Outflows from Young Stars and the Interstellar Medium

Alyssa A. Goodman & Héctor G. Arce Harvard University cfa-www.harvard.edu/~agoodman

Note: This talk is a special "preview" of Héctor Arce's thesis, to be completed Summer 2001.

Star Formation v. 2000: The Bare Essentials

- 1. Stars form in molecular cloud complexes which range in size from ~10's to 100's of pc.
- 2. Molecular clouds can be characterized as turbulent, definitely supersonic, and perhaps super-Alfvénic.
- 3. Select "coherent" pieces of molecular clouds collapse and fragment to form stars.
- 4. Every star produces an outflow for during some (significant) fraction of its pre-main-sequence life.
- 5. Outflows can, and apparently often do, extend for several pc.

Jets from Young Stars

PRC95-24a · ST Scl OPO · June 6, 1995 C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA

Do Outflows Ever "Create" Cloud Structures?

If so, how does this effect future star formation & the "clump mass spectrum"?

The "Standard Model"

Today's Proposal

Radio Spectral-line Observations of Molecular Clouds

"Outflow" Spectra

"Clump" Mass Distribution

What is a clump?

Typical Stellar IMF $dN/dM \propto M^{-2.5\pm0.3}$

Salpeter 1955 Miller & Scalo 1979

What does the clump "IMF" look like?

Structure-Finding Algorithms

CLUMPFIND (Williams et al. 1994)
Autocorrelations (e.g. Miesch & Bally 1994)
Structure Trees (Houlahan & Scalo 1990,92)
GAUSSCLUMPS (Stutzki & Güesten 1990)
Wavelets (e.g. Langer et al. 1993)
Complexity (Wiseman & Adams 1994)
IR Star-Counting (C. Lada et al. 1994)
PCA (Heyer & Schloerb 1997)
Spec. Corr. Function (Rosolowsky et al. 1999)

E. Lada 1992

E. Lada et al. 1991

Keep in Mind... Molecular Clouds "Created" by Supernovae

100 μm Emission in Cassiopeia *Tóth et al. 1995*

Examples that might convince you that YSO Outflows Move More Gas than You Thought

1. "Giant" Herbig-Haro Flows PV Cephei

2. The Effect of Outflows on their host Cores B5

3. Are Some Dark Clouds Created by Outflows? HH300

4. How much of a molecular cloud complex was "moved" to its present location by an outflow? Taurus

"Giant" Herbig-Haro Flows: PV Ceph

Reipurth, Bally & Devine 1997

Matching Ejection **Angles** (assumes episodic ejections from precessing or wobbling stationery source)

Matching Ejection Distance (preferred by Reipurth)

A New Proposal: Episodic ejections from precessing or wobbling moving source

Required motion of 0.25 pc (e.g. 2 km s⁻¹ for 125,000 yr)

"Giant" Herbig-Haro Flows

1 pc

"Ambient" Gas in PV Ceph

¹³CO (1-0) SEQUOIA Map from FCRAO

Integrated over all velocities.

Arce & Goodman 2000

PV Ceph ¹²CO (2-1) Outflow Contours on ¹³CO (1-O) Map

Position-Velocity Diagram for PV Ceph Outflow

¹²CO (2-1) data from NRAO 12-m (Arce & Goodman 2000)

Zooming in on the "Blue Lobe" of PV Ceph

¹²CO (2-1) OTF Map from **NRAO 12-m**

Red: 3.0 to 6.9 km s⁻¹ Blue: -3.5 to 0.4 km s⁻¹

Arce & Goodman 2000

α (1950)

PV Ceph: CO (2-1) Spectra Near HH315 B

PV Ceph: CO (2-1) Spectra Near HH315 B

Arce & Goodman 2000

Arce & Goodman 2000

The "Blue" Lobe of the PV Ceph Outflow

¹²CO (2-1) data from IRAM 30-m (Arce & Goodman 2000)

Giant HH Flow: PV Ceph

- Ejection is almost surely episodic, and gas from >1 episode present along some lines of sight
- Souce may travel in addition to precessing or wobbling
- Both Velocity and Density Structure of "Cloud" bear resemblance to Outflow

2. The Effect of Outflows on their host Cores Previous Suggestions

- Increased Turbulence (in the area of the core coexisting with outflow)
- Core Dispersal by Outflows

New Slightly Radical Suggestion

 Outflow Gas May Be a Significant Volume of a Core (accounts for increased line widths & can lead to core dispersal)

Yu et al. (2000) ¹²CO (2-1) Observations,

B5 "Line Width-Intensity Plot"

Arce & Goodman 2000

B5-IRS 5: An "Outflow" Component?

¹³CO(1-0) Data from FCRAO to appear in Arce & Goodman 2000

3. Are Some Dark Clouds Created by Outflows?

HH300 & B18w in Taurus

The Taurus Dark Cloud Complex

Mizuno et al. 1995 ¹³CO(1-0) integrated intensity map from Nagoya 4-m

4. How much of a molecular cloud complex was "moved" to its present location by an outflow?

- Movie of Taurus, Gas Only
- Movie of Taurus, with Stars

Key: Blue 34% "Cloud" 56% Red 10% (by mass)

YSO Outflows Move More Gas than WeThought

 "Giant" Herbig-Haro Flows
 PV Cephei shows density & velocity structure--at least at low density--controlled by flow.

2. The Effect of Outflows on their host Cores B5: Evidence for a "Core" Component in ¹³CO

3. Are Some Dark Clouds Created by Outflows? HH300: Is B18w an Outflow Lobe?

4. How much of a molecular cloud complex was "moved" to its present location by an outflow? Taurus: A Lot