
Chapter 3

Making Maps with the SCF

In Chapter 2, the background for establishing a single function de�ning the correlation

between two spectra was developed. The entire purpose of the SCF, however, is to analyze

whole maps of spectra and thus the functions must be generalized in an appropriate way to
create correlation maps of the data sets. In the following discussion, a method for doing this

is established and then some examples of the correlation maps are explored in order to glean
understanding about our results.

The SCF algorithm was written in the IDL software package to take advantage of the
built-in functions, the multi-dimensional array processing, and graphics utilities. It would be
easy to port the code to another language for speed in processing though the output would

have to be analyzed using some graphics package, like PGPLOT or MONGO.

3.1 Creating Maps of the SCF

In order to generate the appropriate maps, a speci�c algorithm is developed.

1. Begin by considering a data cube with size X �Y and spectra at each (xi; yj) position
in the cube. For purposes of the calculation, it is assumed that the spectra are taken
on an evenly spaced grid. In the discussion to follow, (xi; yj) represent the real right
ascension and declination coordinates of the cube and the coordinates (i; j) are the

pixel coordinates in the data cube.

2. For each of these spectra, a Gaussian is �tted to the data, allowing for the estimation
of certain line parameters. The parameters derived from the �t are peak antenna

temperature (T �

A), the width of the Gaussian in velocity space (�v), the center of the

Gaussian (vLSR), the integrated area under the Gaussian (Tint) (generated with the
summation integration discussed previously), and the rms noise of the spectrum (�rms).

Note that most of these parameters are used only for the purpose of calculating the
noise in the spectrum. The sole exception is that the width (�v) is used to determine

the relevant velocity ranges around a spectrum's peak that the SCF will consider.

3. Spectra with a signal to noise ratio below a selected threshold are rejected and all

correlation calculations are performed without these rejected data.
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(a) (b)

Figure 3.1: Two commonly used weight functions. (a) A 
at, circular mask, used to eliminate
any bias for the square directions in which the cube was sampled. (b) A Gaussian mask,

also circularly symmetric, but also weights spectra closer to the base spectrum.

4. A test spectrum at (xi; yj) is selected to measure its correlation with nearby spectra.

5. The SCF requires two input parameters denoted by the variables r and q. r is the
resolution of the SCF and represents the number of spectra for which the correlation

with the test spectrum is measured. A resolution of r means to consider an r � r box
centered on the test spectrum and to compare the test spectrum with every spectrum
in the box. If desired, the results of the correlation calculations can be weighted by
the distance away from the test spectrum. These weight functions emphasize regions
in the data cube to eliminate certain biases. Examples of weight functions appear in
Figure 3.1.

The parameter q is a measure of what velocity range is compared with the other spectra
in the r�r box. All calculations discussed in the following section are to be performed
only on the velocity range

vLSR(i; j)� q�v(i; j) � v � vLSR(i; j) + q�v(i; j) (3.1)

The Gaussian �t parameters in equation 3.1 are taken from the �t to the test spectrum

at (xi; yj). All the integrations performed in the calculation of the deviation function
and the SCF itself are taken over this velocity range as opposed to the full range of

velocities within the spectral bandpass.

6. A comparison spectrum at (xa; yb) is selected with the provisions that a 2 [i � (r �

1)=2; i + (r � 1)=2]; b 2 [j � (r � 1)=2; j + (r � 1)=2]; a 6= i, and b 6= j.

7. Letting the spectrum at (xa; yb) equal T1(v) and the spectrum at (xi; yj) equal T0(v),

the deviation function, D(T1; T0), is minimized by adjusting s and `. The deviation

function is then normalized according to prescription in equation 2.5.
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8. The above step is repeated for each spectrum in the r � r box. The resulting values

for S(Ta;b; Ti;j); sa;b;i;j; and `a;b;i;j are averaged over all non-rejected values of a and b

in the box using the selected weighting function. The resulting means are assigned to

the position at (xi; yj) as Sij; sij; `ij .

9. The deviation function is then minimized between the test spectrum and all comparison

spectra holding the value of s at 1. This represents the correlation between the areas of

the spectra because di�erences in area can not be compensated by the scaling parameter

s. The averaged values of the SCF and the lag, `, over all applicable a and b are referred

to as Sl
ij and `lij respectively.

10. The deviation function is then minimized holding ` = 0, in an attempt to explore

velocity o�sets alone. The values of the SCF and sa;b;i;j in this case are referred to as

Ss
ij and ssij respectively.

11. The last correlation calculation to be performed over the box centered at (xi; yj) is to
calculate the SCF with ` = 0 and s = 1, the straight squared di�erence between each
pair of spectra. The resulting averaged value is referred to as S0

ij.

12. Finally, the above correlation calculations are performed for each spectrum in the
cube serving as the base spectrum. This procedure yields values of the parameters
T �

A;�v; vLSR; Tint; �rms; S; `; s; S
l; `l; Ss; ss; and S0 for every point (xi; yj). Maps of

each of these parameters can be generated and in their analysis, the results of the SCF

can be analyzed.

3.2 Interpreting Maps of the SCF outputs

The bulk of this section is to provide some insights into how the maps generated by the SCF
can be interpreted. The results are di�erent from any other functional output generated by
other analysis routines; and in applying the analysis to simple situations, more insight can
be gleaned about actual data. The understanding from these maps is preliminary and is
used as a semi-qualitative descriptor of the behavior of the data.

To develop well-understood situations, the algorithm was applied to small cubes of

completely arti�cially generated spectra. It is important to note that these do not represent
the data from MHD simulations in any way. Rather, they are simple constructions of data
cubes which are intended to display the behavior of the SCF with only one aspect of the

data cube changing in a regulated fashion.

The data cubes generated had 484 spectra arranged in a 22�22 array. These spectra

were Gaussians and had various amplitudes, widths, and/or velocity o�sets. Several di�erent

con�gurations were analyzed including random parameters, sudden jumps, linear gradients,
and constant variations in the parameters. A few general statements about the outputs from

the SCF can be made.
The correlation function S represents the similarity in shape between the base spec-

trum and the surrounding spectral lines. In a test where the spectra were all Gaussians with
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the same width, the value of S was 1 for the entire map, even for randomly distributed o�-

sets and amplitudes. Since these all have the same shape, the correlation function accurately

demonstrated the similarities of these lines.

The lag parameters ` and `l both represent the velocity by which the neighboring

spectra are o�set from the test spectra. For linearly changing values of vLSR, this number is

zero. This result is due to the fact that for any given test spectrum, the comparison spectra

with higher velocities are balanced by those with lower velocities, so the mean shift is zero.

Any deviations from this can be attributed to the discrete spacing of the grid points and the

inability for the spectra to be shifted in order that a perfect match be obtained.

The lags are interesting because for smooth Gaussians, a velocity gradient of order m

can be shown to have a corresponding lag �eld of order m�2, implying a relationship similar

to that of taking the second derivative. Ordinarily, recognizing the relationship would be a

boon to calculations, but the relationship only holds true when the peak velocity is the only

thing di�ering between two spectra. When their shapes and amplitudes di�er, the correlation

might be maximized with a lag that is not the one predicted by the second derivative of the
velocity �eld.

The scaling factors s and ss represent the similarities between the antenna tempera-
tures of the spectra. When the lag is turned on, the value s represents the similarity between
the integrated areas of the spectra, with a value of 1 indicating equality. When the lag is o�,

the value, ss, represents the mean, for all velocities, of the ratio between the antenna tem-
peratures from the two spectra at given velocities. A value greater than one indicates that
the base spectrum is consistently higher than comparison spectrum and a value of less than
one indicates the opposite case. It is important to remember that the value of s is adjusted
so that the di�erences in antenna temperatures are minimized over the whole spectrum, and

the result does not correspond to the ratio of amplitudes at a given velocity.
The remaining correlation functions contain important information in what is held

constant rather than what is allowed to vary. This subtle point stems from the realization
that in allowing a parameter to vary any di�erences due to that parameter are eliminated
by the SCF analysis. For example, Sl, the correlation with adjustable lag but not scaling

of the spectra is helpful for comparing the similarities of line pro�les. A high value will
indicate that the spectra are similarly shaped and scaled though they may not necessarily
be from regions with the same bulk velocity. On the other hand, the correlation function
with zero lag but adjustable scaling, Ss, measures the similarity in velocity distribution at

two positions without regard to the amplitude changes.

Finally the correlation function with the lag o�, S0, indicates simply the similarity of

the two spectra in size, shape and velocity distribution. Strong correlations in this function

are tied to features that are large compared to the resolution of the SCF; thus changing
the resolution will highlight di�erent structures. This result is because a large value of S0

requires all the spectra in the resolution box to be very similar in all aspects.

In this section of the paper, several examples of arti�cially generated data are inter-

preted. The relevant maps are displayed and others are summarized in the text. The best

approach to interpreting these data may be simply to leap in and look at some examples. In
all these examples, the weight function is a uniform r � r box.
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3.2.1 Velocity Jump

The �rst example contains the results of the SCF algorithm when the spectra in two regions

of a map di�er from each other by a sudden jump in velocity. In this case, the jump in vLSR
is from 1 km=s for low values of y to -1 km=s for high values of y. Physically, this jump

corresponds to the spectra in the bottom half of the graph having a red-shift and the spectra

in the top half of the graph being blue-shifted. These are the spectral maps of two bodies

of gas: one coming towards the observer and one retreating from the observer. The results

are shown in Figure 3.2.

(a) (b)

Figure 3.2: Correlation function outputs for a velocity jump. (a) The input velocity �eld.
(b) The resulting �eld of lags

The �gure on the left is a grey-scale representation of the �ts to the vLSR of the

generated spectra. It depicts the sudden jump in vLSR halfway up the data cube. The
corresponding representation of the lag is displayed on the right. In all maps, the color bar
extends for 10% beyond the actual values, which is why the extrema of the bar are at -1.1

and 1.1 respectively. The greyscale is selected to display a dynamic range of the data and

color bars are provided for aid in interpreting the results.

As expected, the map displays a jump when it crosses the boundary between red-

shifted spectra and the blue-shifted spectra. The drop in the value of ` before the jump is
because the spectra on the border that are red-shifted are being correlated with spectra in
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the blue-shifted region that have a negative vLSR relative to the spectrum with which they

are being correlated. There is a corresponding jump in the blue-shifted section where the

spectra are correlated with spectra that have a greater value of vLSR.

In all cases, the plots have a pair of nested boxes in the lower left-hand corner. These

boxes represent the size of the pixel (inner box) and the size of the SCF r� r box where the

correlations are conducted (outer box). In addition to these visual aids, an extra contour

has been added at the zero level so that the examiner can distinguish between those regions

with positive ` or vLSR and those with negative values.

All other plots of the map yield what is expected. The SCF function is equal to 1

over the entire plot in cases when both scaling and lag (Sij) and just lag (Sl
ij) are turned

on. In the case where there is no lag turned on (Ss
ij and S0

ij), the maps appear as shown in

Figure 3.3.

Figure 3.3: Map of S0 in the case of a jump in vLSR

The band in the center adequately represents the fact that the spectra in this region

are not well correlated with their neighbors. The small boxes on the edge of even poorer

correlation are the result of an edge e�ect. This e�ect results from the fact that pixels in
the center of the map have eight spectra averaged together to yield a result while pixels on

the edge only have �ve. It is because of e�ects like these that the r pixels on the border of
the map are discarded in the actual analysis.

Because the arti�cial spectra were all of the same height, the scaling factor, s is

uniformly 1. The parameters from the �tting indicate that the routine �ts the Gaussians
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well.

3.2.2 Amplitude Jump

The amplitude jump is almost exactly the same as the velocity jump, except that the jump

is in the height of the Gaussian in the model spectra. The jump is from high amplitude at

low y to low amplitude at high y, representing two di�erent regions of gas, one with a higher

peak antenna temperature than the other (See Figure 3.4).

(a) (b)

Figure 3.4: Maps of arti�cial data with a jump in T �

A. (a) The amplitudes of the spectra.
(b) The scaling factor s.

Again, there is an increase before and a dip after the change in the amplitude. The

rise before the change may be a bit counter-intuitive; however, the way that s is de�ned is

the amount by which the neighboring spectra are scaled up. Thus, the low spectra being

scaled up to have the same form as the high spectra is represented by the jump and the high
spectra being scaled down is represented by the dip. A border contour is plotted here as

well, this time dividing regions with s < 1 from those with s > 1. Those with s < 1 indicate
that the neighboring spectra had to be scaled down, so the spectrum here has, on average,

a smaller integrated area than its neighbors.

The other plots generated by the SCF algorithm are similar to those generated in the
case of the velocity jump. The SCF plots without scaling turned on are identical to those in

the velocity jump without lag turned on (see Figure 3.3 and comments pertaining thereto).
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Similarly, those plots of the SCF with scaling turned on are uniformly equal to one (with

an error of 1 part in 107 due to 
uctuations in the 
oating point calculations used on the

computer).

3.2.3 Width Jump

While di�erences in lag and scale can be compensated for by the parameters ` and s respec-

tively, di�erences in shape can not be so corrected; thus the SCF can be used to measure the

di�erences in shapes between lines. The result is that the SCF de�nes correlated spectra to

be those with similar shape. A change in width is tantamount to a change in shape.

In this set of data, the jump is from large widths for low y to small widths for large

y. The relevant plots for the case of changing widths are found in Figure 3.5.

(a) (b) (c)

Figure 3.5: Relevant plots for a jump in Gaussian width. (a) The widths of the spectra. (b)
The SCF values for the map. (c) The parameter s compensating for the di�erences in width.

The �gure on the left represents the �t to the Gaussians, depicting the jump from

large width to small width as y increases. The second plot, representing the SCF, shows

how the width changing a�ects the data because the shapes are di�erent along the interface
between wide and narrow lines. There is less correlation between the spectra at that point.

Finally, the last plot represents the value of s changing, which stands to reason because the
SCF algorithm uses a changing scale factor to compensate for the di�ering widths.

3.2.4 Resolution

One of the input parameters that can be changed is the resolution, r, in order to regulate the

size of the box over which the SCF parameters are evaluated. Again, the case of a changing

vLSR is used, but in this case there are two small clumps of gas with strong red-shifts against
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background at rest relative to the observer. Like resolution in optics, the higher the value

of r that is used, the more di�cult it is to distinguish between two distinct features and to

deduce their physical extent. The plots in Figure 3.6 illustrate this e�ect.

(a) (b) (c)

Figure 3.6: Relevant plots to display changing resolution. (a) The two-peaked velocity �eld.
(b) The correlation function S0

ij at resolution 3. (c) The correlation function at resolution
13.

For the �gure with r=13, it is impossible to determine whether the gas distribution
has a large region of spectra that are not perfectly correlated or a smaller region that is
pulling the averages down. For this reason, the smaller resolution can be used to pick out
these details.

Sometimes it can be advantageous to use a larger value of r on purpose. The corre-
lations between gas clumps at small scales can be detected with small r values, but these
features tend to mask the larger scale correlations present in a data set. To illustrate this,
a data set has been generated with small-scale and large-scale structure. The relevant plots

appear in Figure 3.7.

The velocity �eld is one with a small-scale sinusoidal modulation, on order of a pixel
size, and a large jump at the center from blue-shifted velocity to red-shifted velocity. The

jump is not readily distinguishable in the correlation measure at low resolution. There is
a feature there; however, it cannot be discerned from the smaller scale correlations. On

the other hand, if the resolution is increased, the large-scale correlation of the gas on either
side of the jump becomes more apparent. The increased resolution serves to highlight this

feature. The jump will become more dominant as the resolution increases, washing out the
small-scale modulation in the in�nite limit.
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(a) (b) (c)

Figure 3.7: Plots displaying the ability for di�erent resolutions to select for features of
di�erent size scales. (a) The velocity �eld used (b) S0 with r = 3. (c) S0 with r = 9.

3.2.5 Bringing it all together

The above di�erences are rather easy to understand individually; however, when all three
basic e�ects are present in the same cloud, the interpretation is more di�cult. In order to
better understand such amalgamations of e�ects, the compensating factors s and ` can be
turned on and o� at will.

First, the advantages of normalization immediately become apparent. We can ex-
amine a clump in a cloud and compare its values for the various 
avors of the SCF. With
both scaling and lag turned on, the value of S represents the best correlation one can get
between two spectra. This value serves as a basis for comparison. Then, we can turn o� lag
(` � 0) and scaling (s � 1) respectively and compare the resulting Ss

ij and Sl
ij. If one of

these is signi�cantly higher than the other, we can assert that the gas has similar velocity

distributions (Ss > Sl) or that it is emitting similar amounts of radiation, but not moving
coherently (Sl > Ss). If the SCF with both lag and scaling turned o� is comparable to
those values with it on, we can assert that the gas within one resolution box of the central

spectrum has either a roughly uniform or a completely chaotic nature, corresponding to high

and love values of the SCF respectively.

The next fashion in which the results of the SCF can be compared is along the

lines of the actual value of the SCF. The function, after all, is a measure of the correlation
between spectra and with the normalization factor included, di�erent parts of the map can

be compared.
Additionally, maps can be compared with each other. Regions with correlation close

to one are similar in shape to the spectra within the resolution box. Similarly, the calculated

values of the other SCF variations, Ss and Sl, indicate similarities in intensity and velocity
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distribution over the same areas.

In addition to mapping the SCF and its subsidiary variations, the parameters s and

` that maximize the correlation for each point on the map are also calculated. These maps

can be generated to give further information about the clouds.

The easiest aspect of these maps to consider is the magnitude of the lag parameter `.

The parameter takes on large magnitude values when calculated along the border between

two di�erently moving regions of gas. It is similar to the velocity gradient of the cloud, but

by altering the resolution of the SCF, the structure of a velocity shift can be interpreted.

For example, the resolution at which the jump appears the most prominent is the size scale

of the physical jump.

With these realizations about the SCF and its behavior, the analysis of `real' data

can begin.
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