Watching Stars Form
 (or "The Importance of p-p-v Data and Linked Views in Understanding Star Formation")

Alyssa A. Goodman
 Harvard-Smithsonian Center for Astrophysics

www.flickr.com/photos/66496709@N00/679|649829/in/photostream
Adam Block/Science Photo Library

Star Formation |0|

©Adison-Wesley 2004

Star Formation 201

Magnetic

 FieldsChemical \& Phase

- Transformations

Gravity

- Star (\& Planet) Formation 30 I

Radiatión
Thermal
Pressure
: "Turbulence"
Outflows
(Random Kinetic Energy)

\&Winds

Image Credit:Jonathan Foster, CFA/COMPLETE Deep Megacam Image of West End of Perseus

What forces matter most on what scales?

Warning to Theorists:
This is a schematic, philosophical diagram, not data...or even necessarily true, yet.

Radiation

B-Fields
Thermal Support
0.01 pc
0.1 pc

I pc
10 pc
100 pc

Second Warning: Answer is Time-Dependent

Changes of Heart, rather than in Physics...

3 Questions
I. At what scales does gravity matter?

2. What do stars really do to clouds?
3. How can "new" statistical visualization tools help?

+ "tasty" approaches to answers

The Taste-Testing Process

Our Goal is to "Taste" Star Formation

Simulations of Bate 2009

"Three" Dimensions: Spectral-Line Mapping

We wish we could measure...

But we can measure...

Hydrodynamic AMR Simulation, courtesy Stella Offner

Velocity from Spectroscopy

Telescope + Spectrometer

All thanks to Doppler

Radio Spectral-line Observations of Interstellar Clouds

Radio Spectral-line Observations of Interstellar Clouds

Alves, Lada \& Lada 1999

t
 Velocity as a "Fourth" Dimension

Spectral Line Observations

The Milky Way in Molecular Clouds

$$
\text { " } p \text {-v" view, phidden }
$$

C®MPLETE Pérseus

${ }^{\prime \prime} p-p-v^{\prime \prime} d a t a$

mm peak (Enoch et al. 2006)
sub-mm peak (Hatchell et al. 2005, Kirk et al. 2006)
$\int{ }^{13} \mathrm{CO}$ (Ridge et al. 2006) mid-IR IRAC composite from c2d data (Foster, Laakso, Ridge, et al.)
...: Optical image (Barnard I927)

"Astronomical Medicine"

"PERSEUS"

"z" is line-of-sight velocity
http://am.iic.harvard.edu/

AstronomicalMedicine@|ⒸMPLETE

I. At what scales does gravity matter?

Figure $\mathbf{2}$ | Comparison of the 'dendrogram' and 'CLUM PFIND' feature-
 region of Perseus. a, , 3 D visualization of the surfaces indicated by colours
the dendrogram shown in c . Purple $i l l u s t r a t e s ~ t h e ~ s m a l l e s t ~ s c a l e ~ s e l f-~$ the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the gravitating structures in the region corresponding the leaves of he
dendrogram pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them and green corresponds to the surface in tie gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches corresponding to self-gravitating objects have e been highoghighted in yellow over the range of T_{m} (main-beam temperature) test-level values for whee
the viral parameter is less than 2 . The $x-y$ locations of the four selfthe viral parameter is less than 2 . The $x-y$ locations of the four 'self-
gravitating 'eves labelled with billiard balls are the same as those shown in
Fin Fig. 1. The 3 D visualizations show position-position-velocity $(p-p-p-1)$ space.
RA, right ascension; dec, declination. For comparison with the ability of RA, right ascension; dec., declination. For comparison with the ability
dendrograms (\mathbf{c} to to track hierarchical structure, d shows a pseudodendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b)) with the same fou labels used in Fig. 1 and in a. As clumps are no allowed to belong to larger maximum emission value in each clump to the threshold value. A very large u umber of clumps appears in b because of the essititivity of CLLMPFIIND to
noise and small-scale structure in the data In the online PD E version the noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (a and \mathbf{b}) can be rotated to any orientation, and surfaces can be turned on and off (interaction requires Adobe e Acrobat version $\begin{aligned} & \text {....8 or } r \text { higher). In } \\ & \text { on } \\ & \text { the printed version, the front face of each } 3 \text { D cube t the 'home view in the }\end{aligned}$ an
the printed version the front face of each 3 D cube (the h home vie view in the
interactive online version) corresponds exactly to the patch of sky shown in interactive online version) corresponds exactly to the patch of sky shown in
Fig. , and velocity with respect o the Local 5 standard of Rest increases from
front $\left(-0.5 \mathrm{kms}^{-1}\right)$ to back $\left(8 \mathrm{~km} \mathrm{~s}^{-1}\right)$
data, CLUMPFIND typically finds features on a limited range of scales, above but close to the physical resolution of the data, and its results can be overly dependent on input parameters. By tuning CLUMPFIND's
two free parameters, the same molecular-line data sett can be used to show either that the frequency distribution of clump mass is the same as the initial mass function of stars or that it follows the much shalllower mass function associated with large-scale molecular clouds Supplementary Fig. 1).
Four years before the advent of CLUMPFIND, 'structure trees
using 2D maps of column density. With this early 2D work as inspiralion, we have developed a structure-identification algorithm that
abstracts the hierarchical structure of a $3 \mathrm{D}(p-p-v)$ data cube into an easily visualized representation called a 'dendrogram' ${ }^{10}$. Although well developed in other data-intensive fields ${ }^{11,12}$, it is curious that the application of tree methodologies so far in astrophysics has been rare,
and almost exclusively within the area of galaxy evolution, where and almost exclusively within the area of galaxy evolution, where
'merger trees' are being used with increasing frequency ${ }^{13}$. Figure 3 and its legend explain the construction of de
schematically. The dendrogram quantifies how and where local max-
ma of emission merge with each other and ins implement ima of emission merge with each other, and its implementation is
explained in Supplementary Methods. Critically, the dendrogram is explained in Supplementary Methods. Critically, the dendrogram is
determined almost entirely by the data itself, and it has negligible sensitivity to algorithm parameters. To make graphical presentation possible on paper and 2D screens, we 'flatten' the dendrograms of 3D data (see Fig. 3 and its legend), by sorting their 'branches' to not
cross, which eliminates dimensional information on the x axis while cross, which ell infers ion al information on the x axis while preserving all information about connectivity ane billiard ball' labels in the figures let the reader match features between a 2D map (Fig. 1), an interactive 3D map (Fig. 2a online) and a sorted dendrogram (Fig. 2 c.
A dendrogram of a spectral -line data cube allows for the estimation of key physical properties associated with volumes bounded by iso-
surfaces, such as radius (R), velocity dispersion $\left(\sigma_{v}\right)$ and luminosity (L). The volumes can have any shape, and in other work ${ }^{14}$ we focus on the significance of the especially elongated features seen in L1448 (Fig. ea). The luminosity is an approximate proxy for mass, such
that $M_{\text {fum }}=X_{13 C O} L_{13 C O}$, where $X_{13 C O}=8.0 \times 10^{20} \mathrm{~cm}^{2} \mathrm{~K}^{-1} \mathrm{~km}^{-1} \mathrm{~s}$
 The derived values for size, mass and velocity dispersion can then be used to estimate the role of self-gravity at each point in the hierarchy, via calculation of an 'observed' virial parameter, $\alpha_{\text {obs }}=5 \sigma_{\nu}{ }^{2} R / G M_{\text {um }}$.
In principle, extended portions of the tree (Fig 2 yellow highlighting) In principle, extended portions of the tree (Fig. 2, , yellow highlighting)
where $\alpha_{\text {obs }}<2$ (where gravitational energy is comparable to or larger than kinetic energy) correspond to regions of $p-p-v$ space where selfgravity is significant. As $\alpha_{\text {obs }}$ only represents the ratio of kinetic energy to gravitational energy at one point in time, and does not explicitly capture external over-pressure and/or magnetic fields, its measured
value should only be used as a guide to the longevity (boundedness) of any particular feature.

Figure $\mathbf{3} \mid$ Schematic illustration of the dendrogram process. Shown is the construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by 'dropping' a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers (exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the emission is a set of points f for example the light purple dots) in one
en i
dimension a planar curve in two dimensions, and an isosurface in there emission is a set of points for example the light purple dots) in one
dimension, alana curve in two dimensions, and an isourface in there
dimensions. The dendrogram of 3 D data shown in Ais. 2 c is the direct dimensions. The dendrogram of 3 D data shown in Fig. 2 c is the direct
analogue of the tree show here, only constructed from isosurface rather
than analogue of the tree shown here, only constructed from isosurface' rather
than point intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions. require four dimensions.

+ "tasty" approaches to answers

C8MPLETE

Dendrograms

Hierarchical "Segmentation"
Rosolowsky, Pineda, Kauffmann \& Goodman 2008

Dendrograms

I-D: points; 2-D closed curves (contours); 3-D surfaces enclosing volumes
see 2D demo at http://am.iic.harvard.edu/index.cgi/DendroStar/applet

Harvard IIC Home
AM Project
overview
what's new?
press
about us
contact us
Research
background
projects
papers
images
movies
Software
overview
Slicer: getting started
Slicer 3
fits 2itk
OsiriX
OsiriX
DendroStar
Links
Center for Astrophysics
COMPLETE Survey
Surgical Planning Lab
3D Slicer
related projects
User
Login
Search
Search
Titles Text

The DendroStar Applet for L1448: Try me!

Tint: 0
Suppress tint:
Reset:
http://am.iic.harvard.edulindex.cgi/DendroStar/applet
Dendrogram Algorithm by Erik Rosolwosky;Applet by Douglas Alan

I.At what scales does gravity matter?

Yellow highlighting= "self-gravitating"
(according to virial theorem!?!)
"Self-gravitating" here just means $\alpha_{\text {vir }}\left(=5 \mathrm{~s}_{v}{ }^{2} R / G M_{\text {lum }}\right)<2$ (à la Bertoldi \& McKee I992-BUT-see Shetty et al. 20I0)

Rosolowsky et al. 2008 (ApJ) \&
Goodman et al. 2009 (Nature)

Real and Simulated ${ }^{13} \mathrm{CO}$

(Yellow = self-gravitating components)

Simulated

(Yellow = self-gravitating components)

The Taste-Testing Process

Simulation
Simulated Column Density

Enabled Indirectly

Nature

Observed Data

Taste-Testing "Gravity"

Philosophical Interlude

for non-Experts

"Islands of Calm in a Turbulent Sea"

$p-p-v$ structure of the B5 region in Perseus

STRONG Evidence for Coherence in Dense Cores

GBT NH 3 observations of the B5 core (Pineda et al. 20I0)
I. At what scales does gravity matter?

"Transition" so sharp
the GBT cannot resolve it.
We need EVLA...

Thermal Fragmentation in Bound Coherent Cores?! Thank you EVLA!

The Astrophysical Journal Letters, 739:L2 (5pp), 2011 September 20

Figure 1. Left panel: integrated intensity map of B 5 in $\mathrm{NH}_{3}(1,1)$ obtained with GBT. Gray contours show the 0.15 and $0.3 \mathrm{~K} \mathrm{~km} \mathrm{~s}^{-1}$ level in $\mathrm{NH}_{3}(1,1)$ integrated intensity. The orange contours show the region in the GBT data where the non-thermal velocity dispersion is subsonic. The young star, B5-IRS1, is shown by the star in both panels. The outflow direction is shown by the arrows. The blue contour shows the area observed with the EVLA and the red box shows the area shown in the right panel. Right panel: integrated intensity map of B5 in $\mathrm{NH}_{3}(1,1)$ obtained combining the EVLA and GBT data. Black contour shows the $50 \mathrm{mJy} \mathrm{beam}^{-1} \mathrm{~km} \mathrm{~s}^{-1}$ level in $\mathrm{NH}_{3}(1,1)$ integrated intensity. The yellow box shows the region used in Figure 4 . The northern starless condensation is shown by the dashed circle.

3 Questions

+ "tasty" approaches to answers

What Stars can do to the ISM

Massive StarForming Regions

20 cm VLA from MAGPIS (Helfand et al. 2006) \& MIR from Spitzer GLIMPSE (see Churchwell et al.)
$3.6,4.5,8.0,20 \mathrm{~cm}$ (Luptonized, see Lupton et al. 2004)
image "height" is 1.6 degrees (e.g. 140 pc at 5 kpc)

Evolution of an HII Region in a Turbulent Medium

from S.J.Arthur 2007

MI7

Tasting "MI7"...

Synthetic [OIII], Ha and [NII] emission-line image from a 512^{3} numerical simulation: Mellema, Henney, Arthur \& Vàzquez-Semadeni 2009

AstronomicalMedicine@|ⒸMPLETE

Note: I did not make up that name!

"CPOCs" COMPLETE Perseus Outflow Candidates

-2 0 2 24 $6 \quad 8$ 8 10

Perseus
 Bipolar Outflows

Arce et al. 20IOa

Table 5
Physical Parameters of Active Star-forming Regions in Persesus

Name	$M_{\text {reg }}{ }^{\mathrm{a}}$ $\left(M_{\odot}\right)$	$R_{\mathrm{reg}} \mathrm{b}$ (pc)	Δv^{c} $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	$T_{\text {ex }}{ }^{\mathrm{d}}$ (K)	$v_{\text {esc }} \mathrm{e}$ $\left(\mathrm{km} \mathrm{s}^{-1}\right)$	$E_{\text {grav }} \mathrm{f}$ $\left(10^{46} \mathrm{erg}\right)$	$E_{\text {turb }} \mathrm{g}$ $\left(10^{45} \mathrm{erg}\right)$	$t_{\text {diss }} \mathrm{h}$ $\left(10^{5} \mathrm{yr}\right)$	$L_{\text {turb }} \mathrm{i}$ $\left(10^{32} \mathrm{erg} \mathrm{s}^{-1}\right)$
L1448	150	0.6	1.9	10	1.5	0.3	2.9	2.6	3.6
NGC 1333	1100	2.0	2.2	13	2.2	5.2	28.8	5.7	15.9
B1-Ridge	210	0.7	1.9	13	1.6	0.5	4.1	3.1	4.1
B1	430	0.9	2.1	13	2.0	1.8	10.2	2.9	11.2
B5	420	1.4	1.5	12	1.6	1.1	5.1	7.6	2.1
IC 348	620	0.9	1.8	15	2.4	3.7	10.9	3.0	11.4

Notes.

${ }^{\text {a }}$ Mass of star-forming region, obtained using the procedure described in Section 5.1.
${ }^{\mathrm{b}}$ Radius estimate of the region obtained from the geometric mean of minor and major axes of the extent of the ${ }^{13} \mathrm{CO}$ integrated intensity emission.
${ }^{\text {c }}$ Average velocity width (FWHM) of the ${ }^{13} \mathrm{CO}(1-0)$ line in the region.
${ }^{\mathrm{d}}$ Average excitation temperature of region.
${ }^{\mathrm{e}}$ Escape velocity, given by $\sqrt{2 G M_{\text {reg }} / R_{\text {reg }}}$.
${ }^{\mathrm{f}}$ Gravitational binding energy given by $G M_{\text {reg }}^{2} / R_{\text {reg }}$.
${ }^{\mathrm{g}}$ Turbulence energy given by $\frac{3}{16 \ln 2} M_{\text {reg }} \Delta v^{2}$.
${ }^{\mathrm{h}}$ Turbulence dissipation time, see Section 5.2.1.
${ }^{\mathrm{i}}$ Turbulence energy dissipation rate give by $E_{\text {turb }} / \tau_{\text {diss }}$.

Table 6
Total Outflow Mass, Momentum, Energy, and Luminosity in Star-forming Regions

Name	$M_{\text {flow }}$ $\left(M_{\odot}\right)$	$P_{\text {flow }}{ }^{\mathrm{a}}$ $\left(M_{\odot} \mathrm{km} \mathrm{s}^{-1}\right)$	$E_{\text {flow }} \mathrm{a}$ $\left(10^{44} \mathrm{erg}\right)$	$L_{\text {flow }} \mathrm{b}$ $\left(10^{32} \mathrm{erg} \mathrm{s}^{-1}\right)$
L1448	$1.0 / 5$	$3.1 / 21.7$	$1.2 / 12$	8
NGC 1333	$5.0 / 25$	$17.4 / 121.8$	$6.9 / 69$	44
B1-Ridge	$1.1 / 5.5$	$3.2 / 22.4$	$1.0 / 10$	6
B1	$1.5 / 7.5$	$6.2 / 43.4$	$3.1 / 31$	20
IC 348	$4.2 / 21$	$7.7 / 53.9$	$1.5 / 15$	10
B5	$12.8 / 64$	$22.3 / 156.1$	$4.1 / 41$	26

Notes.

${ }^{\text {a }}$ Values before and after the slash are the original estimates and the estimates adjusted by the correction factor, respectively (see Section 5.1).
${ }^{\mathrm{b}}$ Outflow luminosity, $L_{\text {flow }}=E_{\text {flow }} / \tau_{\text {flow }}$, obtained using the value of the total outflow kinetic energy adjusted by the correction factor and using an average outflow timescale of $5 \times 10^{4} \mathrm{yr}$.

Table 7
Quantitative Assessment of Outflow Impact on Star-forming Regions

Name	$E_{\text {flow }} / E_{\text {turb }} r$	$r_{L}=L_{\text {flow }} / L_{\text {turb }}$	$E_{\text {flow }} / E_{\text {grav }}$	$M_{\text {esc }}{ }^{\text {a }}\left(M_{\odot}\right)$	$M_{\mathrm{esc}} / M_{\text {reg }}$
L1448	0.41	2.1	0.40	15	0.10
NGC 1333	0.30	3.4	0.17	76	0.07
B1-Ridge	0.24	1.5	0.20	14	0.07
B1	0.30	1.7	0.17	21	0.05
IC 348	0.14	0.8	0.04	23	0.04
B5	0.80	12.4	0.37	98	0.23

Note. ${ }^{\text {a }}$ Escape mass, given by $M_{\text {esc }}=P_{\text {out }} / v_{\text {esc }}$ (see Section 5.2.3).
Typically 20\% binding energy in flows. Bottom line

But, we have other options. Turns out bipolar outflows are nothing compared to spherical shells...

"Cinema Arce"

| x: 168 y: 150 $\quad z: 257$ value: -0.554963 |
| :---: | :---: | :---: |
| Ra 03h 41m 19.851s Dec 31d 55m 51.95s Vel: 6.35 km/s |

IRAS, 03382+3|45

"Spherical" Outflows

News Flash Spherical shells from young-ish stars may stir molecular clouds (much) MORE than bipolar flows, and Bstars may matter much.

Arce et al. 20 I I

50\% of
Cloud's
Turbulent Turbulent
Energy
\downarrow
80

3 Questions

+ "tasty" approaches to answers

($p-p-v$) Case Study

```
"Buried" SNR Gl6.05-0.57
All of M 7
```


Support Vector Machines in One Minute (SVM is a kind of "Machine Learning")

Feature I ("Intensity")

Support Vector Machines in One Minute

Feature I ("Intensity")

Training Set

Slice

Classification

Results

Cloud
Supernova

Results

Cloud

Linked Dendrogram Views in IDL (I)

Video \& implementation: Christopher Beaumont, CfA/UHawaii; inspired by AstroMed work of Douglas Alan, Michelle Borkin,AG, Michael Halle, Erik Rosolowsky

The Milky Way in Molecular Clouds

Dame et al. 2001 I.3-m "Mini" Telescope Survey of the Milky Way in CO

Hot off the Press

Nearby Star Forming Regions in The Milky Way

Large (I00 pc) Scales: Does Gravity Define GMCs?

The dream scenario...

"Astronomers" Saving Lives?

158,598 Views (Like 2 k
How do you measure a nebula? With a brain scan. At TEDxBoston, TED Fellow Michelle Borkin shows why collaboration between doctors and astronomers can lead to surprising discoveries.

Michelle Borkin is a PhD candidate in applied physics She works with the Astronomical Medicine Project and interdisciplinary 3D visualization techniques. Full bio »

Watch 10,000+ more videos from independent TEDx events on the TEDxTalks channel»
tedxtalks.ted.com

WHAT TO WATCH NEXT

Michael Nielsen: Open science now!
16:35 Posted: Nov 2011
Views 173,691| Comments 109

Aaron O'Connell: Making sense of a visible quantum object 07:51 Posted: Jun 2011

"Astronomers" Saving Lives?

The Future of "Astronomical Medicine"...

Watching Stars Form
 (or "The Importance of p-p-v Data and Linked Views in Understanding Star Formation")

Alyssa A. Goodman
 Harvard-Smithsonian Center for Astrophysics

Seamless Astronomy

Alberto Accomazzi, Doug Burke, Alberto Conti, Carol Christian, Mercé Crosas, Raffaele D’Abrusco, Rahul Davé, Christopher Erdmann, Jonathan Fay, Jay Luker, Alyssa Goodman, Michael Kurtz, Gus Muench, Alberto Pepe, Curtis Wong

Research
VAS ads.

Microsoft ${ }^{\oplus}$ Research
 WorldWide Telescope

View and compare images from across the electromagnetc spectrum

Much more than "just" the sky at night!
3D features can take you to other planets, stars \& galaxies.

The dream scenario...

Challenge \#I: 3D Selection

Challenge \#2:Too many windows...

Challenge \#3:

What does "Publication-Quality" Graphics Mean in an Interactive 3D World?

Goodman, Rosolowsky, Borkin, Foster, Halle, Kauffmann \& Pineda, Nature, 2009

Linked Dendrogram Views in IDL (2)

Linked Dendrogram Views in IDL (3)

