Measuring Turbulent Motions: from Galaxies to GMCs to Star-Forming Cores

Alyssa A. Goodman

Harvard-Smithsonian Center for Astrophysics

Collaborators

Héctor Arce, CfA Joe Barranco, UC Berkeley Javier Ballesteros-Paredes, AMNH Paola Caselli, Arcetri Bruce Draine, Princeton Mika Juvela, Helsinki Sungeun Kim, CfA Kishore Kuchibhotla, MIT Aake Nordlund, Copenhagen **Paolo Padoan**, CfA Örnólfur Einar Rögnvaldsson, Copenhagen Erik Rosolowsky, UC Berkeley Enrique Vazquez-Semadeni, UNAM Jonathan Williams, U. Florida David Wilner, CfA

What did Alyssa Goodman say about "Measuring Turbulent Motions" in Santa Cruz?

The Spectral Correlation Function (SCF)

- Can discriminate amongst observed and simulated spectral-line maps other statistical measures find identical (Rosolowsky, Goodman, Wilner & Williams 1999, ApJ, 524, 887).
- Exhibits power-law behavior as a function of scale, the index of which seems to be excellent diagnostic of the nature of turbulence (Padoan, Rosolowsly & Goodman 2001, ApJ, 547, 862).
- Can map the scale height of a mostly face-on galaxy (the LMC; Padoan, Kim, Goodman & Stavely-Smith 2001, ApJ, 555, 33).
- Should have its greatest use in the fine-tuning of simulations (e.g. Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001, preprint).
- Should be able to find "coherent cores" (see Goodman, Barranco, Wilner & Heyer 1998, ApJ, 504, 223). MHD simulations already show a "turbulent shock origin of cores" (Padoan, Juvela, Goodman & Nordlund 2001, ApJ, 553, 227), as well as "accidental" infall profiles (Padoan et al. 2001, in prep).

Outflows

• Are *definitely* highly **episodic**, and their episodic nature can explain steep observed massvelocity relations (Arce & Goodman 2001, ApJL, 551, L171; Arce & Goodman 2001, ApJ, 554, 132). Influence of episodicity on "driving" turbulence still needs to be understood.

Provacative Suggestion

• The central source of the outflow in **PVCeph** might be **moving at ~10 km s⁻¹** (Arce & Goodman 2001, in prep.).

What is the Spectral Correlation Function?

Figure from Falgarone et al. 1994

SCF, v.1.0 (Rosolowsky et al. 1999)

Figure from Falgarone et al. 1994

Application of the SCF

Data shown: C¹⁸O map of Rosette, courtesy *M. Heyer et al.*

Results: Padoan, Rosolowsky & Goodman 2001.

SCF Distributions

Unbound High-Latitude Cloud

Self-Gravitating, Star-Forming Region

The Spectral Correlation Function as a Function of Spatial Scale

(v.2.0; Padoan et al. 2001)

v.2.0: Scale-Dependence of the SCF

Example for "Simulated Data"

Padoan, Rosolowsky & Goodman 2001

Galactic Scale Heights from the SCF (v.2.0)

HI map of the LMC from ATCA & Parkes Multi-Beam, courtesy Stavely-Smith, Kim, et al.

Padoan, Kim, Goodman & Stavely-Smith 2001

"Fine-tuning Simulations with the SCF"

<u>Data</u>: Hartmann & Burton 1999; <u>Figure</u>: Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001

Comparison with simulations of Vazquez-Semadeni, Ballesteros-Paredes & collaborators shows:

- "Thermal Broadening" of HILine Profiles can hide much of the true(?) velocity structure
- SCF v.1.0 good at picking out shock-like structure in H I maps (also gives low correlation tail)

See Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001.

SCF v.1.0 for NCP Loop

Revealing Shortcomings of a Simulation

Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001

From v-histograms, 64 bins

H I Observations

Thermally Broadened, high therm/turb

H I Observations

Reduce therm/turb x 6 --best match!

H I Observations

The Fine-Tuned Simulation

Sample spectra after velocity scale expanded x6 (to mimic lower ratio of thermal to turbulent pressure)

Mean temperature should really be <<8000 K

and/or

Much more energy input to turbulence (e.g. real SNe) needed

Ballesteros-Paredes, Vazquez-Semadeni & Goodman 2001

What have we learned, lately, from well-matched simulations?

- Realistic core properties, and the IMF can be reproduced from "turbulent fragmentation." (Padoan & Nordlund 2000; Padoan, Juvela, Goodman & Nordlund 2001)
- Reduction in polarization near peaks of SCUBA maps caused by reduced polarization efficiency, not geometry. (Padoan, Goodman, Draine, Juvela, Nordlund & Rögnvaldsson 2001)
- "Infall" can be faked, but not w/o non-LTE radiative transfer. (Padoan et al., in prep.)

What *about* outflows, Mordecai??

- They're highly episodic.
- Much momentum and energy *is* deposited in the cloud (~10⁴⁴ to 10⁴⁵ erg, comparable or greater than cloud K.E.).
- Some cloud features are *all* outflow. That's how much gas is shoved around!

See collected thesis papers of H. Arce. (Arce & Goodman 2001a,b,c,d).

≶ _

c⁰2

0

10

20

Outflow position-velocity diagrams

Arce & Goodman 2001

Mass-Velocity Relations in Episodic Outflows: Steep Slopes result from Summed Bursts

Arce & Goodman 2001

"Giant" Herbig-Haro Flows: PV Ceph

Reipurth, Bally & Devine 1997

A New Proposal: Episodic ejections from precessing or wobbling moving source

Required motion of 0.25 *pc* (*e.g.* 2 *km s*⁻¹ *for* 125,000 *yr or* 20 *km s*⁻¹ *for* 12,500 *yr*)

Arce & Goodman 2001

¹²CO (2-1) OTF Map from **NRAO 12-m**

Red: 3.0 to 6.9 km s⁻¹ Blue: -3.5 to 0.4 km s⁻¹

Arce & Goodman 2001

α (1950)

