Seamless Astronomy Enabled by WWT

Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics

The Slide to rule them All...

Collaborators:

Alberto Accomazzi, Douglas Burke, Raffaele D'Abrusco, Rahul Davé, Christopher Erdmann, Pepi Fabbiano, Alyssa Goodman, Jay Luker, Gus Muench, Michael Kurtz \& Alberto Pepe (Harvard-Smithsonian CfA); Eli Bressert (U. Exeter);Tim Clark (Massachusetts General Hospital/Harvard Medical School); Mercé Crosas (Harvard Institute for Quantitative Social Science; Chris Borgman (UCLA); Jonathan Fay \& Curtis Wong (Microsoft Research)

Microsoft
Research

The Seamless Astronomy Group at the Harvard-Smithsonian Center for Astrophysics brings together astronomers, computer scientists, information scientists, librarians and visualization experts involved in the development of tools and systems to study and enable the next generation of online astronomical research.

Current projects include research on the development of systems that seamlessly integrate scientific data and literature, the semantic interlinking and annotation of scientific resources, the study of the impact of social media and networking sites on scientific dissemination, and the analysis and visualization of astronomical research communities. Visit our project page to find out more.

Sponsors of Seamless Astronomy include NASA, NSF and Microsoft Research.
Contact us. For inquiries or questions, please email Sarah Block at sblock@cfa.harvard.edu. Alternatively you can contact or visit us at:
SEAMLESS ASTRONOMY TEAM
HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS
60 GARDEN STREET, MS 42
CAMBRIDGE, MA 02138

Events

Twitter
Links
Announcements
Latest news
augustmuench: Farmers'
Almanac foresees a rough
winter ahead \& dowser finds
huge body of dirty water under
the Longfellow bridge
http://t.co/DwL2mMT
albertoconti: RT
@james_s_bullock: Why doesn't the History Channel just change its name to the Bigfoot Lover's Pseudoscience
Channel?http://j.mp/riKp4C
albertoconti: RT @johnmaeda:
"Not everything knowable can be articulated in propositional form." http://t.co/ZYD43ER
albertoconti: RT
@sarahkendrew: looks
awesome! \>\>
@astrobetter: New Post:
iObserve: The Astronomical Observing App We've Been Waiting For http:/ ...
augustmuench: my post 'on open science and anonymous peer review

Microsoft ${ }^{\circledR}$ Research

WorldWide Telescope

View and compare images from across the electromagnetc spectrum

Much more than "just" the sky at night!
3D features can take you to other planets, stars \& galaxies.

(Simple Application Messaging Protocol)

link to I2/2010 IVOA recommendation

wwtambassadors.org

worldwidetelescope.org
labs.adsabs.harvard.edu/ui/

(My) Research

Serpens

workmer

Ophiuchus

http://www.worldwidetelescope.org/COMPLETE/WWTCoverageTool.htm

A True Story

Hope Chen
Brand-new Harvard Grad Student Project:"COMPLETE" Ophiuchus

Ophiuchus Paper complete team Elsewhere

Overview Messages \quad To-Dos \quad Calendar	Writeboards	Time	Files

Back to Dashboard | Switch to a different project

Ophiuchus Paper complete team Elsewhere

Overview	Messages	To-Dos	Calendar	Writeboards	Time
			Files		

«All Messages

WISE Image of Rho Oph

From: Alyssa Goodman
Date: Wed, 28 Sep 2011 at 11:54am

Hi Hope,
In preparing a talk for tomorrow, I "Googled" "Star Formation in Ophiuchus," just to see what would happen. Amazingly, I found this: http://wise.ssl.berkeley.edu/gallery rho ophiuchi.html.

Check out the fabulous data we can have from WISE!

Best,
Alyssa

WEDNESDAY, 14 SEPTEMBER 2011
Writeboard Data sources \& their value
MONDAY, 5 SEPTEMBER 2011
Comment Re: Movies are made for $12 \mathrm{CO} \& 13 \mathrm{CO}$ line data
File wrov Oph 13CO.mov
File wov Oph 12CO.mov
Message Movies are made for $12 C O \& 13 C O$ line data

Paola Caselli
Hasn't signed in recently
Erik Rosolowsky
Hasn't signed in recently
Di Li
Hasn't signed in recently
Friends of COMPLETE
Hope Chen
Latest activity about 22 hours ago

Witte-field Infrared Survey Explorer

WISE Home
Images
Movies \& Simulations
Slideshows
Podcasts
III. WWT Guided Tour

Multimedia Gallery

WorldWide Telescope

Check out the WorldWide Telescope
Many objects featured in WISE's infrared images look radically different in visible light. You can check out these differences yourself by using the WorldWide Telescope (WWT). You can also use WWT to compare WISE images to other data sets from missions like Spitzer, Hubble, Chandra or previous infrared surveys. Visualizing WISE images in WWT helps place them in their broader context in the sky.
The WorldWide Telescope (WWT) is a free Web 2.0 visualization software environment that enables your computer to function as a virtual telescope-bringing together imagery from the world's best ground- and space-based telescopes for the exploration of the universe.
The WorldWide Telescope can be downloaded or used online for free from www.worldwidetelescope.org.

To Load WISE Images into the WWT:

1. Download the WISE image onto your computer.
2. Open WWT. On the bottom of the screen, make sure you are looking at the "Sky" and have the "Digitized Sky Survey" as the imagery set.
3. Click on Explore $-\gg$ Open $-->$ Image, to select the WISE image that you wish to load.
4. Use the "Image Crossfade" to compare the WISE infrared view with the visible light
5. view.
6. You can also compare WISE images with previous infrared surveys (such as IRAS) by

	All-Sky Surveys

Tuesday, December 6, 2011

Choosing ADS link gives...

SAO/NASA Astrophysics Data System (ADS)

Query Results from the Astronomy Database

Retrieved $\mathbf{2 0 0}$ abstracts, starting with number $\mathbf{1}$. Total number selected: $\mathbf{4 3 9}$.

Starting with ADS Labs gives...

ads labs

star formation in ophiuchus

X Astronomy $\hat{\boldsymbol{v}}$ SEARCH
 Examples

Author First author Title Object

Sort by
Most recent (e)

- Most relevant (e)

Most cited (3)
Most popular (e)

Explore the field
What people are reading (e)
What experts are citing
Reviews and introductory papers (e)
myADS articles \quad Recently viewed articles

Please login to enable personal content.

The ADS is operated by the Smithsonian Astrophysical Observatory under NASA Grant NNX09AB39G

ads labs
ADS Labs
ADS Beta Search
Home \quad Labs Home \quad ADS Classic
star formation in ophiuchus - Most relevant
NO FILTERS APPLIED

1. 2009ApJS..181..321E The Spitzer c2d Legacy Results: Star-Formation Rates and Efficiencies; Evolution and Lifetimes
Evans, Neal J., Il; Dunham, Michael M.; Jørgensen, Jes K.; Enoch, Melissa L.; Merín, Bruno; van Dishoeck, Ewine F.; Alcalá, Juan M.; Myers, Philip C.; Stapelfeldt, Karl R.; Huard, Tracy L.; and 8 coauthors

The Astrophysical Journal Supplement, Volume 181, Issue 2, article id. 321-350 (2009). Apr 2009
2. 1998A\&A...336..150M The initial conditions of star formation in the rho Ophiuchi main cloud: wide-field millimeter continuum mapping
Motte, F.; Andre, P.; Neri, R.
Astronomy and Astrophysics, v.336, p.150-172 (1998) Aug 1998
3. 1987IAUS..115....1L Star formation - From OB associations to protostars Lada, Charles J.
IN: Star forming regions; Proceedings of the Symposium, Tokyo, Japan, Nov. 11-15, 1985 (A87-45601 20-90). Dordrecht, D. Reidel Publishing Co., 1987, p. 1-17; Discussion, p. 17, 18. n/a 1987
4. 1993AJ....106.2005G The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius: A 2.2 micron speckle imaging survey Ghez, A. M.; Neugebauer, G.; Matthews, K.
Astronomical Journal (ISSN 0004-6256), vol. 106, no. 5, p. 2005-2023 Nov 1993
5. 1987ApJ...312..788A Spectral evolution of young stellar objects

Adams, Fred C.; Lada, Charles J.; Shu, Frank H.
Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 312, Jan. 15, 1987, p. 788-806. NASA-supported research. Jan 1987
6. 1993ApJ...406..122A Submillimeter continuum observations of Rho Ophiuchi A - The candidate protostar VLA 1623 and prestellar clumps Andre, Philippe; Ward-Thompson, Derek; Barsony, Mary Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 406, no. 1, p. 122-141. Mar 1993
7. 2007ApJ...663.1069F Infrared Extinction toward Nearby Star-forming Regions Flaherty, K. M.; Pipher, J. L.; Megeath, S. T.; Winston, E. M.; Gutermuth, R. A.; Muzerolle, J.; Allen, L. E.; Fazio, G. G.
The Astrophysical Journal, Volume 663, Issue 2, pp. 1069-1082. Jul 2007
8. 1995ApJ...443..625S A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus star-forming regions
Simon, M.; Ghez, A. M.; Leinert, Ch.; Cassar, L.; Chen, W. P.; Howell, R. R.; Jameson, R. F.; Matthews, K.; Neugebauer, G.; Richichi, A.
Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 443, no. 2, p. 625-637 Apr 1995 1978ApJ...224..857E A study of the Taurus dark cloud complex

TAU-AUR REGION (30)
IC 348 (29)
\square ASSOC ॥ SCO (28)

- ㅅ

Star (158)
Radio Source (81)
Infrared Source (39)
Galaxy (30)
X-Ray Source (26)
Vizier Tables
Refereed status
11. 1999ApJJ..525..440L Low-Mass Star Formation and the lnitial Mass Function in the p Ophiuchi Cloud Core
Luhman, K. L.; Rieke, G. H.
The Astrophysical Journal, Volume 525, Issue 1, pp. 440-465. Nov 1999
12. 1998A\&A...338..897K Interstellar reddening from the HIPPARCOS and TYCHO catalogues. I. Distances to nearby molecular clouds and star forming regions Knude, J.; Hog, E.
Astronomy and Astrophysics, v.338, p.897-904 (1998) Oct 1998
13. 2006 ApJ...646.1009K The Large- and Small-Scale Structures of Dust in the Starforming Perseus Molecular Cloud
Kirk, Helen; Johnstone, Doug; Di Francesco, James
The Astrophysical Journal, Volume 646, Issue 2, pp. 1009-1023. Aug 2006

Also yesterday...

Chris Beaumont
Hawaii-Harvard Grad Student Proposal: MI7 Polarimetry
ads abs

ADS Labs
ADS Beta Search
Home Labs Home \quad ADS Classic
Help
Sign on

author:"dotson" polarimetry - Most relevant

	Author:	Dotson, $\mathrm{J}[\mathrm{X}]$
	AND	Object:
Other object $[\mathrm{X}]$		
AND	Refereed:	Refereed $[\mathrm{X}]$

FILTER BY:
Authors
Dotson, J (45)
Dowell, C (33)
Hildebrand, R (33)
Novak, G (27)
Vaillancourt, J (21)

Keywords

Archives

Missions
SIMBAD Objects
Other object (15)
GAL CENTER (7)
SGRB2 (7)
M 17 (6)
18P 78 (4)
OMC-1 (4)
ORI MOL CLOUD (4)
\square SAGITTARIUS A REGION (4)
(v)

Radio Source (7)
$-\underline{\operatorname{star}(5)}$
Infrared Source (4)
Galaxy (1)

1. 2000PASP...112.1215H A Primer on Far-Infrared Polarimetry

Hildebrand, R. H.; Davidson, J. A.; Dotson, J. L.; Dowell, C. D.; Novak, G.; Vaillancourt, J. E.
The Publications of the Astronomical Society of the Pacific, Volume 112, Issue 775, pp. 1215-1235. Sep 2000 Matches in Abstract / Matches in fulltext
4. 2000ApJS..128..335D Far-Infrared Polarimetry of Galactic Clouds from the Kuiper Airborne Observatory Dotson, Jessie L.; Davidson, Jacqueline; Dowell, C. Darren; Schleuning, David A.; Hildebrand, Roger H. The Astrophysical Journal Supplement Series, Volume 128, Issue 1, pp. 335-370. May 2000

Matches in Abstract / Matches in fulltext
5. 1998ApJ...504..588D Submillimeter Array Polarimetry with Hertz

Dowell, C. Darren; Hildebrand, Roger H.; Schleuning, David A.; Vaillancourt, John E.; Dotson, Jessie L.; Novak,
Giles; Renbarger, Tom; Houde, Martin
Astrophysical Journal v. 504, p. 588 Sep 1998
Matches in Abstract / Matches in fultext
6. 2010ApJS.. $186 . .406 \mathrm{D} 350 \mu \mathrm{~m}$ Polarimetry from the Caltech Submillimeter Observatory

Dotson, Jessie L.; Vaillancourt, John E.; Kirby, Larry; Dowell, C. Darren; Hildebrand, Roger H.; Davidson, Jacqueline A.
The Astrophysical Journal Supplement, Volume 186, Issue 2, pp. 406-426 (2010). Feb 2010
Matches in Abstract / Matches in fullitext
9. 2004ApJ...604..717H Tracing the Magnetic Field in Orion A

Houde, Martin; Dowell, C. Darren; Hildebrand, Roger H.; Dotson, Jessie L.; Vaillancourt, John E.; Phillips,
Thomas G.; Peng, Ruisheng; Bastien, Pierre
The Astrophysical Journal, Volume 604, Issue 2, pp. 717-740. Apr 2004
Matches in Abstract / Matches in fulltext
13. 2002ApJ...569..803H On the Measurement of the Magnitude and Orientation of the Magnetic Field in Molecular Clouds
Houde, Martin; Bastien, Pierre; Dotson, Jessie L.; Dowell, C. Darren; Hildebrand, Roger H.; Peng, Ruisheng;
Phillips, Thomas G.; Vaillancourt, John E.; Yoshida, Hiroshige
The Astrophysical Journal, Volume 569, Issue 2, pp. 803-814. Apr 2002
Matches in Abstract / Matches in fulltext
back to...
CQMPLETE

C©MPLETE

C9MPLETE
Citation Network (from ADS Labs)
many thanks to A. Accomazzi,
R. Davé, M. Kurtz, G. Di Milia, A. Pepe

Yes, this is Google Sky...WWT version coming soon!
c. 2012

The

 ADS All-Sky Survey$$
\begin{gathered}
\text { A. Goodman (CfA) } \\
\text { A. Muench (CfA) } \\
\text { A. Pepe (CfA) }
\end{gathered}
$$ with A.Accomazzi (CfA), A. Conti (STSCI), R. Davé (CfA) T. Boch (CDS), J. Fay (MSR), D. Hogg (NYU)

The Future

universe3d.org

The Milky Way in Molecular Clouds

Dame, Hartman \& Thaddeus 1997

AstronomicalMedicine@|C-C®MPLTE

Linking scientific data, publications, and communities

Projects

Seamless integration of scientific data and literature
Astronomical data artifacts and publications exist in disjointed repositories. The conceptual relationship that links data and publications is rarely made explicit. In collaboration with ADS and ADSlabs, and through our work in conjunction with the Institute for Quantitative Social Science (IQSS), we are working on developing a platform that allows data and literature to be seamlessly integrated, interlinked, mutually discoverable.

Astronomy Dataverse

Astronomers use, peruse and produce vast amounts of scientific data. Making these data publicly available is important because it supports the reproducibility of results, and ensures their long term preservation and reuse. While raw astronomical data are normally stored and made public available via large-scale archives, reduced data are often left out entirely from both astronomical archives and related publications.

In a pilot study in 2011, we are evaluating the Dataverse, an open data archive hosted by Harvard University and managed by the Institute for Quantitative Social Science (IQSS), as a project-based repository for the storage, access, and citation of reduced astronomical_data Wo howo intomionsed a set of 10 astronomers about their needs, and the
prototype CfA Dataverse now online.

WorldWide Telescope (WWT)
WorldWide Telescope provides a rich contextual visualization environment for astronomical data. Our group collaborates with the WWT Team at Microsoft Research both to enrich WWT for use in research as well as in teaching. On the research end, we seek to integrate WWT "Seamlessly" with VAO-sponsored projects, as well as with ADS Labs. On the teaching end, we founded and now run the WorldWide Telescope Ambassadors outreach effort.

Events

Twitter
Links

Latest news
augustmuench: Farmers' Almanac foresees a rough winter ahead \& dowser finds huge body of dirty water under the Longfellow bridge http://t.co/DwL2mMT
albertoconti: RT
@james_s_bullock: Why doesn't the History Channel just change its name to the Bigfoot Lover's Pseudoscience Channel?http://j.mp/rIKp4C
albertoconti: RT @johnmaeda: "Not everything knowable can be articulated in propositional form." http://t.co/ZYD43ER
albertoconti: RT
@sarahkendrew: looks awesome! \>\> @astrobetter: New Post: iObserve: The Astronomical Observing App We've Been Waiting For http:/ ...
augustmuench: my post `on open science and anonymous peer review

All Astronomy Dataverses >
1.2 Meter CO Survey Dataverse

Search User Guides Report Issue

Dataverse Network ${ }^{\text {" }}$

Log in Create Account

The whole-Galaxy CO survey presented in Dame et al. (2001) is a composite of 37 separate surveys that are described and numbered in Table 1 of the paper. The data from most of these surveys can be accessed by clicking on the survey number in the map below, which is Figure 1 from the paper. Larger composites of these individual surveys are available from the link below. ... more >>

Online Maps of the Galaxy \& the Universe

aagie Alyssa Goodman
If you know of "viewers" for maps of the Galaxy or Universe online, add them here: tinyurl.com/universe3d, and pass on this link too.
27 Sep

Pinky: "Gee, Brain, what do you want to do tonight?" The Brain: "The same thing we do every night, Pinky—try to take over the world!"

This form is being used to collect information about online resources that offer data-driven views of the Milky Way or the Universe beyond. Ultimately, the information here will be used to populate a new "aggregator" service at universe3d.org.

* Required

Name of Site/Page/Service *

URL: *
enter the main URL for the site

Alternate URL:

if there is more than 1 URL associated with the service, enter it, or a note about it, here

Contact email or URL for site creator/maintainer, if known:

Your email address if you're willing to elaborate on your answers here, should we have questions..
(Optional, but helpful to us!)

If you'd like to, please describe what you think this site is useful for as it stands...

Software tools used
Please describe, in free text format, anything you know about how the site works, from a software point of view.

The Milky Way in Molecular Clouds

Dame, Hartman \& Thaddeus 1997

Tools for Taking over the World:

WWT + more SAMP-enabled tools + LinkedViews (+...)

Harvard IIC Home
AM Project
overview
what's new?
press
about us
contact us
Research
background
projects
papers
images
movies
Software
overview
Slicer: getting started
Slicer 3
fits 2itk
OsiriX
DendroSta
Links
Center for Astrophysics
COMPLETE Survey
Surgical Planning Lab
3D Slicer
related projects
User
Login
Search
Search
Titles Text

The DendroStar Applet for L1448: Try me!

Tint: \bigcirc
Suppress tint:
Reset:

COMPLETE Perseus Column Density (Dust Emission, Extinction \& Gas Emission)

figures: Goodman, Pineda \& Schnee 2009 cf. Schnee et al. 2005, 2006, 2008; Pineda et al. 2008

Seamless Astronomy Enabled by WWT

Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics

From: Abstract Service ads@cfa.harvard.edu
Subject: myADS Notification (Astronomy database)
Date: March 23, 2010 12:19:23 AM EDT
To: Alyssa Goodman

myADS Personal Notification Service for Alyssa Goodman Tue Mar 23 00:19:23 2010 Astronomy database

ADS Main Queries

\qquad
GOODMAN, ALYSSA -
Citations: 3310 (total 4002)
2010NewA...15..444K: Karatas,+: New intrinsic-colour calibration for uvby-beta photometry
AQ 2010MNRAS.403.1054D: Dabringhausen,+:
What's new Mass loss and expansion of ultra compact dwarf galaxies through gas exp stellar evolution for top-heavy s mass functions
2010ApJ...713..269F: Federrat| Collapse and Accretion in Turb

Clouds: Implementation and C Sink Particles in AMR and SPH 2010ApJ...712.1403P: Pech,+: a Recent Bipolar Ejection in the Hierarchical Multiple System IR 2422
Astrophysical Journal 2010ApJ...712.1137K: Kauffma
Astronomy 8
Astrophysics
Astronomy \& Astrophysics Supplements

From: Kayak Alert alert@kayak.com
Subject: Your KAYAK Fare Alert: Boston (BOS) > Munich (MUC)
Date: March 26, 2010 3:52:30 AM EDT
To: Alyssa Goodman
Reply-To: Kayak Alert alert@kayak.com

Flight Deals Hotel Deals
Vacation \& Package Deals
Cruise Deals

Fare Alert

Favorite Authors - Recent Papers
No new articles found

PROPER MOTION, etc - Recent Papers

2010A\&A...511A..90B: Breddels,+: Distance determination for RAVE stars using stellar

The "travel" analogy

 seems to resonate best...Boston (BOS) to Munich (MUC), round trip
Saturday, Jun 12 to Saturday, Jun 19
$\$ 1649 \$ 0$ since yesterday per person, economy, nonstop

Check Now

Today's best fares - cheapest 3 of 3 airlines (Mar 26, 3:51a EDT)

Don't miss out on big savings ..
Get deals by email

Low Fares* found from Boston (BOS) to:
\$99+ Baltimore
\$144+ Orlando
\$146+ Washington
\$152+ Atlanta
$\$ 184+$ Fort
Lauderdale
"Seamless Astronomy" (Tools)

 ima of emission merge with each other, and its implementation
explainedin Sin Supplementary Method. CCiticall, the dendrogram is
determined almost entirely by the data itself, and it has negligible
 possible on paper and 2 D screens, we 'flatten' the dendrograms of 3 D
data see Fig. and
cross, which eliminates legend), by sorting theinsal 'information on the x xaxis whis while cross, which elimimates dimensiona information on the x axis
preserving all information about connectivity and hierarchy.
Numbered billiard ball 'labels in the figures let the reader matach Numbered 'illiard ball' labels in the figures let the reader match
features between a. m map (Fig. 1), , in interactive 3D map (Fig. 2a features between a 2 map (Firg. 1), an inter
online) and a sorted dendrogram (Fig. 2c).
A dendrogram of a spectralal-line data cube allows for the estimation
of key physical properties associated with volumes bounded by isoof key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R) velocity dispersion $\left(\sigma_{\nu}\right.$, and luminosity
(L).The volumes can have any shape, and in other work ${ }^{4}$ we focus on
 the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that $M_{\text {lum }}=X_{13 C O L} L_{13 C O}$, where $X_{13 C O}=8.0 \times 10^{20} \mathrm{~cm}^{2-1} \mathrm{~K}^{-1} \mathrm{~km}^{-1} s$
 reef. 15; See Supplementary Methods and Supplementary fig.
The derived values for size, mass and velocity dispersion can then be
used o e estimete the rele of felf-gravity a each point in the hierarchy,
via calculation of an observed virial parameter, $\alpha_{\text {obs }}=5 \sigma_{v} R / G M$ lum used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of on observed virial parameter,, obs $=5 \sigma_{V} R / G M$ lum
In principle, extended portions of the tree (Fig. 2 , yellow highlighting)
 than kinetic energy) correspond to regions of p - $p-v$ space where self-
gravity s significant. As $\alpha_{\text {oobs }}$ only represents the ratio of kinetic energy gravity is significant. As $\alpha_{\text {obs }}$ only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly co gravitational energy at one point in ime, and does
capture external over--pressure and/or magnetic fields ${ }^{5}$, its measured
value should only be used as a guide to the longevity (boundedness) of value should only be used
any particular feature.

Figure $3 \mid$ Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
construction of dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
 (exaggerated in size here, ight lines) until all the local maxima and mergers
arafound, and connuected a s shown. The intersection of tast tevel with the are tound, and connected as shown. The intersection of a test level with the
emission is ase of points for example the light purple dosts in one
dimension, a planar curve in two timensions and an an isosfrface e in thee
 dimensions. The dendrogram of 3D data shown in Fig. 2 c i is the direct
analogue of the treeshown here only constructed from cisosurface rather
than opoitt intersections. It has been sorted and flattened for reperesentation analogue of the tree shown here. only constructed from isosurface rather
than point intere ins ins. It has been sorted and flatened of representation
on f fat page, as fuly representing dendrograms for 3 D data cubes would
require four dimensions.
64

re proposed as a way to characterize douds hierarchica sine the

AstroBetter
Blogs, Wikis, etc.

Data

\rightarrow
8

"Registries"

DataScope

Disclaimer:This slide shows key exंererpts from within the astronomy community \& excludes more general s/w that is used, such as
Papers, Zotero, Mendeley, Eì. i Note, graphing \& statistics packages, data handling softwiare, search engines, etc.

Data in Literature

Goodman et al. Nature, 2009

