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Seeing More in Data
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The Seamless Astronomy Group at the Harvard-Smithsonian Center for Astrophysics brings
together astronomers, computer scientists, information scientists, librarians and visualization
experts involved in the development of tools and systems to study and enable the next generation of
online astronomical research.
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data and literature, the semantic interlinking and annotation of scientific resources, the study of the

impact of social media and networking sites on scientific dissemination, and the analysis and
visualization of astronomical research communities. Visit ou oject page to find out m

Alyssa A. Goodman

Harvard-Smithsonian Center for Astrophysics




Relative Strengths

Pattern Recognition
Creativity

N 4

N

Calculations

-




”y
=g
| - —w
[ S
|h
— =
) =

o
| = BN
| - M
[« b J—
— (1)
o 2
I(
I




What...

...is easier now than before?

fast computation, animation, 3D

..should be easier in the future?

modular craftsmanship, linked views







(in 1854)
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Reproduced from Visual and Statistical Thinking, ©E.R. Tufte 1997, based on Snow’s draWing
re: 1854 London cholecraj epidemic.
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(in 1854)
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Reproduced from Visual and Statistical Thinking, ©E.R. Tufte 1997, based on Snow’s draWing
re: 1854 London cholecraj epidemic.
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Data ® Dimensions ® Display




(in 1854)
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Reproduced from Visual and Statistical Thinking, ©E.R. Tufte 1997, based on Snow’s draWing
re: 1854 London cholecraj epidemic.

5 ® <
\* N XA % % e Za\ 0% &




What Computers Can Let us Craft (2008)
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What Computers (D3) Can Let us Craft (2012)
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Where the Heat and the Thunder Hit Their Shots

The shooting patterns for the players on the Miami Heat and the Oklahoma City Thunder reveal where they are most dangerous on the court. Below,
compare each player’s strengths using court maps and analysis by Kirk Goldsberry, a geography professor at Michigan State. Related Article »

Number of attempt Point i
All Shots 3-Pointers Midrange Close Range L:wm ?r o a‘g g;anZh L:‘Ln s per re92 High
Oklahoma City Thunder

Miami Heat

5,209 1.01 4&% 5,228
ST eme] L

1.03 47.1%

The Thunder are effective from almost any area on the court and shoot many
more 3-point shots than the league average. Kevin Durant and James Harden

are potent from the top of the arc.

The Heat rely on player positioning to create isolation plays for LeBron James
and Dwyane Wade, often on the left side. The Heat take many fewer 3-point

shots than the Thunder.

http:”www.nytimes.com/interactive/Z0 12/06/1 | Isports/basketball/nba- hot-analysis.html.’_r=0
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What...

...is easier now than before?

fast computation, animation, 3D

..should be easier in the future?

modular craftsmanship, linked views




What...

...is easier now than before?

fast computation, animation, 3D

...was easier before than now?

craftsmanship

..should be easier in the future?

modular craftsmanship, linked views




First, the past...

Milestones: Time course of developments
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adapted from Friendly, “The Golden Age of Statistical Graphics,” Statistical Science, 2009



alileo Galilei
(1564-1642)
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William Playfair
1759-1823)

Playfair, lithography
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Charles Joseph Minard, in color
(1781-1870)

Minard, color lithography
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adapted from Friendly,““The Golden Age of Statistical Graphics,” Statistical Science, in press (2008)



Data  Dimensions ® Display
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“High-dimensional” or “Multivariate” Data

and High(er) Dimensional Displays

Robert J. Vanderbei www.princeton.edu/ "~ rvdb/JAVA/election2004/




“High-dimensiona
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(Astronomy=Biology)
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How to advance the digital (visualization) tools

for quantitative research?

ABOUT  PROJECTS PEOPLE RESOURCES  DATAVERSE

The Seamless Astronomy Group at the Harvard-Smithsonian Center for Astrophysics brings
together astronomers, computer scientists, information scientists, librarians and visualization
experts involved in the development of tools and systems to study and enable the next generation of
online astronomical research.

Current projects include research on the development of systems that seamlessly integrate scientific
data and literature, the semantic interlinking and annotation of scientific resources, the study of the

impact of social media and networking sites on scientific dissemination, and the analysis and
visualization of astronomical research communities. Visit our proje age to find out more.
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‘Wolbach Library Lab at CfA 1 Christopher Erdmann VAO at CfA: Pepl Fabblano Social Networks in Sciencet Alberto Pepe

Questions about using the Viz-e-Lab? Contact Sarah Block, 5-7331, sblock(@cfa.harvard.edu
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“Astronomical Medicine”

“KEITH” “PERSEUS”

[Image size: 520 x 274
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z" is depth into head “z” is line-of-sight velocity

(This kind of “series of 2D slices view” is known in the Viz as“the grand tour”)
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How interactive?

How “linked”?

LETTERS

CLUMPFIND segmentation

Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND' feature-
identification algorithms as applied to '>CO emission from the L1448
reglon of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-

gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain duuml sel

vitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of T, (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x—y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position-position—velocity (p—p—v) spac
IL\ right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d s simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the (Lu.{ In the online PDF version, the 3D
cubes (aand b) can be rotated t ion, and surfaces can be turned
on and off (interaction requires Adobe —\unbd( version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in

1, and velocity with respect to the Local Standard of Rest increases from
front (—0.5kms ') to back (8kms

data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set* can be used to

ow either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees
were proposed as a way to characterize clouds” hierarchical structure

64

NATURE| Vol 457|1 January

using 2D maps of column density. With th y 2D work as inspira-
tion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a 3D (p—p-v) data cube into
an easily visualized representation called a ‘dendrogram’"®. Although
well developed in other data-intensive fields'"?, it is curious that the
application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where
‘ trees’ are being used with increasing frequency".
Figure 3 and its legend explain the construction of dendrograms
schematically. The dendrogram quantifies how and where local mas
ima of emission merge with each other, and its implementation
explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible
sensitivity to algorithm parameters. To make graphical presentation

sible on paper and 2D screens, we ‘flatten’ the dendrograms of 3D
data (see Fig. 3 and its legend), by sorting their ‘branche

, which eliminates dimensional information on the

preserving all information about connectivity and hierarch
Numbered ‘billiard ball’ labels in the figures let the reader matcl
features between a 2D map (Fig. 1), an interactive 3D map (Fi;
online) and a sorted dendrogram (Fig. 2c).

A dendrogram of a spectral-line data cube allows for the estimation
of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion (¢,) and luminosity
(L). The volumes can have any shape, and in other work'* we focus on
the significance of the especially elongated features seen in L1448
(Fig. 2a). The luminosity is an approximate proxy for mass, such
that Miym = Xi3colisco, where Xj3c0=8.0X 10 cm®*K 'km ™ 's
(ref. 15; see Supplementary Methods and Supplementary Fig. 2

The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hlu.mhv,
via calculation of an ‘observed’ virial parameter, op,; = 50, GMiym-
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where ty, < 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p-p-v space where self-
gravity is significant. As o, only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields', its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.

T\

Figure 3 | Schematic illustration of the dendrogram process. Shown is t
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2c is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.

©2009 Macmillan Publishers Limited. All rights reserved

Goodman, Rosolowsky, Borkin, Foster, Halle,
Kauffmann & Pineda, Nature, 2009




“Linked Views"
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DataDesk (est. 1986)
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John Tukey’s “Four Essentials™ (c.1972)

Brushing Linking

Results...
|. for immediate insight
2. as visual source of ideas for statistical algorithms (.refation ©o svm)

Warning
“details of control can make or break such a system”
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2008: Dendrostar by Douglas Alan

The DendroStar Applet for L1448: Try me!

Tint O . .
Suppress tint:

Reset:

Initiative in Innovative Computing at Harvard

Note: You need to have Java installed for the applet to work. If the applet doesn't work, try upgrading to a newer version of Java or using Firefox as your browser.

Click here for help on using this applet.

http://am.iic.harvard.edu/index.cgi/DendroStar/applet




2011: The (Medical) Value of Linked Views...

Michelle Borkin

Harvard School of Engineering & Applied Science Ph.D. student,
supervised by Alyssa Goodman (Astronomer) & Hanspeter Pfister (Computer Scientist)




Patients Troubled Hearts, in 3D

Obtain patient CT data

Clinical decision

—>

Segment arteries

—>

Visualize/analyze data

_— —
Hode: [t | [ mavadal | % N 320CT scan
o &4 Lef Cororary Arery
S
S ’ e oy
,‘_ s owRow e
" A A Close All Data
356 ' M
. —— . a a
[ ey
-
|
s
A"
coor O

105 104
0o 108 107 106
110

Generate patient geometries

+

Patient specific flow simulation




How much does viz matter?
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ACCURACY

Strong effect of dimensionality on accuracy

And strong effect of color...
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EFFICIENCY

Participants more efficient in 2D.

Rainbow color map has greater detriment in 3D.
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Also in 2011: Linked (Astronomical) Dendrogram Views in IDL
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Glue is a Python library to explore relationships within and among related datasets. Its main features include:

« Linked Statistical Graphics. With Glue, users can create scatter plots, histograms and images (2D and 3D) of
their data. Glue is focused on the brushing and linking paradigm, where selections in any graph propagate to all
others.

« Flexible linking across data. Glue uses the logical links that exist between different data sets to overlay
visualizations of different data, and to propagate selections across data sets. These links are specified by the
user, and are arbitrarily flexible.

« Full scripting capability. Glue is written in Python, and built on top of its standard scientific libraries (i.e., Numpy,
Matplotlib, Scipy). Users can easily integrate their own python code for data input, cleaning, and analysis.

.

Glue collaboration: Beaumont, Borkin, Goodman, Pfister, Robitaille
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Astronomical researchers often think of analysis and visualization as separate tasks. In the case of high-dimensional data
sets, though, interactive exploratory data visualization can give far more insight than an approach where data processing
and statistical analysis are followed, rather than accompanied, by visualization. This paper attempts to charts a course
toward “linked view” systems, where multiple views of high-dimensional data sets update live as a researcher selects,
highlights, or otherwise manipulates, one of several open views. For example, imagine a researcher looking at a 3D volume
visualization of simulated or observed data, and simultaneously viewing statistical displays of the data set’s properties
(such as an x-y plot of temperature vs. velocity, or a histogram of vorticities). Then, imagine that when the researcher
selects an interesting group of points in any one of these displays, that the same points become a highlighted subset in all
other open displays. Selections can be graphical or algorithmic, and they can be combined, and saved. For tabular (ASCII)
data, this kind of analysis has long been possible, even though it has been under-used in astronomy. The bigger issue
for astronomy and other “high-dimensional” fields, though, is that no extant system allows for full integration of images
and data cubes within a linked-view environment. The paper concludes its history and analysis of the present situation
with suggestions that look toward cooperatively-developed open-source modular software as a way to create an evolving,
flexible, high-dimensional, linked-view visualization environment useful in astrophysical research.

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim




