Seamless Astronomy, Sea Monsters \& the Milky Way

Alyssa A. Goodman
Harvard-Smithsonian Center for Astrophysics

3500 years of Observing

Stonehenge, I500 BC

Ptolemy in Alexandria, I 00 AD

Observatory Tower,
Lincolnshire, UK, c. I300

Long-distance remote-control/ "robotic" telescopes I990s
"Virtual Observatories" 2 Ist century

Evolution since the Revolution

Evolution since the Revolution

[demo]

2002

Real Life

"Science"

Seamless Astronomy

Alberto Accomazzi, Christopher Beaumont, Douglas Burke, Raffaele D’Abrusco, Rahul Davé, Christopher Erdmann, Pepi Fabbiano, Alyssa Goodman, Edwin Henneken, Jay Luker, Gus Muench, Michael Kurtz, Max Lu, Victoria Mittelbach, Alberto Pepe, Arnold Rots, Patricia Udomprasert (Harvard-Smithsonian CfA); Mercé Crosas (Harvard Institute for Quantitative Social Science); Christine Borgman (UCLA); Jonathan Fay \& Curtis Wong (Microsoft Research);Alberto Conti (Space Telescope Science Institute) Research

Seamless Astronomy

projects.iq.harvard.edu/seamlessastronomy

Seamless Astronomy

Seamless Astronomy

Seamless Astronomy

Best Instantiation: WorldWide Telescope est. 2008

Microsoft ${ }^{\circledR}$ Research

WorldWide Telescope

View and compare images from across the electromagnetc spectrum

Much more than "just" the sky at night!
3D features can take you to other planets, stars \& galaxies.

Finder Scope

NGC224

RA: 00h42m42s Magnitude: Dec: 41 : 16 : 00 Distance: Alt: $70: 06$: 26 Rise: Az: 275: 42:17 Transit; Az: $275: 42: 17$ Set:

Classification:
Spiral Galaxy in Andromeda

Finder Scope links to Wikipedia, publications, and data, so you can learn more

Seamless Astronomy

Seamless Astronomy: Citizen Science

Zooniverse team at Oxford: Chris Lintott, Rob Simpson, Brooke Simmons
seafloorexplorer.org
Help explore the ocean floor
View details

All Space Climate Humanities Nature Biology

Most Popular

Sort by Popularity \uparrow

Classify over 30 years of tropical cyclone data. Scientists at NOAA's National Climatic Data Center need your help.
CycloneCenter

You're hot on the trail of bats!
Help scientists characterise bat calls recorded by citizen scientists.
bat detective

Analyse real life cancer data.

You can help scientists from the world's largest cancer research institution find cures for cancer.

Help explore the ocean floor
The HabCam team and the Woods Hole Oceanographic Institution need your help!

Explore the Red Planet

 Planetary scientists need your help to discover what the weather is like on Mars.

Hear Whales

 communicate You can help marine researchers understand what whales are saying

How do galaxies form?
NASA's Hubble Space Telescope archive provides hundreds of thousands of galaxy images.

Seamless Astronomy: ADS All Sky Survey

Seamless Astronomy: ADS All Sky Survey

Historical Image Layer
Extracted from ALL. ADS holdings. (astrometry.net. \& Zooniverse)

ADS-Seamless-astrometry.net-MSR-Zooniverse

Seamless Astronomy: ADS All Sky Survey

Prototype of Arricles on the Sky (2010)

like this one
 ＞1 Million Articles，

lable 1
Extended

INVESTIGATING THE COSMIC－RAY IONIZATION RATE NEAR THE SUPERNOVA REMNANT IC 443 THROUGH H 3^{+}OBSERVATIONS ${ }^{1,2}$

Nick Indriolo ${ }^{3}$ ，Geoffrey A．Blake ${ }^{4}$ ，Miwa Goto ${ }^{5}$ ，Tomonori Usuda ${ }^{6}$ ，Takeshi Oka 7 ，T．R．Geballe ${ }^{8}$ ，Brian D． Fields ${ }^{3,9}$ Benjamin J．McCall

Draft version October 18， 2010

ABSTRACT

Observational and theoretical evidence suggests that high－energy Galactic cosmic rays are primarily accelerated by supernova remnants．If also true for low－energy cosmic rays，the ionization rate near a supernova remnant should be higher than in the general Galactic interstellar medium（ISM）．We have searched for H_{3}^{+}absorption features in 6 sight lines which pass through molecular material near IC 443－a well－studied case of a supernova remnant interacting with its surrounding molecular material－for the purpose of inferring the cosmic－ray ionization rate in the region．In 2 of the sight lines（toward ALS 8828 and HD 254577）we find large H_{3}^{+}column densities，$N\left(\mathrm{H}_{3}^{+}\right) \approx 3 \times 10^{14} \mathrm{~cm}^{-2}$ ， and deduce ionization rates of $\zeta_{2} \approx 2 \times 10^{-15} \mathrm{~s}^{-1}$ ，about 5 times larger than inferred toward average diffuse molecular cloud sight lines．However，the 3σ upper limits found for the other 4 sight lines are consistent with typical Galactic values．This wide range of ionization rates is likely the result of particle acceleration and propagation effects，which predict that the cosmic－ray spectrum and thus ionization rate should vary in and around the remnant．While we cannot determine if the H_{3}^{+}absorption arises in post－shock（interior）or pre－shock（exterior）gas，the large inferred ionization rates suggest that IC 443 is in fact accelerating a large population of low－energy cosmic rays．Still，it is unclear whether his population can propagate far enough into the ISM to account for the ionization rate inferred in diffuse Galactic sight lines．
Subject headings：astrochemistry－cosmic rays－ISM：supernova remnants

1．INTRODUCTION

As cosmic rays propagate through the interstellar medium（ISM）they interact with the ambient material． These interactions include excitation and ionization of atoms and molecules，spallation of nuclei，excitation of nuclear states，and the production of neutral pions（ π^{0} ） which decay into gamma－rays．Evidence suggests that Galactic cosmic rays are primarily accelerated by super－ nova remnants（SNRs）through the process of diffusive shock acceleration（e．g．Drury 1983；Blandford \＆Eichler 1987），so interstellar clouds in close proximity to an SNR should provide a prime＂laboratory＂for studying these

Some of the data presented herein were obtained at the W．M． Keck Observatory，which is operated as a scientific partnership among the California Institute of Technology，the University of tion．The Observatory was made possible by the generous finan－ cial support of the W．M．Keck Foundation
${ }^{2}$ Based in part on data collected at Subaru Telescope，which is operated by the National Astronomical Observatory of Japan． ${ }^{3}$ Department of Astronomy，University of Illinois at Urbana－
Champaign，Urbana，IL 61801 ${ }^{4}$ Division of Geological and Planetary Sciences and Division of Chemistry and Chemical Engineering，MS
Institute of Technology，Pasadena，CA 91125
Institute of Technology，Pasadena，CA 91125
5 Max－Planck－Institut für Astronomie，Königstuhl 17，Heidel－ ${ }^{5}$ Max－Planck－Institut f
berg D－69117，Germany
${ }_{6}^{\text {berg D－69117，Germany }}$ Subaru Telescope， 650 North A＇ohoku Place，Hilo，HI 96720 ${ }^{7}$ Department of Astronomy and Astrophysics and Depart－ ment of Chemistry，University of Chicago，Chicago，IL 60637 ${ }_{8}$ Gemini Observatory， 670 North A＇ohoku Place，Hilo，HI 96720
${ }^{9}$ Department of Physics，University of Illinois at Urbana－ Champaign，Urbana，IL 61801 Champaign，Urbana，IL 61801
interactions．IC 443 represents such a case，as portions interactions．IC 443 represents such a case，as portions eighboring molecular clouds．
IC 443 is an intermediate age remnant（about 30，000 yr；Chevalier 1999）located in the Galactic anti－cente region $(l, b) \approx\left(189^{\circ},+3^{\circ}\right)$ at a distance of about 1.5 kp in the Gem OB1 association（Welsh \＆Sallmen 2003） and is a particularly well－studied SNR．Figure 1 shows the red image of IC 443 taken during the Second Palo－ mar Observatory Sky Survey．The remnant is composed of subshells A and B；shell A is to the NE－its cen ter at $\alpha=06^{\mathrm{h}} 17^{\mathrm{m}} 08.4^{\mathrm{s}}, \delta=+22^{\circ} 36^{\prime} 39.4^{\prime \prime} \mathrm{J} 2000.0$ is marked by the cross－while shell B is to the SW．Adopt ing a distance of 1.5 kpc ，the radii of subshells A and B are about 7 pc and 11 pc ，respectively．Between the subshells is a darker lane that runs across the remnan from the NW to SE．This is a molecular cloud which has been mapped in ${ }^{12} \mathrm{CO}$ emission（Cornett et al． 1977 Dickman et al．1992；Zhang et al．2009），and is known to be in the foreground because it absorbs X－rays emitted by the hot remnant interior（Troja et al．2006）．Aside rom this quiescent foreground cloud observations of the $J=1 \rightarrow 0$ line of 12 CO also show shocked molec lar material coin lar material 1986；Dick wey \＆Scovill uang t al．1986，Dickman et al．1992，Wang \＆Scovill 992）．These（1979）a by DeNoyer（1979）and Huang et al．（1986）in CO have also been observed in several atomic and small molec ular species（e．g．White et al．1987；Burton et al． 1988 van Dishoeck et al．1993；White 1994；Snell et al．2005） and are thought to be the result of the expanding SNR interacting with the surrounding ISM．While many of the shocked clumps are coincident with the quiescent gas，it
\qquad

o 	撮品品品心的路。
$\stackrel{\underline{\omega}}{\underline{\omega}} \underline{\underline{\omega}}$ N． 	ω No

$M_{\circ} \mathrm{km} \mathrm{s}^{-1}$ ）	Kinetict Energy $\left(10^{42}\right.$ erg）	Candidate（s）
0.19	6.93	L1448－IRS 1
0.88	21.68	L1448－IRS1
0.08	2.93	L1448－RRS3
0.04	2.10	Multiple in L1448
0.05	1.32	SST 2 2dJ032519．52＋303424．2
0.03	0.36	Multiple NGC 1333，near HH 338
1.79	112.00	SSTc2d032834．49＋310051．1
0.28	7.17	Near HH 750 and HH 743，SSTc2dJ032835．03＋302009．9 or SSTC2dJ032906．05＋303039．2
0.56	12.63	SSTc2dJ032832．56＋311105．1 or SSTc2dJ032837．09＋311330．8
0.42	7.50	SSTc2dJ032844．09＋312052．7
0.27	7.01	STTC2dJO32834．53＋310705．5
0.97	52.02	SSTc2dJ032843．24＋311042．7
0.80	21.00	Multiple in NGC 1333
0.05	0.73	SSTc2dJ032850．62＋304244．7 or SSTc2dJ032852．17＋304505．5
0.80	32.82	SSTc2dJ032850．62＋304244．7 or SSTc2dJ032852．17＋304505．5
0.10	2.40	HH 18A，multiple in NGC 1333
8.49	235.28	Near HH 497，HH 336，multiple in NGC 1333
0.21	6.35	HH 764，multiple in NGC 1333
0.59	19.31	IRAS 03262＋3123
0.08	1.73	Multiple NGC 1333
0.13	3.45	HH 767，SSTC2dO33024．08＋311404．4

\mathbf{N} $\Delta 0$	Identifier $\Delta \nabla$	Otype $\Delta \nabla$	ICRS（J2000）ICRS（J2000） $\mathbf{R A}$ $\Delta \nabla$ $\Delta \nabla$	Sp type $\Delta \nabla$	$\begin{gathered} \text { \#ref } \\ 1850-2011 \\ \Delta \nabla \end{gathered}$	\＃notes $\Delta \nabla$
1	＊zetPer	V＊	$035407.9215+315301.088$	B1Ib	706	1
2	CCDM 103554＋3103A	＊＊	$035523.0773+310245.014$	O9．5IIIe－B0Ve	720	0
3	NAME ELNATH	＊i＊	$052617.5134+283626.820$	B7III	287	1
4	＊zet Tau	Be^{*}	$053738.6858+210833.177$	B2IV	592	0
5	Ass Gem OB 1.	As＊	0609.8 ＋21 35	\sim	118	0
6	TYC 1877－287－1	＊	$061613.3409+224548.634$	sdO	9	0
7	HD 254577	＊	$061754.3853+222432.928$	B0．SII－III	30	0
8	HD 43582	V＊	$061800.3459+223929.995$	B0IIIn	21	0
9	IC 443	SNR	$061802.7+223936$	S	729	2
	HD 254755	＊	$061831.7741+224045.125$	O9Vp	33	0

O 10.8 GMRT 610 － antours overlaid．Rectangular regions were used to examine the variati in abundance across and along the jet．The white cross marks the positi of the radio core．

Reviving "Dead" Data

Home You - Yroanize
Actions - Share this * Astrometry.net * Never a older \rightarrow

barnardoph

E.E. Barnard's image of Ophivchus
wuw lierary gatech edubpoibpdi. php
comments and faves astrometry.net
-. astrometry net 6 days ago 1 reply 1 delate
-1. Helo, this is the bind astrometry solver. Your resuls are: (RA Dec) cemter(246, 421305149.-23.6749319397) degrees Orientation: 178.34 deg E of N Pixel scale 52.94 arcsec/pixel Party:Reverse ("Left-handed') Field size 9.41×9.41 degrees
Your field contains:
The star Antares ($(\mathrm{SCO}=0)$
The star Graftias ($(\beta 1 \mathrm{Sco})$
The star A Niy
The star A Niyat ($\sigma S c o$)
The star TSco
The star $\omega 1 \mathrm{Sc}$
The star v Sco
The star $\omega 2$ 2So
The star 00 Oph
The star 13 Sco
The star oSco
The star os
IC 4601
NGC $6121 / \mathrm{M}$
IC 4603
IC $4604 /$ tho 0 Oph nebula
1c.4605 +20.

- Vew in Witord OWide Telescope

Workflow for Old Astronomy

(the ADS All Sky Survey Zooniverse Project)
v. Oxford.feb.20.2013

Coming Soon!

Seamless Astronomy

Seamless Astronomy: Authorea

each collaborative project
("paper") can be public or private
versioning model=github

Hello, Authorea.
*mism
authorea.com

milkywaybones.org

Released to the public January 2013, at American Astronomical Society
Press Conference, Long Beach, California

Press Conference Slides-Verbatim

Phe Bones of ifie Milky Voy

Alyssa A. Goodman (Harvard-Smithsonian Center for Astrophysics) with collaborators at (alphabetically by insitution):
Boston University: James Jackson
Caltech: Jens Kauffmann
Harvard - Smithsonian: Christopher Beaumont, Michelle A. Borkin, Thomas M. Dame
Max Planck Insitute for Astronomy: Thomas Robitaille
U. Munich: Andreas Burkert
U. Vienna: Joao F. Alves
U. Wisconsin: Robert A. Benjamin

Sea Monster to Skeletal Shadow

Peculiar dust cloud named "Nessie" much larger than thought.

Nessie more important as
"bone" than sea monster.

Sun's height above Plane may make full Milky Way skeleton mappable.

Who, What, and Where is "Nessie"?

"Is Nessie Parallel to the Galactic Plane?"

The Milky Way

The Milky Way
(Artist's Conception)

Who, What, and Where is "Nessie"?

Celestial
"North"

"Is Nessie Parallel to the Galactic Plane?"

The Milky Way

Alyssa Goodman, Harvard-Smithsonian CfA, The Bones of the Milky Way, milkywaybones.org

Alyssa Goodman, Harvard-Smithsonian CfA, The Bones of the Milky Way, milkywaybones.org

Just "Nessie Extended"...
 ~ 500 light years long \& 1.5 light years thick. 300:1 axial ratio.

Why is it 0.5 degrees below $b=0$? Is it in the plane, or not?

Where are we?

"IAU Milky Way", est. 1959

True Milky Way, modern

The equatorial plane of the new co-ordinate system must of necessity pass through the sun. It is a fortunate circumstance that, within the observational uncertainty, both the sun and Sagittarius A lie in the mean plane of the Galaxy as determined from the hydrogen observations. If the sun had not been so placed, points in the mean plane would not lie on the galactic equator.
[Blaauw et al. I 959$]$

Sun is
~ 75 light years "above" the IAU Milky Way Plane

Galactic

Center is

~20 light years offset from the IAU Milky Way

Center

The Galactic Plane is not exactly where you'd think it is when you look at the sky, and...

Modern Galactic Plane

Yes, Nessie is EXACTLY in the Galactic Plane!

What about its distance?

Velocity to Distance

A full 3D skeleton?

simulations courtesy Clare Dobbs

Alyssa Goodman, Harvard-Smithsonian CfA, The Bones of the Milky Way, milkywaybones.org

Monster to Bone

There could be ~ 1000 more of these to find...a full skeleton perhaps?

Alyssa Goodman, Harvard-Smithsonian CfA, The Bones of the Milky Way, milkywaybones.org

The Bones of fite Milky War: Geatils

Seamless Astronomy-style tools used in this project

authorea.com (open publishing)
theastrodata.org (open data)
glueviz.org (open source tools)
universe3d.org (collaborative data)
worldwidetelescope.org (universe information system) virtual observatory standards (international online information-sharing systems)

Seamless Astronomy: Data Visualization

Glue collaboration (see glueviz.org): Chris Beaumont, lead \& Alyssa Goodman (Harvard-CfA); Michelle Borkin \& Hanspeter Pfister (Harvard-SEAS/CS) and Thomas Robitaille (MPIA Heidelberg)

Seamless Astronomy

Seamless Astronomy, Sea Monsters \& the Milky Way

Alyssa A. Goodman
Harvard-Smithsonian Center for Astrophysics

What does "Publication-Quality" Graphics Mean in an Interactive 3D World?

Goodman, Rosolowsky, Borkin, Foster, Halle, Kauffmann \& Pineda, Nature, 2009

A Spiral Galaxy Observed from its Outskirts...

Using Velocity Constraints

Where is "Nessie," in 3D?

How close to "in" the plane?

Drawing is schematic--NOT to scale

Notes:
IAU $\mathrm{b}=0$ set from HI , which is uncertain by ~ 0.1 degrees tilt of red w.r.t. blue would be $(20 / 8400)^{*} 180 /$ pi $=0.13$ degrees

At what distance \& inclination to l.o.s?

The Milky Way in Molecular Clouds

"Advanced" Galactic Geometry

Drawing is schematic--NOT to scale

Notes:
IAU $b=0$ set from HI , which is uncertain by ~ 0.1 degrees
tilt of red w.r.t. blue would be (20/8400)*180/pi=0.13 degrees

