WorldWide Telescope

The Art of Numbers

The Art of Numbers

Empirical and Mathematical Reasoning 19. The Art of Numbers: The Visual Display of Information
Professor Alyssa A. Goodman (Astronomy)
Course website
Duration: 05:30

What kind of
Alyssa A. Goodman
credentials are Ularvard University (HCO+IIC)
those?? Smithsonian Astrophwsical Observatory
Scholar-in-Residence, WGBH

I9 out of 22?

Relative Strengths

The Art of Numbers

Data•Dimensions• Display

What...

...is easier now than before?

fast computation, animation, 3D
...was easier before than now? craftsmanship
...should be easier in the future? modular craftsmanship, linked views

Craftsmanship (in 1854)

Displaying

"high-dimensional" data
with
"multi-functioning graphical elements"

Reproduced from Visual and Statistical Thinking, ©E.R. Tufte 1997, based on Snow's drawing

What Computers Can Let us Craft

Elements...

\checkmark Maps
$\sqrt{ }$ Tables
XGraphs
$\sqrt{ }$ Charts
VIllustrations
$\sqrt{ }$ Combinations

Milestones: Time course of developments

adapted from Friendly,"The Golden Age of Statistical Graphics," Statistical Science, 2009

Galileo Galilei
 (I564-1642)

On the third, at the seventh hour, the stars were arranged in this juence. The eastern one was i minute, 30 seconds from Jupiter closest western one 2 minutes; and the other western one wa
east * * * Wer

0 minutes removed from this one. They were absolutely on th ame straight line and of equal magnitude.
On the fourth, at the second hour, there were four stars arour upiter, two to the east and two to the west, and arranged precise)
East * * $\quad * \quad * \quad$ Wes
on a straight line, as in the adjoining figure. The easternmost wa listant 3 minutes from the next one, while this one was 40 second rom Jupiter; Jupiter was 4 minutes from the nearest western one d this one 6 minutes from the westernmost one. Their magnitude. ere nearly equal; the one closest to Jupiter appeared a little smalle1 an the rest. But at the seventh hour the eastern stars were only 0 seconds apart. Jupiter was 2 minutes from the nearer easteri
East $* *<$ West
mne, while he was 4 minutes from the next western one, and this fone was 3 minutes from the westernmost one. They were all equal and extended on the same straight line along the ecliptic.

On the fifth, the sky was cloudy.
On the sixth, only two stars appeared flanking Jupiter, as is seen

$$
\text { East } * \bigcirc *
$$

in the adjoining figure. The eastern one was 2 minutes and the vestern one 3 minutes from Jupiter. They were on the same straight fine with Jupiter and equal in magnitude.

On the seventh, two stars stood near Jupiter, hoth to the east.

Notes for \& re-productions of Siderius Nuncius

William Playfair (I759-1823)

Minard, color lithography

Charles Joseph Minard, in color (I78I-I870)

adapted from Friendly,"The Golden Age of Statistical Graphics," Statistical Science, in press (2008)

Data • Dimensions• Display

"High-dimensional" or "Multivariate" Data and High(er) Dimensional Displays

This map displays 2 quantities as a function of 2 spatial dimensions. ...Is that 4 dimensions?

"High-dimensional" or "Multivariate" Data

 (Astronomy=Biology)

Goodman et al. Nature, 2009
Elde et al. Nature, 2008

How much are we held back today by digital tools?

"Acomputer"

,

Astronomical Medicine am.iic.harvard.edu

Alyssa Goodman (IIC/CfA/FAS) Michael Halle (IIC/SPL/HMS) Ron Kikinis [SPL/HMS]

Douglas Alan (IIC)
Michelle Borkin (IIC) Jens Kauffmann [CfA/IIC]

Erik Rosolowsky [CfA]
Nick Holliman [U. Durham)

The AstroMed Story

TED
 Ideas worth
 spreading

Themes
Speakers
Talks

TED Conferences	TED Conversations	MEw
About TED		
TEDx Events	TED Community	TED Blog
TED Prize		TED Initiatives
TED Fellows		
	Q Search	

TED Fellows The TED Fellows Directory > Michelle Borkin

TED켸obal 2009

Bio

Michelle Borkin works on creating new approaches to interdisciplinany scientific imaging, data exploration and image analysis with a focus on 3D visualization. She wrote her undergraduate junior and senior theses on the application of medical imaging programs to astronomical data and has continued this research as

Hanvard's Initiative in Innovative Computing. She works with the developers of medical visualization tools to improve their effectiveness in multiple

Q\&A

What projects are you working on now that are most meaningful to you?

My current primany focus is visualizing and analyzing data from the "Multiscale
Hemodynamios' project, a collaboration of cardiologists, physioists, and computer scientists to combine fluid dynamios simulations of bloodflow with patient data to diagnose and treat heart disease. The "dream come true" outcome would be the development of a bedside
supercomputer system that could be placed in a patient or operating room allowing a doctor to visualize a patients coronany arteries in real-time 3D, overlaid with a bloodflow simulation.
A physician could instantly identify areas of concern and take action such as inserting a stent to prevent a heart attack!

C®MPLETE Perseus

"Astronomical Medicine"

" z " is depth into head
" z " is line-of-sight velocity

C®MPLETE Perseus

Perseus

What...

...is easier now than before?

fast computation, animation, 3D
...was easier before than now?
craftsmanship
...should be easier in the future? modular craftsmanship, linked views

The "Easier" Future: Modular Craftsmanship

The Future we can see from "now"...

more display modes available (3D PDF, touch interfaces, stereo+) re-usable tools/mashups (Many Eyes, crowdsourcing) live, interactive linked views (DataDesk, GapMinder,WWT, Dendroviz)

Unsolved Questions...

(feasibility of) templates/language (e.g. Grammar of Graphics) improved graphical representation of uncertainty

display modes

3D PDF

Figure 2 | Comparison of the 'dendrogram' and 'CLUMPFIND' feature-
identification alsorithms as applided to ${ }^{\circ}$ CO enission from the e1448 region of Per seus.a, 3D vis ullization of the surfaces indicated by colours in the dendrogram shown in c Purple illustrates the smalest scale self. gravitating structures in the region corresponding to the lewes of the dendrograms pink shows the smalkest surfices that contain distinct selfgravitating laves widt in thems, and green corr esponds to the surfice in the
data cube containing all the signifiant emission Dendrogram brandhes correspanding to sedf-gravituting objects have been highlighted in yedlo
 the virinl parameta is sess than 2 The x - y locations of the four 'self
gravitai ing' leaves labelkd vitit billiard balls are the same as thoses shown in gravitating' keaves labelled wift billiard balk are the same as those shown in Fig. 1. The 3Dvis unlizations show pasition-position-velodty ($p-p-p$) space.
RA, right ascension dec, declination. For comparison with the obility of dendrograms (c) to tradk hiecrarchical structure, d shows apseendodendrogram of the CUMMPIND segmentation (b), with the same four
labds used in Fig a and in \mathbf{a}. As 'clumps' are not allowed to belong to structures, each pseudo-branch ind issimply aseries of lines connecting fie maximum e mis sion vilue in each dump to the firesthold value A very yrge
numbe of dumps appears in b becuuse of the sensi wity of CLUMPNDDto number of cumps appears in \mathbf{b} because of the sensitiovity of CLUMP A ND To noise and small-sale structure in the dath. In the online PDF version, the 3D on and off (intanction requires Adobe Acrobat version 7.0. of or higher). In the printed varsian, the front fice of each 3D cube (the 'home' view in the intacative onl ine version) corresponds exactly to the pakh of sky shown in Fig 1, and velocity with respect to the Local Standard of Rest increases from
data, CLUMPHND typically findsfeatures ona limited range of scales, above but close to the physical resolution of the data, and its resultscan above but cosesto the physical resolution of the data, and its resul tac can
be overly dependent on input parameters. By turing CLUMPFIND's two free parimeters, the sime moleculur-line data set' can be used to show either that the frequency distribution of clump mass is thesame as the initial mass function of stars or that it follows the much shallower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).
Four yeans before the advent of CLUMPFIND, "structure trees" were proposed as a way to characterixe douds' hier archical structure
sing 2D maps of column density. With this early 2D work as inspir tion, we have developed a structure-identification algorithm that
 in easily visualized representation called a ' dendrogram ${ }^{310}$. Al thoug well developed in other duta-intensive fields ${ }^{11,12}$, it is curious that the application of tree methodologies so far in astrophysics has been rare, and almost exclusively within the area of gilaxy evolution, wher merger treer' are being used with increasing frequenc y^{13}
Figure 3 and its legend explain the construction of dendrogram俍 ma of emission merge with each other, and its implementation is explained in Supplementary Mehods. Critically, the dendrogrram is sensitivity to algorithm parameters. To make graphical presentatio possible on paper and 2D screens, we'flatten' the dendrograms of 3D ata (see Fig. 3 and its legend), by sorting their brancher' to no cross, which eliminates dimensional information on the x axis while preserving all information about connectivity and hierarchy 1en anlines) and a sorted dendrogram (Fis 2c)
online) and a sorted dendrogram (Fig. 2c)
llows for theestimation arfices, such as radius (R), velocity disp volumes bounded by iso(L). The wol umes can have any shape, andin ion (σ_{v}) and luminosity apecially elongated fert work ${ }^{14}$ wefocus on ig. 2a). The luminosity is an approximete $M_{\text {at }}=-X_{13 c O} L_{13 C}$, where $X_{13 c}-8.0 \times 10^{20} \mathrm{~cm}^{2} K^{-1}$
 The derived values for sime, mass and vdodity dispersion can then be sed to estimate the role of self.gravity at each point in thehierarchy, used to estimate the tole of selp-gravity at each point in the hierarchy, In principle, extended portions of thetree (Fig. 2, yellow highlighting) where $\alpha_{\text {ob }}<2$ (where gra vitational energy is comparable to or larger han linetic energy) correspond to regions of $p-p-v$ space whereself gravity is significint. As $\alpha_{o b a}$ only represents the ratio of kineticener हr ogravitational energy at one point in time, and does not explicitly apture external over-pressure and/or magnetic heldsk, its measured value should only ye used as a guide to the longevity (boundedness) of any particular feature.

Figure 3| Schematic illustration of the dendrogram processs Shown is the construction of a dendrog am from a hypothetial ane dimensional amission profilie (black). The dendrogram (blue) can be constructed by dropping'a teet constant emision lvel (purple) from moweve in tiny steps
(exagerated in size here, light lines) until all thelocal maxima and magers are found, and connected as shown The inkrsection of a testlevel with the amission is a set of points (for example the light purple dots) in one imension a planar curve in tro dimensions, and an isosurface in firee dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
 an a fat page as fully representing dendrograms for 3D data cubes would
require four dimensions.

desktop

Slideshow：Tabletop Computers Continued
 By Meredith Ringel Morris
 First Published December 2008

Email 盛Print Comments（1）国 Reprints 目 Newsletters
－Del．icio．us 鄙 Diga $/ \%$ Slashdot

PHOTO：HAO JIANG，DANIEL WIGDOR，CLIFTON FORLINES，AND CHIA SHEN
UBITABLE：Users can interact with surface computers through auxiliary devices，such as laptops，phones，and PDAs．The display on the auxiliary device can convey private or sensitive content to a single user，while group－ appropriate content can appear on the tabletop display．Chia Shen and her colleagues at Mitsubishi Electric Research Laboratories，in Cambridge，Mass．， have explored auxiliary interactions with surface computers in their UbiTable project，in which two people with laptops collaborate over a tabletop display． Recently，Shen expanded the UbiTable into an interactive room called the WeSpace．People can share data on their laptops with other people in the room，using both a table and a large display wall．Here，three Harvard University astrophysicists discuss radio and IR spectrum images using the WeSpace．

Touch Interfaces

movie courtesy Daniel Wigdor, taken at MERL, Kendall Square, Cambridge
...why we must
explain that...
"This is not art."

Data Viz at its Best: Baby Name Wizard's Name Voyager from Martin Wattenberg

Many Eyes:

re-usable tools + crowdsourcing

Martin Wattenberg \& Fernanda Viegas (now Google, formeriy IBM)

THE MILKY WAY PRQJECT

HOME TAKE PART ABOUT TUTORIAL LOG IN GALACTOMETER ${ }^{\text {TM }}$

WELCOME

The Milky Way Project aims to sort and measure our galaxy, the Milky Way. Initially we're asking you to help us find and draw bubbles in beautiful infrared data from the Spitzer Space Telescope.

Understanding the cold, dusty material that we see in these images, helps scientists to learn how stars form and how our galaxy changes and evolves with time.

Click here to see the full tutorial or browse the site to find out more about the science behind the Milky Way Project.

> What riles up the ISM?

Data Desk, c. I986(!)

If only DataDesk were >2D...??

Gapminder (today)

CAIUIINIDIE: WORLD

HOME
LABS

C Reset Open graph menu

Wealth \& Health of Nations

This graph shows how long people live and how much money they earn. Click the play button to see how countries have developed since 1800 .

Explore more of Gapminder World:
\square Browse example graphs
En Learn to select indicators and more
Z Download PDF Guide
Latest news:

- "Finding data in Gapminder World just got easier"
- "Updated data page - quickly search \& visualize indicators"
\# Share

See also:

- 200 years that changed the world
- Stop call them "developing countries"

http://gapminder.org

Gapminder for All =
 Google Motion Charts

Google
 google motion charts
 About $2,380,000$ results (0.41 seconds)

8 Everything

- Images

酋 Videos
問 News

- Shopping
- More

Any size

Large
Medium
Icon
Larger than.
Exactly.
Any type
Face
Photo
Clip art
Line drawing
Any color
Full color
Black and white

Search
Advanced search

"Modular Craftsmanship"= Google Motion Charts with R

google-motion-charts-with-r
 Using the Google Visualisation API with R

Project Home Downloads Wiki Issues Source

Summary Updates People

Project Information

Star project
Activity ull High
Project feeds
Code license
GNU GPL v3
Labels
R, Visualisation, MotionChart, Animation
83 Members
markus.g...@googlemail.com
1 committer

Links

External links
Google Visualization API Gallery
Google Visualization API Terms of Service Examples: googleVis
CRAN: googleVis
chainladder

NEWS [2011-02-07]: Version 0.2 .4 of the googleVis R package is out.

- Motivation
- Introduction
- Examples
- Screenshots
- Installation
- From Google Code
- Using googleVis
- Contact
- Presentations
- Case studies
- Links
- Other R packages
- News

Motivation

In 2006 Hans Rosling gave an inspiring talk at TED about social and economic developments in the world over the last 50 years, which challenged the views and perceptions of many listeners. Rosling had used extensive data analysis to reach his conclusions. To visualise his talk, he and his team at Gapminder had developed animated bubble charts.

Rosling's presentation popularised the idea and use of interactive charts, and as a result the software behind Gapminder was bought by Google and integrated as motion charts into their Visualisation API one year later.

In 2010 S.P. Saaibi presented at the R/Rmetrics Workshop on Computational Finance and Financial Engineering the idea to link Google motion charts with R using the R.rsp package.

Inspired by those talks and the desire to use interactive data visualisation tools to foster the dialogue between data analysts and others the authors of this page started the development of the googleVis package.

Press Releases
－Chronological
－By Subject
－Outside Institutions

What＇s Happening

Archlve
VIsuals
－Image Use Policy
Update Notifications
－Mailing List
－RSS Feed（XML）

Reforences

－Fast Facts
－Press Kit（．pdi）
－Fact Sheet（．pdi）
－Field Guides
－Glossary
Media Contacts

HH46／47

This image from NASA＇s Spitzer Space Telescope transforms a dark cloud into a silky translucent veil，revealing the molecular outflow from an otherwise hidden newborn star．Using near－infrared light，Spitzer pierces through the dark cloud to detect the embedded outflow in an object called HH 46／47．Herbig－Haro (HH) objects are bright，nebulous regions of gas and dust that are usually buried within dark clouds．They are formed when supersonic gas ejected from a forming protostar，or embryonic star， interacts with the surrounding interstellar medium．These young stars are often detected only in the infrared．

The Spitzer image was obtained with the infrared array camera．Emission at 3.6 microns is shown as blue，emission from 4.5 and 5.8 microns has been combined as green，and 8.0 micron emission is depicted as red．

HH4647

- Alyssa_Goodman's photostream

This photo also belongs to:

+ astrometry (Pool) \times

Tags
(7) Astrometrydotnet:version=10145
(5) Astrometrydotnet:id=alpha-200901. 20629873
(5) Astrometrydotnet:status=solved \times

Add a tag
Additional Information
(C) Al rights reserved (edit)

- Anyone can see this photo (edit)
- Add to your map
- Taken on December 12, 2003 (edit)
- Photo stats
- Vewed 7 times (Not including you)
- Edit title, description, and tags
 Harvard-Smithsonian Center for Astrophysics Key Collaborators: H. Arce, C. Beaumont, M. Borkin, M. Halle, J. Kauffmann, J. Pineda, E. Rosolowsky, R. Shetty Jan Vemeer The Astronomer: (1668)

The dream scenario...

Seamless Astronomy

Alberto Accomazzi, Doug Burke, Alberto Conti, Carol Christian, Mercé Crosas, Raffaele D’Abrusco, Rahul Davé, Christopher Erdmann, Jonathan Fay, Jay Luker, Alyssa Goodman, Michael Kurtz, Gus Muench, Alberto Pepe, Curtis Wong

The dream scenario...

Challenge \#I: 3D Selection

visit our new "Viz-e-Lab"!

Challenge \#2:Too many windows...

Challenge \#3:

What does "Publication-Quality" Graphics Mean in an Interactive 3D World?

Goodman, Rosolowsky, Borkin, Foster, Halle, Kauffmann \& Pineda, Nature, 2009

The Art of Numbers

The Art of Numbers

Empirical and Mathematical Reasoning 19. The Art of Numbers: The Visual Display of Information
Professor Alyssa A. Goodman (Astronomy)
Course website
Duration: 05:30

Alyssa A. Goodman Harvard University (HCO+|IC) Smithsonian Astrophysical Observatory Scholar-in-Residence, WGBH

