
Beauty is in the Eye of the Beholder
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Visualization courtesy American Museum of Natural History, Hayden Planetarium
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Star Formation, 
and “Tasting” It

Alyssa A. Goodman
Harvard-Smithsonian Center for Astrophysics
Initiative in Innovative Computing at Harvard

Image Credit: Jonathan Foster, CfA/COMPLETE Deep Megacam Image of West End of Perseus

Featuring the work of collaborators:

Héctor Arce, Michelle Borkin, Paola Caselli, 
Jonathan Foster, Mike Halle, Mark Heyer, Jens 
Kauffmann, Jaime Pineda, Erik Rosolowsky, 
Scott Schnee, Rahul Shetty
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Star Formation 101

©Adison-Wesley 2004
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Image Credit: Jonathan Foster, CfA/COMPLETE Deep Megacam Image of West End of Perseus
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Background: Jonathan Foster, CfA/COMPLETE Deep Megacam Image of West End of Perseus
Insets: Foster & Goodman 2006, Calar Alto JHK

Looking a bit deeper...

~1 pc

(Optical→NIR)
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“Islands of Calm in a Turbulent Sea”
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But how calm?  And how long-lasting?

Three main views at present...

 

 

 1. Quasi-Static 2. “Squished” 3. Competitive Accretion 

Static Squished Competitve 
Accretion
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Can the “sea” be shut out, or at least ignored?
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Image Credit: Jonathan Foster, CfA/COMPLETE Deep Megacam Image of West End of Perseus
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What forces matter most on what scales?

Gravity

Outflows/Winds

“Turbulence”

Radiation

B-Fields

Warning to Theorists: 
This is a schematic, philosophical diagram, 

not data...or even necessarily true, yet.

Thermal Support
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Image Credit: Jonathan Foster, CfA/COMPLETE Deep Megacam Image of West End of Perseus
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Tilley & Pudritz 2007; 
see Padoan, P., Goodman, A., Draine, B., Juvela, M., Nordlund, A. and Rognvaldsson, O.E. 2001 for polarimetry “tastes”

Theorists’ Kitchens now cooking many  
Simulations sophisticated enough to “taste”...
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Taste Tests
“Taste Tests”? We frame this project by analogy. 
How does a great chef, making a complicated 
dish, know if she has created what she originally 
intended when she is done cooking? She “tastes.” 
She informs her cooking with her extensive 
knowledge of food chemistry (analytic theory), 
uses all the cooking equipment (simulations) she 
has in the kitchen to try to make something edible 
and tasty (starforming, and realistic), and then 
she uses her senses (observations) to see if what 
she made tastes as intended. “Tasting” in cooking 
actually encompasses the joint action of many 
senses: we propose here a combination of 
statistical techniques that we call “taste tests.” 
The tests will allow us to discerningly decide if 
what we sense (observe) and what we can cook 
(simulate) might actually be tasty (form stars), and 
how (analytic theory) that happens.

from: Goodman & Rosolowsky, NSF Proposal Fall 2006; Rahul Shetty is now “Taste-Testing” postdoc at Harvard
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What theorists are used to...

“Three-dimensional visualization of density structure in a turbulent cloud” 
Courtesy Eve Ostriker, Jim Stone & Charles Gammie
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What theorists are used to...

Competitive Accretion Model for Star Formation
Bate, Bonnell & Bromm, 2002
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...but, alas, we observers cannot live in that space.
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What can we (observers) offer for tasting?
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m

m
m

m
cm

Broadband Emission (Dust) S + C + P
Spectra (Dust) P
Spectra (Gas) C C Z
Background Starlight (Extinction) C S P
Scattered Light ("Cloudshine") C S
Broadband Emission (Dust) S S +
Spectra (Dust) S S
Spectra (Gas) Z
Broadband Emission S
Spectra S Z
Astrometry

Optically-Revealed 
(Proto) Stars

Extended Material 
(Clouds & Cores)
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Table 2: Reading Nature's Menu This table shows which tools are best for deteriming
particular physical quantities. Grey shows possible wavelengths, and darker grey emphasizes
the best wavelengths. Green means "yes," and yellow means "yes, but not usually very well."
Many subtleties cannot be shown here. For example: stellar mass determinations are always model-
dependent unless an orbit is known; some techniques give line-of-sight velocity, while others
give plane-of-the-sky; chemistry is always very model dependent, and so-on.

Notes: C=included in COMPLETE; S=included in Spitzer c2d; 
+=included in both COMPLETE & c2d;     Magnetic Fields: P=by 
polarimetry;  Z=(primarily by) Zeeman, at same wavelengths shown

Disks & Envelopes 
(spatially filtered 

obsv'ns.)

 

Today, mostly:

•maps of Emission, Extinction & Scattering 
due to dust 

(for column density & temperature)

•maps of radio-frequency spectral lines from gas
(for kinematics & chemistry(!))
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The Value of “COMPLETE” Observations: B68

C18ODust EmissionOptical 
Image

NICER 
Extinction 
Map

Radial Density Profile, 
with Critical Bonnor-

Ebert Sphere Fit

Coordinated Molecular-Probe Line, Extinction & 
Thermal Emission Observations of Barnard 68

This figure highlights the work of João Alves and his 
collaborators.  The top left panel shows a deep VLT image 
(Alves, Lada & Lada 2001).  The middle top panel shows the 850 
μm continuum emission (Visser, Richer & Chandler 2001) from 
the dust causing the extinction seen optically.  The top right 
panel highlights the extreme depletion seen at high extinctions 
in C18O emission (Lada et al. 2001).  The  inset on the bottom 
right panel shows the extinction map derived from applying the 
NICER method applied to NTT near-infrared observations of 
the most extinguished portion of B68.  The graph in the bottom 
right panel shows the incredible radial-density profile derived 
from the NICER extinction map (Alves, Lada & Lada 2001).  
Notice that the fit to this profile shows the inner portion of 
B68 to be essentially a perfect critical Bonner-Ebert sphere
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“Revealing” Outflows

HH 46-47 flow poking out of a globule, optical (DSS)

Spitzer Infrared Image: A. Noriega-Crespo (SSC/Caltech) 
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COMPLETE Collaborators, 
2009:

Alyssa A. Goodman (CfA/IIC)

João Alves (Calar Alto, Spain)

Héctor Arce (Yale)

Michelle Borkin (Harvard SEAS)

Paola Caselli (Leeds, UK)

James DiFrancesco (HIA, Canada)

Jonathan Foster (CfA, PhD Student)

Katherine Guenthner (CfA/Leipzig)

Mark Heyer (UMASS/FCRAO)

Doug Johnstone (HIA, Canada)

Jens Kauffmann (CfA/IIC)

Helen Kirk (HIA, Canada)

Di Li (JPL)

Jaime Pineda (CfA, PhD Student)

Thomas Robitaille (CfA)

Erik Rosolowsky (UBC Okanagan)

Rahul Shetty (CfA)

Scott Schnee (Caltech)

Mario Tafalla (OAN, Spain)

COordinated Molecular Probe Line Extinction Thermal 
Emission Survey of Star-Forming Regions=
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[FYI: Star Formation Taste Tests Site]
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mm peak (Enoch et al. 2006)

sub-mm peak (Hatchell
et al. 2005, Kirk et al. 2006)

13CO (Ridge et al. 2006)

mid-IR IRAC composite 
from c2d data (Foster, 
Laakso, Ridge, et al. in prep.)

Optical image (Barnard 1927)

Perseus
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Spectral Line Observations

 Radio Spectral-line Observations of Interstellar Clouds 
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Velocity as a "Fourth" Dimension
Spectral Line Observations

Mountain Range No loss of
information

Loss of
1 dimension
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Alves, Lada & Lada 1999

Radio Spectral-Line Survey

 Radio Spectral-line Observations of Interstellar Clouds 
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mm peak (Enoch et al. 2006)

sub-mm peak (Hatchell
et al. 2005, Kirk et al. 2006)

13CO (Ridge et al. 2006)

mid-IR IRAC composite 
from c2d data (Foster, 
Laakso, Ridge, et al. in prep.)

Optical image (Barnard 1927)

Perseus
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AstroMed@

3D Viz made with VolView

Perseus
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For Taste 
Testing, 

we can use
Synthetic

Spectral Line 
Maps from 
Simulations

 Figure based on work of Padoan, Nordlund, Juvela, et al.
Excerpt from realization used in Padoan & Goodman 2002.
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 A “Simple” Example:
Column Density Distributions
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Turbulence theory & simulations generally predict that

Column density “tastes” log-normal(ish) on 10’s of pc scales 

Example:  log-normal column density distribution

(Ostriker, Stone & Gammie 2001)

Strong 
B-Field

Medium 
B-Field

Weak 
B-Field

Results from MHD simulations

lnx = −σ2
lnx

2

x =
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But which 
measure 
of Column 
Density 
gives the 
“Truest” 
Taste?

figure from Goodman, Pineda & Schnee 2008; see also Pineda et al. 2008
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Column Density in Perseus, Measured 3 Ways
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Regional Variations
within Perseus
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Background: Jonathan Foster, CfA/COMPLETE Deep Megacam Image of West End of Perseus
Insets: Foster & Goodman 2006, Calar Alto JHK

“Cloudshine” gives us a path to (even) higher-
resolution column density maps
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2006

“Cloudshine”=Scattered Ambient Starlight
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“Tasting” a Very Simple Recipe

Foster & 
Goodman 

2006
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Theorists doing the Tasting!

Padoan et al. 2006

Tastes “right”, with 20% scatter, at 1<AV<10, for NIR.

Recovered map

Simulation

“Cloudshine” 
Scattering 

ModelH-band 
flux only

Thursday, April 30, 2009



Tasting
Gravity
(in L1448)

Figures from 
Goodman et al. 

2009 
(Nature’s First 

3D PDF!)
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AstroMed@

3D Viz made with VolView

Perseus

“L1448+”
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Simulation Synthetic Data

Nature

Observing System

Synthetic 
Observing 
System

Radiative 
Transfer 

(+Chemistry) 
Code(s)

Observed Data

Taste 
Tests

Enabled
Indirectly

Sample Taste Test
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The Taste-Testing Process
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Value of Dendrograms

Yellow highlighting= “self-gravitating”

“Self-gravitating” here just means αvir (=5sv2R/GMlum) < 2
(à la Bertoldi & McKee 1992)

Rosolowsky et al. 2008 (ApJ) &
Goodman et al. 2009 (Nature)
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Dendrograms
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1-D: points; 2-D closed curves (contours); 3-D surfaces enclosing volumes
see demo at http://aerial.client.fas.harvard.edu/~nessus/dendrostar/
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Value of Dendrograms

Yellow highlighting= “self-gravitating”

“Self-gravitating” here just means αvir (=5sv2R/GMlum) < 2
(à la Bertoldi & McKee 1992)

Rosolowsky et al. 2008 (ApJ) &
Goodman et al. 2009 (Nature)
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CLUMPFIND vs. Dendrograms: L1448

“CLUMPFIND”

Dendrograms
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Taste-Testing Gravity
Simulation Synthetic Data
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State of Affairs, Now
• Thermal support: thermal emission and gas excitation measures of dust 

temperature confirm low temperatures, but show significant structure (e.g. Scott 
Schnee’s work)

• B-fields: most geometrically relevant at low densities (fluff) and at very high 
densities (star+disk), less-so in-between  (TAURUS example)

• Turbulence: apparently dominant (morphologically) at ~all scales bigger than 
cores...but it must have an energy source.  (AGREED.)

• Radiation:  You don’t need H II regions for radiation field to be critical to 
chemistry, heating/cooling, etc.   Asymmetry may be critical.  (See 
CLOUDSHINE....see also recent work by Pineda et al. on chemical abundances.)

• Outflows/Winds: Oops! What about stars that are not newborn or 
dying...what are all those spherical winds?  We think they are 10x more important 
than bi-polar flows.  (See COMPLETE/3D analysis by Arce, Borkin, et al.)

• Gravity:  Can and often does matter at all scales--but not everywhere! Obviously 
critical at smallest scales, for collapse.  (Taste-Testing with DENDROGRAMS)
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0.01 pc 0.1 pc 1 pc 10 pc 100 pc
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ns
What really matters where...and when?

Gravity

Outflows/Winds

“Turbulence”

Radiation

B-Fields

Challenge to Theorists (and Observers): 
Can we make a better version of this

with “Taste-Testing”?
http://www.cfa.harvard.edu/~agoodman/tastetests/

Thermal Support
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More to Taste in the Future...
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Core shapes... 

Offner & Krumholtz 2009

...includes 
beam 
smearing...

Simulation 
after 1 free-
fall time

...not tasty 
enough.
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What stars form from what gas, when... and where do they go?

Radial Velocity Study of Orion (Furesz et al. 2008)
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Velocity 
Gradients

Schnee et al. 2007
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Chemistry in 
(Starless) 

Cores
Carbon decreases as 

N rises and T falls

Schnee, Caselli, Goodman et al. 2007

de
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with temperature

lines + dust continuum constrain
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Starting-point 
abundances can vary 
significantly (x 2) on 
large scales...ask Paola

Pineda, Caselli &
 G

oodm
an 2008
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Perseus Outflows

Initial results:
• 32 new potential outflows

12CO Perseus

Red Shifted points

Blue Shifted points

HH Objects

IRAS Sources

Known Outflow Sources

New outflows

Known outflows

Many small known outflows

Outflow extensions

Borkin, Arce, & Goodman 2008 in prep

• 9 potential new shells

New shells

• 8 known outflows extended
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 Powerful(!) Shells in Perseus

13CO(1-0)

1 pc
1 pc

1 pc

3 pc

Borkin, Arce & Goodman 2008
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~1.5 pc~4.5 pc

~0.3 pc

Spitzer (MIPS) View

c2d MIPS (24μm) maps of Perseus
Rebull et al.  2007
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Preliminary Numbers say 
Shells are Much MORE Important than Outflows

Borkin, Arce, & Goodman 2008 in prep
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