Alyssa A. Goodman • Harvard University

Relative Strengths

The Classic

Copgrighted Material

SECOND EDITION
The Visual Display of Quantitative Information

EDWARD R. TUFTE

Copryighted Material
1983

Modern "How-to"

2011

Case Studies

2012

Principles of high-dimensional data visualization in astronomy

A.A. Goodman*

Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
Received 2012 May 3, accepted 2012 May 4
Published online 2012 Jun 15

Key words cosmology: large-scale structure - ISM: clouds - methods: data analysis - techniques: image processing techniques: radial velocities

Astronomical researchers often think of analysis and visualization as separate tasks. In the case of high-dimensional data sets, though, interactive exploratory data visualization can give far more insight than an approach where data processing and statistical analysis are followed, rather than accompanied, by visualization. This paper attempts to charts a course toward "linked view" systems, where multiple views of high-dimensional data sets update live as a researcher selects, highlights, or otherwise manipulates, one of several open views. For example, imagine a researcher looking at a 3D volume visualization of simulated or observed data, and simultaneously viewing statistical displays of the data set's properties (such as an $x-y$ plot of temperature vs. velocity, or a histogram of vorticities). Then, imagine that when the researcher selects an interesting group of points in any one of these displays, that the same points become a highlighted subset in all other open displays. Selections can be graphical or algorithmic, and they can be combined, and saved. For tabular (ASCII) data, this kind of analysis has long been possible, even though it has been under-used in astronomy. The bigger issue for astronomy and other "high-dimensional" fields, though, is that no extant system allows for full integration of images and data cubes within a linked-view environment. The paper concludes its history and analysis of the present situation with suggestions that look toward cooperatively-developed open-source modular software as a way to create an evolving, flexible, high-dimensional, linked-view visualization environment useful in astrophysical research.

Data•Dimensions • Display

Linked Views

Data • Dimensions • Display

Linked Views

"HIGH-DIMENSIONAL DATA"

figures reproduced from Goodman 2012, "Principles of High-Dimensional Data Visualization in Astronomy"

"HIGH-DIMENSIONAL DATA"

GENERALLY

D: Columns = Spectra, SEDs, Time Series
: Faces or Slices = Images
3D: Volumes $=$ 3D Renderings, 2D Movies
4D: Time Series of Volumes = 3D Movies

figures reproduced from Goodman 2012, "Principles of High-Dimensional Data Visualization in Astronomy"

"HIGH-DIMENSIONAL DATA"

GENERALLY

D: Columns = Spectra, SEDs, Time Series

- Faces or Slices = Images

3D: Volumes $=$ 3D Renderings, 2D Movies
4D: Time Series of Volumes = 3D Movies

figures reproduced from Goodman 2012, "Principles of High-Dimensional Data Visualization in Astronomy"

Data • Dimensions • Display

 Linked Views
Linked Views

GAldUIIIDE:
for a fact-based world view

Medicine

LINKING VIEWS "IN 3D"

Astronomy

voltage [5.632843E+01] Ispace [12.747688]
screenshot of WEAVE from Gresh et al. 2000, reproduced as shown in Goodman 2012

IDL "Dendroviz" screenshot, reproduced from Goodman 2012, "Principles of High-Dimensional Data Visualization in Astronomy" (Dendroviz, created by C. Beaumont, available for download)

"High-dimensional" or "Mulifivariate" Data

(Astronomy=Biology)

Goodman et al. Nature, 2009

LETTERS

d

Elde et al. Nature, 2008

d3po

...and the mid M and their EW $\mathrm{Na} .$.

.astronōmy

Setptember 2013

LINKED VIEWS OF HIGH-DIMENSIONAL DATA

TUKEY'S "FOUR ESSENTIALS" OF LINKED VIEWS [C. 1972]

TUKEY'S "FOUR ESSENTIALS" OF LINKED VIEWS [C. 1972]

Picturing

TUKEY'S "FOUR ESSENTIALS" OF LINKED VIEWS [C. 1972]

Picturing

 Rotation
TUKEY'S "FOUR ESSENTIALS" OF LINKED VIEWS [C. 1972]

Picturing

 Rotation Isolation

TUKEY'S "FOUR ESSENTIALS" OF LINKED VIEWS [C. 1972]

Picturing

 Rotation Isolation
Masking

TUKEY'S "FOUR ESSENTIALS" OF LINKED VIEWS [C. 1972]

Picturing

 Rotation
Isolation Masking

Selection

TUKEY'S "FOUR ESSENTIALS" OF LINKED VIEWS [C. 1972]

Picturing Rotation

Isolation Masking

Selection

and these "need to work together" in a "dynamic display"

Brushing

Linking

TUKEY'S "FOUR ESSENTIALS" OF LINKED VIEWS (C. 1972]

Picturing Rotation

Isolation Masking

Selection

and these "need to work together" in a "dynamic display"

Brushing

Linking

Results...

I. for immediate insight
2. as visual source of ideas for statistical algorithms (.redation os svm)

TUKEY'S "FOUR ESSENTIALS" OF LINKED VIEWS (C. 1972]

Picturing Rotation

Isolation Masking

Selection

and these "need to work together" in a "dynamic display"

Brushing

Linking

Results...

I. for immediate insight
2. as visual source of ideas for statistical algorithms (.redation os svm)

Warning
"details of control can make or break such a system"

Watch the PRIM-9 video at: http://stat-graphics.org/movies/prim9.html

LINKING VIEWS USING SAMP

figure, showing SAMP screenshot, reproduced from Goodman 2012, "Principles of High-Dimensional Data Visualization in Astronomy"

Microsoft ${ }^{\circledR}$ Research

WorldWide Telescope

View and compare images from across the electromagnetc spectrum

Much more than "just" the sky at night!
3D features can take you to other planets, stars \& galaxies.

$\text { TD } D$					

${ }_{\text {illu }}^{4}$ c glue

glueviz.org

What is glue?

Table Of Contents
Glue Documentation
Indices and tables
Next topic
Installing Glue
This Page
Show Source
Show on GitHub
Edit on Github

Quick search
Go class or function name.

Glue Documentation

Glue is a Python library to explore relationships within and among related datasets. Its main features include:

- Linked Statistical Graphics. With Glue, users can create scatter plots, histograms and images (2D and 3D) of their data. Glue is focused on the brushing and linking paradigm, where selections in any graph propagate to all others.
- Flexible linking across data. Glue uses the logical links that exist between different data sets to overlay visualizations of different data, and to propagate selections across data sets. These links are specified by the user, and are arbitrarily flexible.
- Full scripting capability. Glue is written in Python, and built on top of its standard scientific libraries (i.e., Numpy, Matplotlib, Scipy). Users can easily integrate their own python code for data input, cleaning, and analysis.

What is glue?

Glue collaboration: Beaumont, Borkin, Goodman, Pfister, Robitaille

What is glue?

Glue collaboration: Beaumont, Borkin, Goodman, Pfister, Robitaille

Before Glue: Linked Dendrogram Views in IDL

Video \& implementation: Christopher Beaumont, CfA/UHawai;;
inspired by AstroMed work of Douglas Alan, Michelle Borkin,AG, Michael Halle, Erik Rosolowsky

Before Glue:Linked Dendrogram Views in IDL

Video \& implementation: Christopher Beaumont, CfA/UHawaii; inspired by AstroMed work of Douglas Alan, Michelle Borkin,AG, Michael Halle, Erik Rosolowsky

GENERALLY
ID: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies" 4D: Time Series of Volumes = "3D Movies"

GENERALLY
ID: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies" 4D: Time Series of Volumes = "3D Movies"

GENERALLY
ID: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies" 4D: Time Series of Volumes = "3D Movies"

GENERALLY
 ID: Columns = "Spectra", "SEDs" or "Time Series" 2D: Faces or Slices = "Images"
 3D: Volumes = "3D Renderings","2D Movies" 4D: Time Series of Volumes = "3D Movies"

GENERALLY
 ID: Columns = "Spectra", "SEDs" or "Time Series"
 2D: Faces or Slices = "Images"
 3D: Volumes = "3D Renderings","2D Movies" 4D: Time Series of Volumes = "3D Movies"

GENERALLY
 ID: Columns = "Spectra", "SEDs" or "Time Series"
 2D: Faces or Slices = "Images"
 3D: Volumes = "3D Renderings","2D Movies" 4D: Time Series of Volumes = "3D Movies"

GENERALLY
ID: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies" 4D: Time Series of Volumes = "3D Movies"

GENERALLY
 ID: Columns = "Spectra", "SEDs" or "Time Series"
 2D: Faces or Slices = "Images"
 3D: Volumes = "3D Renderings","2D Movies" 4D: Time Series of Volumes = "3D Movies"

GENERALLY
 ID: Columns = "Spectra", "SEDs" or "Time Series"
 2D: Faces or Slices = "Images"
 3D: Volumes = "3D Renderings", "2D Movies" 4D: Time Series of Volumes = "3D Movies"

Star Formation in Perseus

Star Formation in Perseus

C®MPLETE

mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell et al. 2005, Kirk et al. 2006)
mid-IR IRAC composite from c2d data (Foster, Laakso, Ridge, et al.)

\&: Optical image (Barnard I927)

AstronomicalMedicine@|-C§MPETE

AstronomicalMedicine@|C-C®MPLETE

3D Viz made with VoIView

AstronomicalMedicine@|C C®MPLETE

AstronomicalMedicine@|-C§MPLTE

AstronomicalMedicine@|C
 CकMPLETE

Epidemiology (in 1854)

Reproduced from Visual and Statistical Thinking, ©E.R. Tufte 1997, based on Snow's drawing re: 1854 London cholera epidemic

Epidemiology
 (in 1854)

Epidemiology (in 1854)

Reproduced from Visual and Statistical Thinking, ©E.R. Tufte 1997, based on Snow's drawing re: 1854 London cholera epidemic

Epidemiology
 (in 1854)

Displaying

"high-dimensional" data

with

"multi-functioning graphical elements"

Reproduced from Visual and Statistical Thinking, ©E.R. Tufte 1997, based on Snow's drawing re: 1854 London cholera epidemic

Snow couldn't "interact" with the map but we should be able to,
with the right data linkages, and choice of dimensions \& display.

COMPLETE Perseus Outflow Candidates

-2

3D Selection

3D Selection

What's the 3D "magnetic lasso"?

3D Selection

What's the 3D "magnetic lasso"? How do you use it with a mouse?

3D Selection

What's the 3D "magnetic lasso"? How do you use it with a mouse?

How can a human "steer" computer-aided selection?

3D Selection

