How is the MHD turbulence driven in the dense ISM?

pc-scale outflows?

Jets from Young Stars
HST • WFPC2
PRC95-24a - ST Scl OPO • June 6, 1995
C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA

"Giant" Herbig-Haro Flows: PV Ceph

Giant HH Flow in PV Ceph

${ }^{12} \mathrm{CO}(2-1)$ OTF
Map from NRAO 12-m

Red: 3.0 to $6.9 \mathrm{~km} \mathrm{~s}^{-1}$ Blue: -3.5 to $0.4 \mathrm{~km} \mathrm{~s}^{-1}$

Arce \& Goodman 2001

Driving Turbulence with Outflows

Studies in Héctor Arce's Ph.D. Thesis (Harvard, 2001; see Arce \& Goodman 2001 a,b,c,d) Show:

- HH 300 outflow has \sim enough power ($\sim 0.5 \mathrm{~L}_{\text {sun }}$ at a 1 -pc scale) to drive turbulence in its region of Taurus (using estimates based on Gammie \& Ostriker 1996)
- Many outflows show clear evidence for "episodicity" and this may effect coupling of outflow energy to cloud
- Episodicity may also explain steep mass-velocity relations, and odd-looking p-v diagrams
- Outflow sources move through the ISM (e.g. PV-Ceph)

Fig. 4.- The position-velocity map in a $40^{\prime \prime}$ wide strip along the major axis of the NGC 2264G outflow. The bipolar velocity field of the outflow is clearly observed. A linear increase in flow velocity with distance from the center of symmetry of the flow appears to characterize the velocity field. Despite the close similarity in both spatial and velocity extent of the outflowing gas, the detailed structure of the velocity fields in the red and blue lobes is strikingly different. The contour intervals are 0.15 K beginning with the 0.1 K contour.

NGC 2264G

profile. These observations show that the variation of flow emission and mass with velocity is not self-similar at all flow velocities. Similar departures from single power-law shapes have also been observed at high velocities in the profiles of the Orion A (Kuiper et al. 1981), L1448, and Mon R2 (Tafalla 1993) outflows. Moreover, in these flows the slopes of the profiles beyond the spectral break are quite similar (i.e., $\gamma \sim-3.5$) to that reported here. Tafalla (1993) has also presented evidence that suggests that spectral breaks may be present in the Orion B, NGC 2071 and L1551 outflows at high flow velocities.

Fig. 2-Observed mass distributions for three outflows. The vertical scale shows the mass per velocity interval $\left(M_{\odot} / \mathrm{km} \mathrm{s}^{-1}\right)$, integrated over each lobe of the outflow, and the horizontal scale shows the absolute value of the velocity offset from the line center ($\mathrm{km} \mathrm{s}^{-1}$). The triangles show data for NGC 2071, the squares show L1551, and the pentagons show the red lobe of $\mathrm{HH} 46-47$. The lines show power-law fits to the data.

Fia L-Velocity-poution diagram alone a SW-NE line, ie, close to the

 the kigh-velocity festeres discussed in the vent.

SUCCESSIVE EJECTION EVENTS IN THE L1551 MOLECULAR OUTFLOW R. Bachiller, ${ }^{1}$ M. Tafalla, ${ }^{1,2}$ and J. Cernicharo ${ }^{1}$

The Astrophysical Journal, 425:L93-L96, 1994 April 20 © 1994. The American Astrocemical Soclety. All rights reserved. Printed in U.S.A.

L1551

Fies 8. Mas of $\mathrm{CO} J-2-1$ ievensity intcgrased in the line wings. The solad contores ane for the Bluectitiod emission freos $-55 \mathrm{kes}^{-1}$ to $0 \mathrm{kms}^{-1}$) and the dashod connours for the redsifited emission fiscograned from $10 \mathrm{k} \mathrm{ks}^{-1}$ to $65 \mathrm{kms}^{-1}$. First contour and contoor interval are $10 \mathrm{~K} \mathrm{kms}{ }^{-1}$. The highorelocity $C O$ cmiasion probably results from the superposition of rwo differest outfowe. The main outforw is centered on the position marked by the black square, we prodict that at this position the ponition marked by the black syuare, oe prodict that at this position
must be placed an wnebco young stellar object the "U-star". The second must be placod an wn-scce young stellar object the "U-star"

Fies 12. Velocity-position diugram along a line paw igt troogh the U-star powtion. DKS 3 and isveral ighevelosity bullets. This lane is clowe to the main outlow axis. The LES3 and U-star positions are indicasod by dashed horieserall linex some other poitibes, where CO ballets are seen, are isticaled a the ket aus cotiects with respect o iRSS afe ia rreed TBe mivioe is tac velecio inderval 0-10 soptoan is this pope hares sot been supplayed for duricy. Several molociler bollots at high valopties are sloatly wes (BL, R2, R) Nose aloo the dectere: tion of the liglevelooiry gas fowe the V -star pois tion. Litht costoars ate all 0.2 .0 .4 and 0.6 K . woldid comours are at ox, 12, 1.6 Kele

Astron. Astrophys. 231, 174-186 (1990)

High-velocity molecular bullets in a fast bipolar outflow near L 1448/IRS 3

R. Bachiller ${ }^{1}$, J. Cernicharo ${ }^{1,2}$, J. Martin-Pintado ${ }^{1}$, M. Tafalla ${ }^{1, \star}$, and B. Lazareff ${ }^{3}$

L1448

FIG. 10.Northeast lobe of the IRS 1 flow. (a) Area-integrated spectrum of region R2 in $12 \mathrm{CO} \mathrm{J}=2$ 1 (solid line), 12CO $\mathrm{J}=10$ (dotted line), and $13 \mathrm{CO} \mathrm{J}=10$ (dashed line). (b) Fit to the ratio of optical depths $\mathrm{R} 12 / 13=(12 \mathrm{CO} \mathrm{J}=10) /(13 \mathrm{CO} \mathrm{J}=10)$, integrated over the region. Valid points kept for the fit are those with ratios with both intensities above twice the rms noise and for velocities outside the turbulent line core (diamonds). Invalid points not meeting those criteria are indicated by a cross. The second-order polynomial fit to the valid points is shown as a solid curve. The dashed line is the result of fitting a parabola to the entire cloud in region R1. Vertical dashed lines outline the turbulent line core (cloud vLSR $\pm 0.75 \mathrm{~km} \mathrm{~s}-1$). (c) Luminosity mass vs. inclination-corrected velocity from center of the flow. Lines show fits to the power law ML
v -. Points for the blueshifted lobe are indicated by diamonds; the redshifted lobe points by triangles. Filled symbols denote masses calculated directly from $13 \mathrm{CO} \mathrm{J}=10$; open symbols denote masses calculated from the fit of the optical depth ratio. (d, e, and f) Same as (a), (b), and (c) except that they are for the southwest lobe of the IRS 1 flow (region R3).

FIG. 11.Northeast lobe of the IRS 1 flow with the ambient cloud subtracted out. (a)
Area-integrated 12CO J = 21 emission in region R 2 (thin line); same emission with the ambient cloud (defined by region R4) subtracted out (thick line). (b and c) Same as for Fig. 10. (d, e, and f) Same as (a), (b), and (c) except that they are for the southwest lobe of the IRS 1 flow (region R3 in Fig. 9) with the ambient cloud (region R5 in Fig. 9) subtracted out.

Outflow position-velocity diagrams

Variations in Burst History...

Mass-Velocity \& Position-Velocity Relations in Episodic Outflows

Arce \& Goodman 2001

Time-Ordering of $\mathrm{p}-\mathrm{v}$ Diagrams?

Episodic ejections from precessing or wobbling moving source

Required motion of $0.25 p c$ (e.g. $2 \mathrm{~km} \mathrm{~s}^{-1}$ for $125,000 \mathrm{yr}$ or $10 \mathrm{~km} \mathrm{~s}^{-1}$ for 25,000 yr)

Blue Lobe
$-3.85<\mathrm{V}<0.7 \mathrm{~km} / \mathrm{sec}$

EVEP

 leaves a trail?Arce \& Goodman 2001

Outflows Driving Turbulence

- What you see (now) is not the whole story.
- Outflows seem to have a complex time-history.
- Sources may travel.
- Questions Raised:
- Is true net momentum/energy input is still measurable from observations?
- Do simulations need to include time history, or is "net" enough?
- How do we find all the flows?

