
Chapter 2

The SCF Algorithm

The focus of the SCF project is to develop a function that represents the correlation between

two spectra and generate a computer algorithm that e�ciently calculates this correlation.

The function is a type of two-dimensional autocorrelation function with additional parame-
ters included to investigate the nature of the correlations over an entire spectrum. This task

is subdivided into three distinct parts, each of which is described in the following sections.
First, a meaningful correlation function must be de�ned. Next, such a function must be
developed into a working computer algorithm. Finally, the presence of noise in the data
must be addressed in order that a meaningful comparison between spectral maps can be
made.

The basis for this plan can be found in Goodman (1997).

2.1 Mathematical Development of the SCF

2.1.1 The Deviation Function

To measure the correlation between two spectra, each spectrum is viewed as a function in

velocity space: TA(v). A new function, called the deviation function, is de�ned based on
these two functions:

[�1;0(v)]
2 = [T �

A;1(v)� T �

A;0(v)]
2 (2.1)

The deviation function is in units of antenna temperature squared [K2] and is iden-

tically zero for identical spectra. In order to develop a better sense for what the deviation

function means, it is reduced to a single number by integrating in velocity space, resulting in
a single number with units of K2 � km=s. This number is referred to as the deviation scalar
or simply the deviation.

D(T1; T0) �
Z
[�1;0(v)]

2dv =
Z
[sT �

A;1(v � `) � T �

A;0(v)]
2dv (2.2)

The free parameters s and ` have been introduced so that the deviation can be

minimized between the two spectrum, allowing for spectra with similarities in shape and
di�erences in amplitude or velocity o�set to be recognized as having some correlation. The
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introduction of these parameters is what distinguishes the SCF method from the other

analysis routines discussed above. These parameters recognize more kinds of similarities as

signi�cant than do the three dimensional analyses or the correlation function methods.

The deviation is also examined with s = 1 and/or ` = 0 to understand the di�erences

between the two spectra. The values of these parameters o�er hints to the relations between

the two spectra. For example, if the value of ` is close to 0 for a certain correlation, the

two spectra should have similar velocity distributions. If the value of s is close to 1 for the

correlation, the two spectra should have similar temperatures over the velocity range.

The deviation function is non-negative by its de�nition so a deviation of zero is its

lower bound resulting from the integral of the zero function. To determine the maximum

value of the deviation, the functional de�nition 2.2 is expanded:

D(T1; T0) = s2
Z
[T �

A;1(v � `)]2dv � 2s
Z
T �

A;1(v � `)T �

A;0(v)dv +
Z
[T �

A;0(v)]
2dv (2.3)

In the above equation, the cross term represents the correlation between the two
functions. If the two spectra are radically dissimilar, this cross term will go to zero. For

example, consider two lines radically separated in velocity space so that the near-zero wings
of one function are multiplied by the peak of the other and vice versa. In the limit of
poor correlation, the integral of the cross term will be zero and the maximum value of the
deviation is simply the exterior terms:

D(T1; T0)max = s2
Z
[T �

A;1(v � `)]2dv +
Z
[T �

A;0(v)]
2dv (2.4)

This understanding of the range of the deviation function becomes essential in nor-
malizing the results of the functions.

2.1.2 Normalization

In order to aid in interpreting the results of the deviation calculation, the value of the
calculation can be normalized to the unit interval. The desired normalization is to have a
value of 1 indicating perfect correlation and the value of 0 indicating the minimum correlation

in the following fashion, thereby de�ning the Spectral Correlation Function S(T1; T0):

S(T1; T0) � 1�

vuut D(T1; T0)

s2
R
T 2
1 (v)dv +

R
T 2
0 (v)dv

(2.5)

The normalization value in the denominator is chosen because it represents the max-
imum value of the deviation in the absence of absorption (c.f. Equation 2.4). Absorption in
observed spectra only occurs in a few cases and the result is that the antenna temperature of

a spectrum becomes negative. Thus, the cross term in Equation 2.3 will be positive if there is

a large contribution due to absorption in one of the spectra. In this case, the �nal normalized
deviation will be negative. This is because

R
[�(v)]2dv > s2

R
T 2

1 (v)dv +
R
T 2

0 (v)dv. These

e�ects will result in S < 0 and, because the scale factor s is derived using similar integrals,
its value will also drop below zero.
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2.2 E�cient Optimization of the Deviation

The SCF algorithm will necessitate the calculation of large numbers of deviation functions;

hence these calculations will need to be done e�ciently and accurately. Minimization of a

function in parameter space is the subject of much work in the �eld of numerical analysis

and there exist many routines to use in such minimization problems. Unfortunately, the

deviation, viewed as a function of s and ` is more di�cult to analyze than most functions to

which these methods are applied. The main reasons for this di�culty lie in the parameter

`. These di�culties can be grouped into three major problems:

1. The value of D(T1; T0) can only be evaluated for values of ` such that T �

A(v � `) is

de�ned by the original spectrum. In other words if v0 = v � `, then v0 must be a

velocity for which an antenna temperature is measured in the original spectrum.

2. Several minimization routines require the value of @

@`
D(T1; T0). Any accurate partial

derivative of D(T1; T0) with respect to ` requires evaluating T �

A(v�`) at several points.
For noisy functions, the number of points evaluated must be quite high in order for
the partial derivative to be of any use to a numerical optimization routine.

3. The function T �

A(v) has many local extrema because of noise and thus any minimization
routines, in seeking a minimum with respect to `, will �nd a local minimum. In order to

insure this is the absolute minimum, most routines check to see if a randomly selected
initial point will cause the algorithm to return to the already located minimum. If not,
the values of the function at the two points are compared and the lower one is selected
for the same displacement treatment. By numerous iterations of the program, this
checking procedure will eventually discover the global minimum. However, for typical
spectra, this would require a large number of iterations, far more than most programs

are intended to use.

To develop an understanding of what will be required from a minimization routine,
Figure 2.1 displays the deviation in s�` parameter space. The two large humps in this �gure
represent the increase in deviation that occurs when both peaks in the spectra are present in

the calculation window, but are not aligned so that the cancelation can occur. The drop o�

that occurs past these two peaks is because the spectra are not of in�nite span in velocity
space and the peaks migrate o� the portions of the spectra which are being examined. By

considering lines of constant `, one important feature is noticed: the variations in s result

in a parabolic variation of the deviation. This type of relationship is capitalized upon in
the development of the minimization routine because the minimum, for a given value of `,

is easily calculated. By viewing the function as a paraboloid in s, a simple derivative will
produce the appropriate minimizing value of s.

D(T1; T0) = s2
Z
[T �

A;1(v � `)]2dv � 2s
Z
T �

A;1(v � `)T �

A;0(v)dv +
Z
[T �

A;0(v)]
2dv

) smin =

R
T �

A;1(v � `)T �

A;0(v)dvR
[T �

A;1(v � `)]2dv
(2.6)
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Figure 2.1: D(T1; T0) viewed in parameter space. (a) The input spectra. (b) The parameter

space.

Because there is only one local minimum, smin, it is possible to minimize the function

D(T1; T0) with respect to s �rst and then with respect to `. The presence of a single minimum
in s-space is fortunate because it allows for the minimization of the deviation to be done

serially. The process is to �nd the minimum value of the deviation for any given value of
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` by adjusting s and then selecting the minimum of all these values. The resulting value is

guaranteed to be the minimum of the deviation because it is the minimum of the complete

set of local minima. Computing the minimization in the opposite order does not necessarily

guarantee that the set of local minima is complete and thus the global minimum might not

lie among these. In addition, the fewer times the deviation is calculated, the better; for

calculations with changing ` are very time-consuming.

2.2.1 Numerical Integration

The evaluation of the deviation, D(T1; T0), requires the computation of the integrals in

equation 2.3. In addition, minimizing s requires the computation of the same integrals. There

are many numerical integration routines available on di�erent computer platforms. However,

e�ciency is a priority in designing the algorithm and the simplest numerical method is used.

The spectral data are sets of paired numbers (vi; T
�

A;i) which can be plotted as T �

A(vi) to yield

the usual spectrum. Most spectral data are in the special case where the velocity abscissae
are evenly spaced: vi+1 � vi = constant � �v for all i. In order to integrate the spectrum
over the velocity range, the values of the function are summed and the resulting total is
multiplied by �v, corresponding to the rectangular estimate of the area under a curve.

Z
f(v)dv '

 X
i

f(vi)

!
� �v (2.7)

This approximation is excellent, so long as the sampling of the data, �v, is smaller
than the scale over which the function f(v) varies appreciably. For Gaussians, an integra-
tion accurate to 1 part in 106 requires but 2 samples per half width. Unfortunately, most

spectral data are noisy and thus not slowly varying on a scale larger than the sampling.
The integral under the curve, therefore, will be signi�cantly di�erent from the total derived
using the summation approximation. Each of the spectra involved in the function f(v) has
an associated value � representing the noise in the spectrum. This value is the root-mean-
squared value of the noise of the signal where it should ideally be zero and can be used as

the error in the antenna temperature values. Thus, the error in the integration routine can
be approximated by calculating the errors in quadrature. In all cases, the integrals are of the
form g =

R
f(v)dv =

R
Ti(v)Tj(v)dv. Thus, the inherent error due to noise in the calculation

is:

@f(v) =
q
T 2
j (v)�

2
i + T 2

i (v)�
2
j =) (2.8)

@g =
Z
@f(v)dv '

 X
i

@f(vi)

!
� �v (2.9)

In the above equation, a \@" preceding a function indicates that it is the error in

that function. By means of example, the error incurred by noise in the spectra is about 1
part in 4 whereas the error incurred by the summation integration is less than 1 part in 25

for a spectrum with signal to noise value of 3.18 and a channel width of 0.05 km=s. Thus,
the error due to the approximation can be neglected in light of the error due to noise in the

spectrum. The problems with correlation because of noise in the spectra will be addressed

in the next section.
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2.3 The E�ect of Noise on the SCF

The presence of noise in the spectra interferes with the correlations between two spectra in

a signi�cant fashion. The reason for this is that noise changes the shape of the two spectra,

and while the actual signal may be well correlated, the addition of noise will prevent the

spectra from having similar shapes. There is therefore a bias in the SCF values favoring

pairs of spectra with a high ratio of signal to noise.

In order to better estimate the e�ects of this signal to noise bias, a numerical simula-

tion was performed. In this simulation, two perfect Gaussian spectra were compared using

the spectral correlation function. The spectra had a FWHM value of 1.7 km=s and a uniform

height. To each of these spectra, normally distributed noise was added in a fashion that set

the signal to noise at a speci�c value. This was repeated 100 times to create a large body

of spectra with the same signal to noise. 100 pairs of these noisy spectra were processed

with the SCF, and the correlation functions were plotted as a function of signal to noise.

Because each of these functions should have a value of 1 in the case of no noise, the value

that the simulation yields should be the factor by which the correlation function is in error
for a given signal to noise value.

In order to estimate the e�ects of the parameters s and ` on the behavior of the data,

the spectra were compared using four di�erent correlation functions with various combina-
tions of the parameters. These functions are summarized in Table 2.1.

Function Name s ` Spectral Property Examined

Sij Float Float Compares shapes of spectra
S`
ij 1 Float Emphasizes similarity in shape and amplitude

Ss
ij Float 0 Highlights similarity in velocity o�set and shape

S0

ij 1 0 Measures similarity in all properties

Table 2.1: Summary of the Correlation Functions Used in SCF analysis.

The behavior of these four correlation functions is plotted as a function of signal to
noise in Figure 2.2. At low signal to noise values, the correlation functions which do not

use a calculated value of s tend toward higher values than do those with the value given in
Equation 2.6. This aberration is the result of the errors incurred by the numerical integration

routines discussed previously. The noise in the spectra arti�cially reduces s factor in the

calculation. This is because the squared spectrum in the denominator of Equation 2.6 is
the square of a spectrum, allowing part of the noise to reinforce itself. The product of the
noise from two di�erent spectra has no such reinforcement. A more detailed discussion of

the arguments behind this reasoning appears in Section 2.3.1.

2.3.1 The Seljak Correction

The signal to noise bias discussed in Section 2.3 must be circumvented in order that mean-

ingful values of the SCF be calculated. In order to correct for these di�culties, Uros Seljak
of the Harvard-Smithsonian Center for Astrophysics has proposed the following correction.
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Figure 2.2: The behavior of the four correlation functions under the in
uence of di�erent
values of signal to noise.

Every spectrum can be considered as the sum of two di�erent functions, a signal function
and a noise function:

TA(v) = S(v) + �(v) (2.10)

Hence the deviation function can be expressed in terms of these two individual func-
tions:

D(T1(v); T0(v)) =
Z
s2 T 2

1 (v)� 2s T1(v)T0(v) + T 2

0 (v)dv

=
Z �

s2(S2

1
+ 2�1S1 + �2

1
)� 2s(S1S0 + �1S0 + �0S1 + �1�0) + S2

0
+ 2S0�0 + �2

0

�
dv

(2.11)

The principal insight in the Seljak correction is recognizing the individual terms of
the integral in terms of their average values. For example, we can use the de�nition of the

average value of �21 to evaluate the terms in the above integral:

D
�21

E
�

R
�21(v)dv

Npixels � �v0
=)

Z
�21(v)dv =

D
�21

E
Npixels � �v0 (2.12)
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In the above equation, �v0 is the spacing between channels in the spectrum and (Npixels ��v0)

is the range over which the noise is averaged.

The character of the noise in the spectra is assumed to be normally distributed noise

with a mean of zero and a measured root-mean-squared deviation of �. As a result of these

features and the assumption that the noise and signal are statistically uncorrelated, the

product h�iSji or h�1�0i can be broken up into terms involving h�ii multiplied by another

term. According to our assumptions about the character of the noise, these terms are zero.

Thus, equation 2.11 can hypothetically (see below) be reduced to:

D(T1(v); T0(v)) =
Z
s2(S2

1 + �21)� 2sS1S0 + S2

0 + �20 dv (2.13)

This reduction is accomplished by setting all terms that are linear in �i equal to zero

using the argument given above. As given in equation 2.12, the values of
R
�2i dv can also

be calculated using the measured root-mean-squared value of the noise. Thus, reducing the

calculation to only correlations between signal gives the corrected deviation:

D0(T1(v); T0(v)) = D(T1(v); T0(v))� s2Npixels�v0�
2

1
�Npixels�v0�

2

0
(2.14)

While this correction holds in the statistical limit, neglecting the terms that are linear
in �i can be dangerous. Examining the rms deviation of these terms shows that the amount
by which they deviate for a given signal, is larger than the correction applied because of the
noise alone. Treating the signals as Gaussians the rms deviation of one of these terms is

given by:

�

�Z
�iSjdv

�
'

s
Npixels�v0�

2
iA

2
j�j

r
�

2
(2.15)

Here, �j is the width of the Gaussian. The magnitude of these deviations are compa-
rable to the calculated values for h�2i i. An assumption that these are identically zero is not
necessarily a good one. Moreover, when the SCF algorithm is processed with the correction
of equation 2.14 in mind, the results imply that the contribution given by terms like those

in equation 2.15 are not normally distributed about zero. The precise cause of such e�ects
are unknown, but it seems to imply that the signal and noise are not as separable as they
might seem.

2.3.2 Signal Degradation

With the ingenuity of the Seljak correction frustrated by unknown complications, the bias for

high signal to noise data must be corrected in some other fashion. The resulting correction

is far from standard in the study of spectral maps. Essentially, if the spectra cannot have all

bias due to signal to noise eliminated, the next best thing is to insure that all spectra have
the same amount of bias. This is accomplished by reducing the signal to noise ratio for a
spectrum to be a given level. This reduction is accomplished by adding noise to the spectra

in a map to reduce them all to a given threshold level. Spectra with signal to noise ratios

lower than the threshold value are rejected from the SCF analysis.

In order to gauge whether the results from such a degradation are meaningful, a sim-
ulation was performed. Instead of using arti�cial data, a set of observational data was used.
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(a) (b)

Figure 2.3: SCF as a function of antenna temperature for (a) the original data and (b) noise
added to the spectra to create a uniform T=� ratio of 5.

The degradation was performed 10 times on the same map (di�erent sets of noise added) and
the correlation function values were evaluated between the spectra. The threshold value for

the signal to noise ratio was 5. The desired result was that the deviation for these values of
the correlation functions would be close to zero indicating that similar results were arrived
at using di�erent sets of random noise. The results support this hope and lend credence to
the method. Statistical moments of the resulting data are shown in Table 2.2. These results
indicate that there is approximately a 0.2% error in using this method to eliminate the signal

to noise bias.

Function Mean Deviation Skewness Kurtosis

Sij 0.56 0.0021 -0.41 -0.84

S`
ij 0.57 0.0020 -0.25 -1.1

Ss
ij 0.53 0.0030 -0.46 -0.59

S0

ij 0.54 0.0027 -0.33 -0.83

Table 2.2: Statistical moments for SCF outputs with varying noise but same T=�

The only remaining question to ask is whether such a treatment does eliminate the
bias that is observed towards correlation in higher signal to noise regions of a map. In

order to explore this question, a data cube was processed with the SCF algorithm and the
values of the SCF were calculated for the original data and with the noise added. Then, the

results were plotted against their value of antenna temperature to determine whether any

bias remained. The results appear in Figure 2.3.
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As Figure 2.3 indicates, the process of adding signal to noise evens out an bias toward

higher values of the antenna temperature. The mean values of the SCF are lowered a bit by

this process, for some amount of correlation is lost in the process. The vertical spread in the

points is not drastically altered in this process and thus the signal degradation performs the

desired compensation.
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