation IOI

Star (and Planet, and Moon) Formation IOI

Star (and Planet, and Moon) Formation IOI

Star (and Planet, and Moon) Formation IOI

Star (and Planet, and Moon) Formation IOI

Star (and Planet, and Moon) Formation IOI

Star (and Planet, and Moon) Formation IOI

Star (and Planet, and Moon) Formation IOI

Star (and Planet, and Moon) Formation IOI

Star (and Planet, and Moon) Formation IOI

Star (and Planet, and Moon) Formation IOI

Magnetic

 FieldsChemical \& Phase - Transformations:

Gravity

" "Turbulence"

- (Random Kinetic Energy)

Outflows

\&Winds

Thermal
Pressure

Simulations

Hydrodynamic AMR Simulation, courtesy Stella Offner
"Three" Dimensions: Spectral-Line Mapping

Hydrodynamic AMR Simulation, courtesy Stella Offner

"Three" Dimensions: Spectral-Line Mapping

We wish we could measure...

Hydrodynamic AMR Simulation, courtesy Stella Offner

"Three" Dimensions: Spectral-Line Mapping

We wish we could measure...
But we can measure...

Hydrodynamic AMR Simulation, courtesy Stella Offner

"Three" Dimensions: Spectral-Line Mapping

We wish we could measure...
But we can measure...

Hydrodynamic AMR Simulation, courtesy Stella Offner

Spectral-Line Mapping

Spectral Line Observations

Spectral-Line Mapping

Spectral Line Observations

Loss of

Spectral-Line Mapping

Spectral Line Observations

$\boldsymbol{I}_{\text {Loss of }}$

Spectral-Line Mapping

Spectral Line Observations

$\boldsymbol{L}_{\text {Loss of }}$

High-Dimensional Data

C®MPLETE Perseus

mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell et al. 2005, Kirk et al. 2006)
${ }^{13} \mathrm{CO}$ (Ridge et al. 2006)
mid-IR IRAC composite from c2d data (Foster, Laakso, Ridge, et al.)

Optical image (Barnard I927)

Tuesday, July 31, 2012

High-Dimensional Data

C®MPLETE Perseus

High-Dimensional Data

C®MPLETE Perseus

High-Dimensional Data

C®MPLETE Perseus

Star Formation
"p-p-v" cubes

"p-p-v" cubes

High-Dimensional Data

C®MPLETE Perseus

Star Formation
"p-p-v" cubes

"Astronomical Medicine"

"PERSEUS"

"z" is line-of-sight velocity
http://am.iic.harvard.edu/

"Astronomical Medicine"

AstroMed

" z " is depth into head
" z " is line-of-sight velocity
http://am.iic.harvard.edu/

AstronomicalMedicine@|-C§MLETE

AstronomicalMedicine@|c C\$MPLETE

Perseus

AstronomicalMedicine@|c- C§MPLETE

Perseus

3D Viz made with VoIView

AstronomicalMedicine@|C C于MPLETE

AstronomicalMedicine@|C
 CकMPLETE

C®MPLETE

WWT-"NUIs"-Seamless Astronomy

C®MPLETE

Сक्यPLETE

C®MPLETE

"Taste-Testing" Simulations

Simulation

Nature

Observed Data

"Taste-Testing" Simulations

Simulation

Enabled Indirectly

Nature

Observed Data

"Taste-Testing" Simulations

Simulation

Enabled Indirectly

Nature

Synthetic Data

Observing System

"Taste-Testing" Simulations

Simulation

Nature

Synthetic Data

Observed Data

"Taste-Testing" Simulations

Simulation

Nature

Synthetic Data

Observed Data

"Taste-Testing" Simulations

Simulation

Nature

Synthetic Data

Observed Data

"Taste-Testing" Simulations

Simulation

Nature

"Taste-Testing" Simulations

Simulation

Nature

Synthetic Data

Observed Data

"Taste-Testing" Simulations

Simulation

Nature

Synthetic Data

Observed Data

Taste-Testing "Gravity"

Goodman et al. Nature, 2009

High-Dimensional Data

Taste-Testing "Gravity"

AstroMed

Simulations

Star Formation
"p-p-v" cubes

True 3D
Structure

What's bound? / Virial Theorem

Goodman et al. Nature, 2009

High-Dimensional Data

Taste-Testing "Gravity"

AstroMed

Simulations

3D PDF

Star Formation
"p-p-v" cubes

True 3D
Structure

What's bound? / Virial Theorem

Goodman et al. Nature, 2009

High-Dimensional Data

Taste-Testing "Gravity"

AstroMed

Simulations

3D PDF

Star Formation
"p-p-v" cubes

$$
\text { True } 3 \mathrm{D}
$$

Structure

Goodman et al. Nature, 2009

Dimensions Display

Linked Views

"Taste-Testing" [Sim:Data]

ADS Labs [info viz]

Open Data Open Tools

"High-Dimensional" Data

ATMOSPHERIC AND OCEANIC TEMPERATURE CHANGE

"High-Dimensional" Data

ATMOSPHERIC AND OCEANIC TEMPERATURE CHANGE

"High-Dimensional" Data

ATMOSPHERIC AND OCEANIC TEMPERATURE CHANGE

This

is a "spectral energy distribution"

GENERALLY
I D: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies"
4D: Time Series of Volumes = "3D Movies"

GENERALLY
ID: Columns = "Spectra","SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies"
4D: Time Series of Volumes = "3D Movies"

GENERALLY
I D: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies"
4D: Time Series of Volumes = "3D Movies"

GENERALLY

ID: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies"
4D: Time Series of Volumes = "3D Movies"

GENERALLY

ID: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies"
4D: Time Series of Volumes = "3D Movies"

GENERALLY

ID: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies"
4D: Time Series of Volumes = "3D Movies"

GENERALLY
I D: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies"
4D: Time Series of Volumes = "3D Movies"

GENERALLY

ID: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies"
4D: Time Series of Volumes = "3D Movies"

GENERALLY

ID: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies"
4D: Time Series of Volumes = "3D Movies"

C®MPLETE Perseus

mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell
et al. 2005, Kirk et al. 2006)
${ }^{13} \mathrm{CO}$ (Ridge et al. 2006)
mid-IR IRAC composite from c2d data (Foster, Laakso, Ridge, et al.)
\therefore Optical image (Barnard I927)

C®MPLETE Perseus

mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell
et al. 2005, Kirk et al. 2006)
${ }^{13} \mathrm{CO}$ (Ridge et al. 2006)
mid-IR IRAC composite from c2d data (Foster, Laakso, Ridge, et al.)
\therefore Optical image (Barnard I927)

AstronomicalMedicine@|-C§MLETE

AstronomicalMedicine@|-C§MLETE

3D Viz made with VoIView

AstronomicalMedicine@|C-
 C®MPLETE

Dataset	Show	Perseus	Ophiuchus	Serpens	Link
GBT: HI Data Cube	0	v	v	\varnothing	Data
IRAS: Av/Temp Maps	0	\checkmark	\checkmark	v	Data
FCRAO: 12CO	0	$\underline{\text { v }}$	$\underline{\text { v }}$	v	Data
FCRAO: 13CO		$\underline{\text { v }}$	$\underline{\text { v }}$	\checkmark	Data
JCMT: 850 microns	©	$\underline{\text { v }}$	$\underline{\text { v }}$	\varnothing	Data
Spitzer c2d: IRAC 1,3 (3.6,5.8 $\mu \mathrm{m}$)	0	\checkmark	\checkmark	\checkmark	Data
Spitzer c2d: IRAC 2,4 (4.5,8 $\mu \mathrm{m}$)	-	\checkmark	\checkmark	$\underline{\text { v }}$	Data
CSO/Bolocam: 1.2-mm	0	$\underline{\mathbf{v}}$	\varnothing	\varnothing	Data
Spitzer MIPS: Derived Dust Map	®	$\underline{\mathbf{v}}$	\varnothing	\varnothing	Data
Targeted Regions (Phase II, Some Data Not Yet Available)					
CTIO/Calar Alto: NR ($(\mathrm{J}, \mathrm{H}, \mathrm{Ks})$	®	\checkmark	\checkmark	\varnothing	Data
IRAM 30-m: N2H+ and C180	0	\checkmark	\varnothing	\varnothing	Data
IRAM 30-m: 1.1-mm continuum	0	\checkmark	\varnothing	\varnothing	Data
Megacam/MMT: r,i,z images	\checkmark	\checkmark	\varnothing	\varnothing	Data
Catalogs \& Pointed Surveys					
NH3 Pointed Survey	-	\checkmark	\varnothing	\varnothing	Data
YSO Candidate list (c2d)	-	\checkmark	\checkmark	\checkmark	Data

Dataset

Dataset	Show	Perseus	Ophiuchus	Serpens	Link
GBT: HI Data Cube	®	\checkmark	\checkmark	\varnothing	Data
IRAS: Av/Temp Maps	®	\checkmark	\checkmark	\checkmark	Data
FCRAO: 12CO	®	$\underline{\text { v }}$	$\underline{\mathbf{v}}$	\checkmark	Data
FCRAO: 13CO		$\underline{\text { v }}$	$\underline{\text { v }}$	\checkmark	Data
JCMT: 850 microns	0	$\underline{\text { v }}$	$\underline{\text { v }}$	ø	Data
Spitzer c2d: IRAC 1,3 (3.6,5.8 $\mu \mathrm{m}$)	0	\checkmark	\checkmark	\checkmark	Data
Spitzer c2d: IRAC 2,4 (4.5,8 $\mu \mathrm{m}$)	®	\checkmark	\checkmark	$\underline{\mathbf{v}}$	Data
CSO/Bolocam: $1.2-\mathrm{mm}$	0	$\underline{\text { v }}$	\varnothing	\varnothing	Data
Spitzer MIPS: Derived Dust Map	0	$\underline{\text { v }}$	ø	ø	Data

Targeted Regions (Phase II, Some Data Not Yet Available)

CTIO/Calar Alto: NIR ($\mathrm{J}, \mathrm{H}, \mathrm{Ks}$)	∇	\checkmark	\checkmark	ø	Data
IRAM 30-m: $\mathrm{N} 2 \mathrm{H}+$ and C180	∇	v	\varnothing	\varnothing	Data
IRAM 30-m: 1.1 -mm continuum	∇	\checkmark	\varnothing	ø	Data
Megacam/MMT: r,i,z images	®	\checkmark	ø	ø	Data
Catalogs \& Pointed Surveys					
NH3 Pointed Survey	-	\checkmark	\varnothing	ø	Data
YSO Candidate list (c2d)	-	v	\checkmark	v	Data

\# Data
 Dimensions
 Display

Linked Views

"Taste-Testing"
[Sim:Data]

Open Data
Open Tools

DataDesk (est. I 986)

DataDesk

DataDesk (est. I986)

Tuesday, July 31, 2012

John Tukey's "Four Essentials" (c. 1972)

John Tukey's "Four Essentials" (c. 1972)

Picturing

John Tukey’s "Four Essentials" (c. 1972)

Picturing Rotation

John Tukey’s "Four Essentials" (c. 1972)

Picturing

 Rotation
Isolation

John Tukey’s "Four Essentials" (c. 1972)

Picturing Rotation
 Isolation
 Masking

John Tukey's "Four Essentials" (c. 1972)

Picturing

 Rotation
Isolation Masking

Selection

John Tukey's "Four Essentials" (c. 1972)

Picturing Rotation

Isolation Masking

Selection

and these "need to work together" in a "dynamic display"

Brushing

Linking

John Tukey's "Four Essentials" (c. 1972)

Picturing Rotation

Isolation Masking

Selection

and these "need to work together" in a "dynamic display"

Brushing

Linking

Results...

I. for immediate insight
2. as visual source of ideas for statistical algorithms (...reation to SVM)

John Tukey's "Four Essentials" (c. 1972)

Picturing Rotation

Isolation Masking

Selection

and these "need to work together" in a "dynamic display"

Brushing

Linking

Results...

I. for immediate insight
2. as visual source of ideas for statistical algorithms (..reation to svm)

Warning
"details of control can make or break such a system"

Watch the PRIM-9 video at: http://stat-graphics.org/movies/prim9.html

Principles of high-dimensional data visualization in astronomy

A.A. Goodman *

Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
Received 2012 May 3, accepted 2012 May 4
Published online 2012 Jun 15

Key words cosmology: large-scale structure - ISM: clouds - methods: data analysis - techniques: image processing techniques: radial velocities

Astronomical researchers often think of analysis and visualization as separate tasks. In the case of high-dimensional data sets, though, interactive exploratory data visualization can give far more insight than an approach where data processing and statistical analysis are followed, rather than accompanied, by visualization. This paper attempts to charts a course toward "linked view" systems, where multiple views of high-dimensional data sets update live as a researcher selects, highlights, or otherwise manipulates, one of several open views. For example, imagine a researcher looking at a 3D volume visualization of simulated or observed data, and simultaneously viewing statistical displays of the data set's properties (such as an $x-y$ plot of temperature vs. velocity, or a histogram of vorticities). Then, imagine that when the researcher selects an interesting group of points in any one of these displays, that the same points become a highlighted subset in all other open displays. Selections can be graphical or algorithmic, and they can be combined, and saved. For tabular (ASCII) data, this kind of analysis has long been possible, even though it has been under-used in astronomy. The bigger issue for astronomy and other "high-dimensional" fields, though, is that no extant system allows for full integration of images and data cubes within a linked-view environment. The paper concludes its history and analysis of the present situation with suggestions that look toward cooperatively-developed open-source modular software as a way to create an evolving, flexible, high-dimensional, linked-view visualization environment useful in astrophysical research.

Exemplar: Linked Dendrogram Views in IDL

Video \& implementation: Christopher Beaumont, CfA/UHawaii; inspired by AstroMed work of Douglas Alan, Michelle Borkin,AG, Michael Halle, Erik Rosolowsky

Exemplar: Linked Dendrogram Views in IDL

Video \& implementation: Christopher Beaumont, CfA/UHawaii; inspired by AstroMed work of Douglas Alan, Michelle Borkin,AG, Michael Halle, Erik Rosolowsky

Glue

Current linked view work by Beaumont, Borkin, Goodman, Pfister \& Robitaille

Glue

Current linked view work by Beaumont, Borkin, Goodman, Pfister \& Robitaille

Value of "Linked Views" from Harvard Undergrad Thesis* Work

on "A Hierarchical Catalog of Molecular Clouds in the Milky Way"

Fig. 8.- All of the "bound clouds" identified in our catalog, plotted face-on in Galactocentric X, Y coordinates. The Sun is located at the yellow star in the upper center. Green: Outer Galaxy; Blue: Near Distance or single-distance solution; Red: Far distance.

Fig. 5.- The size-linewidth relationship for clouds in the Outer Galaxy. We obtained a fit of $\sigma_{v}=0.68 \sigma_{R}^{0} .52$.

[^1]
Value of "LinkedViews" from Harvard Undergrad Thesis* Work

Value of"LinkedViews" from Harvard Undergrad Thesis* Work

Results from Tom Rice's Thesis:
Preliminary Hierarchical Catalog of Milky Way Plane Molecular Clouds

*thesis of Tom Rice, 'I 2, awarded Hoopes Prize

Value of"LinkedViews" from Harvard Undergrad Thesis* Work

Results from Tom Rice's Thesis:
Preliminary Hierarchical Catalog of Milky Way Plane Molecular Clouds

*thesis ofTom Rice, 'I 2, awarded Hoopes Prize

Value of"Linked Views" from Harvard Undergrad Thesis*Work

Results from Tom Rice's Thesis:
Preliminary Hierarchical Catalog of Milky Way Plane Molecular Clouds

Look At SolarSystem

\square -

 Tracking moon Context Search Filter

Ser
*thesis ofTom Rice, 'I 2, awarded Hoopes Prize

Value of"LinkedViews" from Harvard Undergrad Thesis* Work

*thesis of Tom Rice, 'I 2, awarded Hoopes Prize

Seamlessly explore imagery from the best ground and space-based telescopes in the world

Open Data Open Tools

Seamless

	Explore
Collections $>$ All-Sky S.iveys	

Astronomy

[the future]

Expert led tours of
the Universe

Much more than "just" the sky at night! 3D features can take you to other planets, stars \& galaxies.

Microsoft ${ }^{\oplus}$ Research
 WorldWide Telescope

View and compare images from across the electromagnetc spectrum

Much more than "just" the sky at night!
3D features can take you to other planets, stars \& galaxies.

NGC224

RA: 00h42m42s Magnitude: Dec: 41 : 16 : 00 Distance: Alt: $70: 06: 26$ Rise: Az: 275:42:17 Transit:

Classification: Spiral Galaxy in Andromeda

Finder Scope links to
Wikipedia, publications, and data, so you can learn more

Infrared Astronom Cosmic Background Explorer (COBE). Processing http://astro.berkeley.edu/~marc/dust/

WorldWide Telescope

WorldWide Telescope

[Demo]

Úniverse

also available on YouTube (search "John Huchra's Universe")

The WorldWide Telescope Ambassadors Program

Spring 2012 Update

WWT Ambassadors have had a busy and productive spring! We demo'ed WWT at the USA Science and Engineering Festival and two local science festival events in Cambridge to engaged and enthusiastic crowds of close to 2000 people. The most common refrain we heard was, "Really? I can download this at home for free?" Ambassadors continue to be impressed by the astute questions and observations made by children who are given the opportunity to explore our universe for the first time. "Why is Pluto's orbit so out of whack from all the other planets'?" "Why does Jupiter have so many more moons than other planets?" "How long would it take for us to travel far enough outside the Milky Way to take a picture of it?"
wwtambassadors.org

[ITs) Harvard-Smithsonian Center for Astrophysics

Gains in Student Interest and Understanding ("Traditional Way" vs "WWT Way")

Gains in Student Interest and Understanding ("Traditional Way" vs "WWT Way")

What is your level of interest in Astronomy?
What is your level of interest in Science?

Group B (Traditional)
$N_{\text {before }}=77 ; N_{\text {offer }}=75$
Group A (With WWT)
$N_{\text {before }}=75 ; N_{\text {ofter }}={ }^{\prime} 1$

How much factual knowledge
visualize
rroon relationships?

How interested are you in using a real telescope?

Effect Size: Gain (or Loss) in Units of Pre-Test Standard Deviation (Error bars show \pm I Standard Error of the Mean)

China-(D)

EURO Wire

Hungarian Virtual Observatory

GERMAN ASTROPHYSICAL

VIRTUAL OBSERVATORY

Disclaimer:This slide shows key eẋerpts from within the astronomy community \& excludes more general s/w that is used, such as
Papers, Zotero, Mendeley, Eỉd.dote, graphing \& statistics packages, data handling softy̌are, search engines, etc.

SAM

(Simple Application Messaging Protocol)

link to I2/20I0 IVOA recommendation

SAM

(Simple Application Messaging Protocol)

link to I2/2010 IVOA recommendation

Linking scientific data, publications, and communities

SEAMLESS ASTRONOMY

About

The Seamless Astronomy Group at the Harvard-Smithsonian Center for Astrophysics brings together astronomers, computer scientists, information scientists, librarians and visualization experts involved in the development of tools and systems to study and enable the next generation of online astronomical research.

Current projects include research on the development of systems that seamlessly integrate scientific data and literature, the semantic interlinking and annotation of scientific resources, the study of the impact of social media and networking sites on scientific dissemination, and the analysis and visualization of astronomical research communities. Visit our project page to find out more.

0 SHRRE $\boldsymbol{\square}$...

Latest Announcements
Introducing the Astronomy Dataverse

Latest Feed Items

@rahuldave there is a writeboard with my notes... More at next \#seamlessastronomy next week.

Thanks to @astrobites and @astroknight06 for great summary http://t.co/jWWFTOCD of our High-D Data Viz work! \#ivoa \#seamlessastronomy

SEAMLESS ASTRONOMY

Seamless integration of scientific data and literature
Astronomical data artifacts and publications exist in disjointed repositories. The conceptual relationship that links data and publications is rarely made explicit. In collaboration with ADS and ADSlabs, and through our work in conjunction with the Institute for Quantitative Social Science (IQSS), we are working on developing a platform that allows data and literature to be seamlessly integrated, interlinked, mutually discoverable.

ADS All-SKy Survey (ADSASS)
The ADS All-Sky Survey (ADSASS) is an ongoing effort aimed at turning the NASA Astrophysics Data System (ADS), widely known for its unrivaled value as a
literature resource for astronomers, into a data resource. The ADS is not a data repository per se, but it implicitly contains valuable holdings of astronomical data, in the form of images, tables and object references contained within articles. The objective of the ADSASS effort is to extract these data and make them discoverable and available through existing data viewers. The resulting ADSASS data layer promises to greatly enhance workflows and enable new research by tying astronomical literature and data assets into one resource. More information can be found on this conference paper.

Astronomy Dataverse

Astronomers use, peruse and produce vast amounts of scientific data. Making these data publicly available is important because it supports the reproducibility of results, and ensures their long term preservation and reuse. While raw astronomical data are normally stored and made public available via large-scale archives, reduced data are often left out entirely from both astronomical archives and related publications.

In a pilot study in 2011, we are evaluating the Dataverse, an open data archive hosted by Harvard University and managed by the Institute for Quantitative Social Science (IQSS), as a project-based repository for the storage, access, and citation of reduced astronomical data. We have interviewed a set of 10 astronomers about their needs, and the prototype CfA Dataverse is now online.

WorldWide Telescope (WWT)

WorldWide Telescope provides a rich contextual visualization environment for astronomical data. Our group collaborates with the WWT Team at Microsoft Research both to enrich WWT for use in research as well as in teaching. On the research end, we seek to integrate WWT "Seamlessly" with VAO-sponsored projects, as well as with ADS Labs. On the teaching end, we founded and now run the WorldWide Telescope Ambassadors outreach effort.

Viz-e-Lab

Established in 2011, the Viz-e-Lab was established as a testing ground for new software efforts in visualization and e-Science at the CfA. Seamless Astrononmy projects are piloted and tested on users in this space, located on the third floor of the 160 Concord Avenue building of the CfA. The lab is used to test new hardware--primarily input devices--as well as new software. At present, two main focii are the development of sophisticated tools "linked view" visualization of high-dimensional data, and the integration of WorldWide Telescope into research and teaching paradigms.

Study of the impact of social media and networking sites on scientific dissemination
Astronomers, and more broadly, the scientific community, are increasingly using blogging, micro-blogging, and other social media for both discovering and disseminating scientific knowlegde. We are exploring several avenues for studying the impact of Twitter and other social networking sites on scientific readership.

Network analysis and visualization of astronomical research communities We use network analytic techniques to mine the astronomical bibgliographic archives and detect disciplinary and geographical clusters, and communities of practices of scientists. A network visualization of co-authorship networks in Physics and Astronomy is being implemented on the ADSlabs platform and is currently available. Try this out on ADS Labs by doing a search and then choosing "View as Author Network."

Data citation practices in Astronomy

How do astronomers cite scientific data? Are astronomical reduced data included in scholarly papers as supplemental material? Are cited data discoverable and reusable? We are performing link and content analyses of bibliographic repositories in astronomy to understand whether astronomical data used for the publication of scientific research can be discovered, accessed, and reused. On ADS Labs, choose "View as Paper Network" after a search to get a feel for the data available.

Semantic description and annotation of scientific resources
RDF store and facets, and links to semantic ADS.

SEAMLESS ASTRONOMY

ADS All-SKy Survey (ADSASS)
The $A D S$ All_Sku Survev ($A D S A S S$) is an onanino effort aimed at turnina the NASA
ADS All Sky Survey

Astronomy Dataverse

Astronomy Dataverse

Science (IQSS), as a project-based repository for the storage, access, and citation of reduced astronomical data. We have interviewed a set of 10 astronomers about their needs, and the prototype CfA Dataverse is now online.

WorldWide Telescope

Viz-e-1

Establis
softwar
projects
of the 1
hardwar
main for

research and teaching paradigms.
$=$ mollaborationcosNetworks

Semantic Search

THE MILKY WAY PR ©jECT

WELCOME

The Milky Way Project aims to sort and measure our galaxy, the Milky Way. Initially we're asking you to help us find and draw bubbles in beautiful infrared data from the Spitzer Space Telescope.

Understanding the cold, dusty material that we see in these images, helps scientists to learn how stars form and how our galaxy changes and evolves with time.

Click here to see the full tutorial or browse the site to find out more about the science behind the Milky Way Project.

YOU CAN NOW SEE HOW CLOSE WE ARE TO $1,000,000$ DRAWINGS AT HTTP://WWW.MILKYWAYPROJECT.ORG/G... E 12 DAYS AGO 194,943 IMAGES SERVED • 252,562 BUBBLES DRAWN • $\mathbf{2 4 , 2 3 4}$ POSSIBLE STAR CLUSTERS • $\mathbf{8 , 9 7 8}$ CANDIATE GALAXIES • 597,054 OTHER OBJECTS - COPYRIGHT 2010 ZOONIVERSE

Epilogu

Explore Guided Tours

Constellstion Lines + Overlays		
E Figures	Equatorial Grad	
E Boundaries	ERetiptic/icrostishais	
\checkmark Focused Only	Erield of View indicator	Sctup

${ }^{-3 d}$ Solar System ∇ Milizy Woy
E cosmos
∇ orbits

Telescope	View	Settings	Milky Way Molecular Clouds f..
-Observing Location			Observing Time
Name:	Agiers, Algeria		1636/10,05 03,4147
Lat:	45.28 .37 09.10 .59		X 10000000 UTC
Evi	wfom this location	Setup	

UNIVERSE3D.org

Results from Tom Rice's Thesis:
Preliminary Hierarchical Catalog of Milky Way Plane Molecular Clouds

\uparrow

 piloguedNIVERSE3D,org

 piloguedNIVERSE3D,org}
an My talk My preferences My watchlist My contributions Log out

Page Discussion

Read Edit Viewhistory *

Go
Search

What is Universe3D.org?

The intention of Universe3D.org is to host links to web content that enable the enhancement of our three-dimensional view of the Universe.

Recently added Dataset
SLOAN Digital Sky Survey The Sloan Digital Sky Survey or SDSS is a
major multi-filter imaging and spectroscopic redshift survey using a
dedicated 2.5 -m wide-angle optical telescope at Apache Point Observatory
in New Mexico, United States. The main galaxy sample has a median
redshift of $z=0.1$; there are redshifts for luminous red galaxies as far as z
$=0.7$, and for quasars as far as $z=5$; and the imaging survey has been
involved in the detection of quasars beyond a redshift $z=6$.

Astronomy News

- June 26, 2012: Astronomers use supercomputer to explore role of dark matter in galaxy formation
- June 25, 2012: Moon to pass by Mars tonight
- June 24, 2012: Astronomers find planets so close they 'see' each other in night sky
- June 14, 2012: Huge Asteroid to fly by Earth
- June 13, 2012: Astronomers may have discovered the oldest galaxy in the Universe
- June 5, 2012: Last Transit of Venus for the 21st century

Announcements

- July 05, 2012: Website moved to the URL universe3d.org!
- June 11, 2012: Website moved to MediaWiki!
- December 5, 2011: Site established!

To make good on Alyssa Goodman's promise at the "Milky Way 2011" meeing held in Rome this past September, the site "universe3d.org" has been established. By 2012, it will be populated with links to existing data

The World-Wide Telescope, an Archetype for Online Science

$$
\begin{gathered}
\text { Jim Gray } \\
\text { Microsoft Research } \\
\text { Gray@Microsoft.com }
\end{gathered}
$$

Abstract Most scientific data will never be directly examined by scientists; rather it will be put into online databases where it will be analyzed and summarized by computer programs. Scientists increasingly see thei instruments through online scientific archives and analysi tools, rather than examining the raw data. Today this analysis is primarily driven by scientists asking queries, but cientific archives are becoming active databases that self organize and recognize interesting and anomalous facts as data arrives. In some fields, data from many different archives can be cross-correlated to produce new insights. Astronomy presents an excellent example of these trends and, federating Astronomy archives presents interesting challenges for computer scientists.

Introduction

Computational Science is a new branch of most disciplines. A thousand years ago, science was primarily empirical. Over the last 500 years each discipline has grown Over the last 500 years each discipline has grown experiments and generalize our understanding. Today most disciplines have both empirical and theoretical branches. I the last 50 years, most disciplines have grown a third, computational branch (e.g. empirical, theoretical, and computational ecology, or physics, or linguistics.)

Alex Szalay
The Johns Hopkins University
Szalay@jhu.edu
statistics among sets of data points in a metric space. Pairalgorithms on N points scale as N^{2}. If the data increase a algorithms on N points scale as N^{2}. If the data increase a million. Many clustering algorithms scale even worse. These algorithms are infeasible for terabyte-scale datasets

The new online science needs new data mining algorithms that use near-linear processing, storage, and bandwidth, and that can be executed in parallel. Unlike current algorithms that give exact answers, these algorithms will likely be heuristic and give approximate answers [Connolly, Szapudi].

Astronomy as an Archetype for Online Science Astronomy exemplifies these phenomena. For thousands of years astronomy was primary empirical with few theoretical models. Theoretical astronomy began with Kepler is now models. Theoretical astronomy began with Kepler is now computational techniques to model stellar and galactic formation and celestial mechanics. Today, simulation is an important part of the field - producing new science, and solidifying our grasp of existing theories.

Astronomers are building telescopes that produce terabytes of data each year -- soon terabytes per night. In the old

Authorea

Get your research done. Collaboratively. On the web.

Are your research data, images, software, and manuscripts scattered around emails, Dropbox folders, hard drives, servers, and data archives? We are fixing that!

We are building Authorea, an online platform for the collaborative authorship of research projects. It will let you publish, share, organize, version control, and source control all the components of your research.

Authorea is an incubator initiative of Harvard University and the Harvard-Smithsonian Center for Astrophysics.

Enter your e-mail address and we'll keep you in the loop.

[^0]: Science for Everyone
 Enhancing the public understanding of science

[^1]: *thesis ofTom Rice, 'I2, awarded Hoopes Prize

