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5. Stars and Stellar Structure

5.1  Phenomenology

Essentially all the light we see from the Universe is starlight from the stars

or from surrounding material that reflects or is stimulated to emit radiation by the

starlight.

Empirically, based on their spectra, the variation of intensity with

wavelength, stars are labelled OBAFGKMRNS, a classification that depends on

surface temperature; O stars are the hottest and S stars are the coldest.  There are

more specific diagnostics in the form of emission lines of different elements in

neutral and ionized stages.  

5.1.1  Element Abundances

Element abundances provide information about individual stars and the

evolution of the Universe.  Here is the Periodic Table.  
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1
H

2
He

3
Li

4
Be

5
B

6
C

7
N

8
0

9
F

10
Ne

11
Na

12
Mg

13
Al

14
Si

15
P

16
S

17
Cl

18
A

19
K

20
Ca

21
Sc

22
Ti

23
V

24
Cr

25
Mn

26
Fe

27
Co

28
Ni

29
C

30
Zn

31
Ga

32
Ge

34
Se

35
Br

36
Kr

33
As

37
Rb

38
Sr

39
Y

40
Zr

41
Nb

42
Mo

43
Tc

44
Ru

45
Rh

46
Pd

47
Ag

48
Cd

49
In

50
Sn

51
Sb

52
Te

53
I

54
Xe

55
Cs

56
Ba

57
La

58
Ce

72
Hf

73
Ta

74
W

75
Re

76
Os

77
Ir

78
Pt

79
Au

80
Hg

81
Tl

82
Pb

83
Bi

84
Po

85
At

86
Rn

87
Fr

88
Ra

89
Ac

90
Th

104 105 106

59
Pr

60
Nd

61
Pm

62
Sm

63
Eu

64
Gd

65
Tb

66
Dv

67
Ho

68
Er

69
Tm

70
Yb

71
Lu

91
Pa

92
U

93
Np

94
Pu

95
Am

96
Cm

97
Bk

98
Cf

99
Es

100
Fm

101
Md

102
No

103
Lr

The numbers in the Periodic Table are the atomic numbers defined as the

number of protons Z in the nucleus.  For neutral atoms, the number of electrons

equals the number of protons.  Nuclei are made of nucleons.  Nucleons are protons

or neutrons.  They are also called baryons.  There are heavier particles that are

baryons also but they have mostly decayed into protons.  The total number A of

protons and neutrons in a nucleus is the atomic mass number and it is written as a

superscript placed before the element 
A

X (though spoken as XA); e.g. 
12

C has six

protons and six neutrons and is described as carbon twelve.  The isotopic form 
13

C

has the same charge as 
12

C and so six protons.  To make A = 13, it has seven



5-3

neutrons. For lighter elements from He (helium) to S(sulfur)

A ~ 2Z

For heavier elements, A tends to exceed 2Z and there are more neutrons than

protons.  For example, 
56

 Fe(iron) has Z=26.

The chemistry is determined by the charge Z and is (almost) independent of

A.  The Periodic Table classifies the elements into groups.  The columns show

elements with similar chemical behavior.  Thus the alkali metals Li, Na, K, Rb, Cs,

Fr and the inert gases He, Ne, A, Kr, Xe, Ra.

Observations of spectra show that stars can be divided into two major

classes, called Population I (Pop One) and Population II (Pop Two).  Pop I stars

have chemical abundances relative to hydrogen similar to the Sun and are young

stars, created by ongoing star-formation within the GalaxyÑ(the Galaxy is our

galaxy, the Milky Way) and other galaxies.  Population II stars are stars with much

lower relative abundances of heavier elementsÑto astronomers ÒheavyÓ means

beyond helium in the Periodic Table.  Astronomers also often call all heavy

elements ÒmetalsÓ so the literature must be read with care).  The Pop II stars are old

stars formed when the heavy element abundances were low.  They may be fossils

of the initial epoch of star formation after the Big Bang.  

The element abundances of Pop I stars can be obtained from observing the

nearest example, the Sun, and also, except that H and He have escaped, from

measurements of the composition of the Earth itself.
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"metals"
total  0.02.

H
He
C
N
O

Ne
Mg
Si
Fe

}-4
0.77
0.21

4 ´ 10 
1 ´ 10 
9 ´ 10
1 ´ 10 
8 ´ 10 
8 ´ 10 
1 ´ 10 

-4

-3

-3
-3
-3
-3

1
2
6
7
8

10
12
14
26

1
4

12
14
16
20
24
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56

1
7 ´  10 
4  ´ 10 
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3 ´  10 

-2
-4

-5
-4

-4
-5
-5
-5

Pop I Abundances

Atomic Number
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Here is a list of Pop I abundances and a diagram of solar abundances on a

logarithmic scale.  (Abundances are often presented relative to a hydrogen

abundance of 10
12

 on a logarithmic scaleÑe.g. the abundance of carbon would be

given as 8.6 ).  Thus 

log 
n ( C ) 
n ( H ) 

  =   8 . 6   - 12  =   - 3 . 4

n ( C ) 
n ( H ) 

  =     10- 3 . 4   =   4   H   10- 4  .

The helium was produced by nucleosynthesis from the protons and

neutrons in the Big Bang (and the amount of helium produced then depended on the

number of types of light neutrinos).  The abundances of Li, Be and B produced in

the Big Bang were very small (< 10
-10

) and they have subsequently been destroyed

in stars by nuclear processes.  All heavier elementsÑcarbon and beyondÑare

made only in stars.  The combined mass fraction of heavy elements is usually

denoted Z (not to be confused with the nuclear charge). Even elements with equal

numbers of protons and neutrons tend to be more abundant than odd

elementsÑbecause a major building block in nucleosynthesis is the 
4
H e

nucleusÑa-particlesÑconsisting of two protons and two neutrons.  

Pop I stars have Z ~ 0.02 and are made of material with a heavy element

abundance that has been enriched by processing in earlier generations of stars

(which have distributed their material back into the interstellar medium through
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various ejection events, including supernovae).

In contrast Pop II stars which have Z as low or lower than 0.002 may

comprise the survivors of the original generation of stars.  (There may have been a

still earlier generation, referred to as Pop III).  

Our galaxy has the shape of a thin disk (thickness ~ 200 pc, radius ~ 8 kpc)

with a bulge and a halo of stars.

* * *
****

*
* *

* *

*

Center

Disc

Halo

Bulge

Fig. 5.1

Pop I stars are located mostly in the disk and Pop II stars in the bulge and
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halo.

5.1.2  Nuclear reactions

Nuclear reactions involve protons, neutrons, positrons, neutrinos and

photons (g-rays).  Electrons, muons and neutrinos are leptons (light particles) with

lepton number +1.   Positrons,  anti-muons  and  antineutrinos have lepton number

-1.  Electrons and anti-muons are negatively charged, positrons and muons are

positively charged. Neutrinos and antineutrinos are neutral.  In nuclear reactions,

electric charge, atomic mass number and lepton mass number are conserved.

The stars are powered by nuclear reactions that transmute (or burn) lighter

elements into heavier elements.  The energy we receive as starlight originates in

nuclear reactions.

Main sequence stars are powered by the conversion of four hydrogen

nuclei-protonsÑinto one helium nucleus-alpha-particle.  The process releases

energy because the 
4
He nuclei weighs less than four protons.  In atomic mass units

(AMU; by definition 
12

C has a mass of 12 AMU), MH = 1.0078 and MHe =

4.0026. Thus 4MH - MHe = 0.0286 AMU and 0.71% of the mass of each proton is

converted to energy (E=mc
2
).  Unit atomic weight (1 AMU) is 1.66 ´ 10

-27
 kg, so

energy released per helium nucleus (a-particle) formed is

0.0286(1.66 ´ 10-27) (9 ´ 1016) Joules

= 4.3   ´  10-12 J = 4.3  ´  10-5 ergs

(1J = 107 ergs)
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In the Sun, only in the 0.1Mu core is the temperature and pressure high

enough for the fusion reactions to proceed.  So the total thermonuclear energy

available is

0.0071 (9 ´ 1016) (0.1Mu)

= 1044 J = 1051 ergs  .

Present solar luminosity is 3.90   ´ 10
33 

erg s
-1

, so the Sun will be sustained for 10

billion years, twice its present age.  

The actual reaction sequence is the p-p (proton-proton) cycle which

dominates nucleosynthesis in lower mass stars (M < 1.5 Mu)  It is the sequence of

two-body reactions

1H + 1H ®  � 2D + e+  + n    (1.44 MeV)

� 2D + 1H ® 3He + g    (5.49MeV)

3He + 3He ® 4He + 1H + 1H  (12.9 MeV)  .

The g photon is needed in the second reaction to conserve momentum.  The

neutrino n is needed in the first reaction to conserve lepton number.  You can check

that A is conserved by adding the prefixes on each nucleus.  The energies in

parentheses are the energies released in the reaction.  The energy gained by the

neutrino escapes.  The rest of the energies are converted into thermal energy of the
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star.

Further reactions occur:  
7
Be is made from

3He + 4He ® 7Be +g   .

The sequence 

1H + 7Be  ® 8B +g  

 8B ® 8Be +e+ +n

yields a neutrino escaping with energy 7.2 MeV.  The measured neutrino flux is ~

half or less than (reliable) solar models predictÑthis is the solar neutrino problem.

Higher mass stars (> 1.5 Mu ) burn via the so-called CNO cycle in which

hydrogen is again converted to helium but with carbon acting as a catalyst.  The

main reactions are

12C + 1H ® � 13N  +g  

followed by the spontaneous decay of 
13

N (the stable isotopes of nitrogen are 
14

N

 and 
15

N)

13N ® 13C + � e+ +n   .
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Then

13C + 1H ® � 14N  +g  

14N  +1H ® � 15O  +g  

(16O, 17O, 18O are the stable isotopes of O)

15O  ® � 15N + � e+  +n 

15N +  1H ® � 12C + �4He  .

The 
12

C is recovered and 
1
H is converted to 

4
He.  Overall 

4  ´  1H ® � 4He + 2e+ + 2n

plus g rays.

Thermal fusion reactions make the elements up to Fe.  Beyond iron requires

an input of energy, say, in supernova explosions.

Because of the Coulomb repulsion, nuclear reaction rates are extremely

sensitive to temperature.  Above some threshold energy, a small increase in

temperature causes a large increase in the reaction rate. The temperature is

determined by a balance of the heating and cooling rates.  The cooling rate increases

exponentially with T . Stars are accordingly thermally stableÑthe central

temperatures where the nuclear reactions occur vary across a wide range of stellar
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masses in the narrow temperature range 1 ´ 10
7
K - 2 ´ 10

7 
K.  The temperature

comes from a balance between heating and cooling.  Cooling reactions increase

rapidly in efficiency as T increases between 1 and 2 ´ 10
7 

K.  

A good empirical approximation for the interior or central temperature of

main sequence stars is

T = 1.5  ´  10
7 � 

� 
� � 

M 
M u 

�

�
��
1/3

 K  .

5.2  Stellar Structure

5.2.1  Order of magnitude

We can use the virial theorem (p. 4.49) to get an approximate relationship

between the mass and radius of a starÑthe total energy is half the gravitational

potential energy.

The potential energy is 

P.E.   =   I I Gdm 1 dm2 

r 1 2

  ~   
GM2 

R 
  

where R is the characteristic sizeÑthe radiusÑand M is the mass.  

Now we will show later that
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K.E. =   
3 
2 

 N particles kT

  ~   
M 
m p  

 kT , 

mp is the proton mass.

Equating P.E. and K.E.  GM
2
/R = 

M 
mp

kT and the T-M relationship on the

previous page, we relate radius to mass.

R ~   
GMmp 

kT 
  ~   

GMu m p 

k ( 15  H 106  K)   
  
� 

� 
� � 

M 
M u 

� 

� 
� � 

2 / 3 

=   
� 6 . 67  H   10- 8 � � 1 . 99H   103 3 � � 1 . 67  H   10- 2 4 �   

  � 1 . 38  H   10- 1 6 � 1 .  5 H   107   
� 

� 
� � 

M 
M u 

� 

� 
� � 

2 / 3 

  cm

=   1 . 0   H   101 1 � 

� 
� � 

M 
M u 

� 

� 
� � 

2 / 3 

  cm  .

In the case of the Sun, M =Mu, the actual radius is 7  ´  10
10

 cm.

The Table shows the data for typical main sequence stars
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Physical Properties of Main-Sequence Stars

Log (M/Mu) Spectral
class

Log (L/Lu) Mbol Mv Log  (R/Ru)

-1.0 M6 -2.9 12.1 15.5 -0.9

-0.8 M5 -2.5 10.9 13.9 -0.7

-0.6 M4 -2.0 9.7 12.2 -0.5

-0.4 M2 -1.5 8.4 10.2 -0.3

-0.2 K5 -0.8 6.6 7.5 -0.14

0.0 G2 0.0 4.7 4.8 0.00

0.2 F0 0.8 2.7 2.7 0.10

0.4 A2 1.6 0.7 1.1 0.32

0.6 B8 2.3 -1.1 -2.2 0.49

0.8 B5 3.0 -2.9 -1.1 0.58

1.0 B3 3.7 -4.6 -2.2 0.72

1.2 B0 4.4 -6.3 -3.4 0.86

1.4 08 4.9 -7.6 -4.6 1.00

1.6 05 5.4 -8.9 -5.6 1.15

1.8 04 6.0 -10.2 -6.3 1.3
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0.5

1

0.5 1 1.5-0.5-1

-0.5

Mass-Radius Relation for Stars

log (R/R   )u 

log (M/M  )u 

our p
red

ict
ion

"actual data"

Fig. 5-2

There is also a mass-luminosity relationship.  Very approximately,

L ~ M3

for low mass stars but to prove it requires a consideration of the transport of

radiation from the interior to the surface. 
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5.2.2  Stellar interiors

A star is a self-gravitating gaseous system, its interior so hot the material is

ionized to nuclei and electrons constituting a fully ionized plasma.  The quantities

needed to specify a stellar interior as a function of radius from the center r are

¥ density r(r) - decreasing to zero at the surface.  In a gas consisting of nX

particles of mass mX in unit volume, the total number of particles per unit

volumeÑthe particle number densityÑ n   =   3 
X 

n X .   The  mass  density  r

= ånXmX  in units of mass per unit volumeÑg cm
-3

.

¥ mass M(r) - interior to r. At r = 0, M(r) = 0 and at the surface M(r)=M, the

mass of the star

¥ pressure P(r) - Pressure is force per unit area.  Weight is the force created

by a gravitational field.The gravitational pressure at r is the total weight per

unit area of the overlying mass.  It is resisted by the pressure generated by

the motions of the particles of the gas.  

¥ temperature T(r) - collisions are frequent and we may assume that at r local

thermodynamic equilibrium prevails corresponding to the temperature T(r).

¥ luminosity L - luminosity is the net outward total energy flow at r.  It is zero

at the source of its generation (r ~ 0) and is constant from there outwards to

the surface.

¥ mean particle mass m ø (r) or mean molecular weight -  It is the average mass

per unit volume per particle.  In terms of it, the gas pressure P(r) = (r/ m ø kT

= nkT where n is the particle density 
� 
� 
m ø   =   3 

X 

 nX  mX / n =   r   /   n �
�. 

¥ the opacity k n (r), also called the mass absorption coefficient.  It has units
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of cm
2 

per gram.  It is the cross sectional area for absorbing or scattering of

photons of frequency v by a gram of material.  Travelling a path length ds,

the specific intensity Iv is decreased according to dIn /ds = -kn r In.

¥ nuclear energy generation rate e(r) in ergs cm
-3

s
-1

.

5.2.3  Equations of stellar structure

Assume Hydrostatic Equilibrium.  

g
r

r + dr

density r

Fig. 5-3

Consider an element of gas between r and r + dr from the center of a star.

Pressure P(r) is larger than P(r + dr) by the weight per unit area of the material

between r and r + dr in the local gravitational acceleration g(r).  If the area of the

element is dA, mass of the element is rdAdr and weight is g(r)r(r)dAdr =
GM( r ) 

r 2 r(r) dA  dr   where r is the mass density.  Thus, the weight of the element
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per unit area is

G r ( r ) M ( r ) 

r 2  dr. 

The derivative of the pressure is 

dP
dr

  =   
P ( r + dr) - P ( r ) 

dr
  =   -   

G r ( r ) M ( r ) 

r 2 

(insert minus sign because pressure increases as r gets smaller).  This is the

equation of hydrostatic equilibrium.

It can also be written
dP
dr

  =   -   r g 

where g = GM(r)/r
2
 is the local acceleration of gravity at r.

We can get an estimate of the central pressure if we assume r is constant

out to a radius R (in practice it decreases outwards.  If r is constant

dP
dr

  =   - 
G 

r 2   
4 
3 

  p r 3 r   H r 

=   
4 
3 

  p G r 2 r 

�   P � r �   =   
2 
3 

    p G r 2 � R 2   -   r 2 �   

Central pressure is Pc(r=0):

Pc  ~ 
2 
3 

 pGr
2
R

2
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Mass equation

Mass interior to r is

M ( r )   =   

r 

I 
0 

r ( r N ) 4 p r N 2 drN

or equivalently

dM( r ) 
dr

  =   4 p r 2 r ( r )  .

To complete the equations we need P as a function of r.  

Equation of state

Equation of state is an equation expressing the internal pressure in terms of

the density and temperature and it depends on the composition.  For a perfect gas,

P = 
r 
m ø kT= nkT.  For a perfect gas in a blackbody radiation field, 

P =   
r 

m ø m 
kT +   

1 
3 

aT4  .

However in many cases of interest gas pressure substantially exceeds radiation

pressure and also m (i.e. composition) is constant.  Then r is a function only of T

and P can be treated as a function only of r.
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A polytropic equation of state is one for which the relationship between P

and r is a pure power law

P = Kr 1+1/n

where n, which need not be an integer, is called the polytropic index  (the notation

arose from a combination of the perfect gas law Par T and an assumed relationship

raT
n
, Ta r 

1/n
).  Main sequence stars are modeled reasonably by n=3 polytropes.

5.3  The Perfect (Ideal) Gas Law

You may have seen it in the form

PV = NkT

or 
P = nkT

where P  is the pressure, V the volume of gas, and T  the temperature.  N is the

number of particles and N/V=n is the number density of particles.  

We can, with one assumption, prove it using the same arguments as in

¤3.1.4 on radiation pressure, except we have particles in place of photons and the

energy is 1/2 m v
2
.  Then
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P =   
2 
3 

 u

where u is the energy density.  Here the energy density depends upon the

distribution of velocities of the particles of the gas n(v)d v:

u =   
1 
2 

4 

I 
0 

p A   v  n � v � d v 

and

n =   

4 

I 
0 

n � v � d v  .

For non-relativistic particles, p = mv

P =   
2 
3 

u  =   
1 
3 

4 

I 
0 

m v 2  n � v � d v  .

We now assume we know that n (v) d v is the Maxwell distribution

function

n � v � d v =  n
� 

� 
� � 

m 
2 p kT

� 

� 
� � 

3  / 2 

e - m v 2 / 2 kT  4 p  v2 d v . 
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Then òn(v)dv = n.  .

Substituting into the integral for P we obtain

P = nkT  .

The energy density can be given as a mean energy E  per particle by writing

E   =   
1 
n 
I n ( v ) E dv

or

v 2 =   
1 
n 
I n ( v ) v 2  dv 

Evaluating the integral, we obtain

v 2 =   
3 kT
m 

 .

Thus, mean kinetic energy per particle is

1 
2 

m v 
2 

  =   
3 kT
2 

(each degree of freedom contributes kT / 2 to the energy).

If the gas contains particles of different mass, we write n = r/ m  where r is
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the mass density and m  is an average mass often expressed as a mean molecular

weight m, in units of the mass of the hydrogen atom

m   =   m / m H   ;

mH = 1.673625 ´ 10
-24

 g is the mass of a hydrogen atom.  Then

P =   
r kT
m m H 

  .

The mean molecular weight depends on composition, and on the state of ionization,

because free electrons are included in the definition of m .

For a neutral gas with Nj  particles j and masses Aj = mj/mH  relative to

hydrogen

  

m n m H   =   

3 
j 

N j A j m H 

3 
j 

N j 
  

so   m n   =   

3 
j 

N j A j 

3 
j 

N j 
. 

For a completely ionized gas
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m i   =   

3 
j 

N j A j 

3 
j 

N j � 1   +  Zj � 
    � electron mass may be ignored �

where Zj is the nuclear charge.  (Electron mass is negligible).

Introduce mass fractions

X =   
r H 

r   =   
total mass of hydrogen

total mass
  .

Similarly Y for helium and Z for elements heavier than He.  Thus X + Y + Z = 1.  

X j   =   
r j 
r   =   

total mass of particle j 
total mass

  =   
N j m j 

3 
j 

N j m j 
 

X H   =  X ,   X He   =  Y  ,   X other   =   Z   

Then write

1 
m n m H 

  =     

3 
j 

N j 

3 
j 

N j m j 
  =   3 

j 

  
N j 

N j m j 
  N j m j   /   3 

j 

N j m j   

= 3 
j 

  
N j 

N j A j m H 

  
N j m j 

3 N j m j 
  = 3 

j 

  
N j 

N j A j m H 

  X j      � A j   = A j m H �  .

= 3 
j 

  
X j 

A j 
  

1 
m H 

So  
1 
m   =   3 

j 

X j / A j  .
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A typical composition for a cosmic gas is

X = 0.70  ,  Y = 0.28  ,  Z = 0.02 .

The heavy element contribution to m is small

1 
m   =   X   +   

Y 
4 

  +   
� 

� 
� � 

I 
A 
� 

� 
� �  Z .

� 

� 
� � 

I 
A 
� 

� 
� � ~ � 

� 
� � 

1 
16

� 
� 
� � 

    so     
1 

m n 
  =   0 . 70  +   

0 . 28
4 

  +   
0 . 02
16

 

m n   =   1 . 30 .

If gas is a fully-ionized plasma,

1 
m   =   3 

j 

  
X j � 1   +   Z j �   

A j 

1 
m   =   1 . 40  +   0 . 21  +   

1 
2 

  0 . 02

since Zj = number of electrons = number of protons ~
1 
2  mass.
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Then

mi = 0.62 .

for a fully-ionized cosmic gas.  

5.3.1  Adiabatic index

Thermal conductivity is the transfer of kinetic energy (heat) from one

particle to another as they collide.  If thermal conductivity is negligible and there is

no inflow or outflow of heat, pressure of a gas element which is being compressed

increases adiabatically.  In a volume V containing N particles, the total energy E is

given by

E =   
b 
2 

 NkT

where b is the number of degrees of freedom.  (We have just shown that b  = 3

when only translation occurs.)  Now use the perfect gas law

P   =   
N 
V 

kT

to relate E to P,

E   =   
b 
2 

 PV  .
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First law of thermodynamics (really conservation of energy)Ñif you compress

volume V to volume V-d V, the internal energy E is increased by the work done in

compressing it

dE = -P d V

(minus sign because internal energy increases with decreasing volume).  But

dE  =   
b 
2 � 

 PdV   +   V dP � 

b 
2 

    V dP = -   � 1   + b / 2   � 

  dP
P 

=   - 
� 
� 
� � 
2 + b 

b 
� 

� 
� � 

 dV 
  V 

 .

 PdV 

Hence

P  = constant ´ V-(1+2/b)

So, for a fixed number of particles in the volume,

P a� r(1+2/b)   ,

which is polytropic with index n = b / 2.  For b = 3



5-27

n = 1.5  ,  P a� r5/3  .

As the number of degrees of freedom b increases, the polytropic index increases.

The  limiting  case  of  an  isothermal  gas  with  T  constant, Pa�rT , means

Pa�r which corresponds to b® �¥.  The work done is distributed over an infinite

number of internal degrees of freedom and the temperature does not change.  

As a generalization of the perfect gas law and avoiding the use of

temperature, write

P   =   
g N E 

V 
  ,   E =   

P V 

g N 

(perfect gas law, g« = 2/3).

Then repeating the argument, we have

- PdV =   dE  =   
1 
g N � PdV   +   V dP �

� 
� 
� � 1   +   

1 
g N 

� 
� 
� � 

d V 
V 

  = -   
1 
g N 

d P 
P 

  

P = constant ´ V-(g  «  + 1)

a r(g  « + 1)  .

We get a polytropic equation of state.  If g = g«+1,
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P a�rg º r1+1/n

with

g  «= g  - 1 = 
1 
n 

 .

So P a�r
g
  implies that a polytropic gas satisfies

PV=(g  - 1)E  .

g is the adiabatic index.  We will use this later.  

5.3.2  Convection

There are three ways of transporting energy or heat:  radiationÑphotons

moving in straight lines carry energyÑthe photons can be absorbed by atoms and

then emit isotropically so changing direction or they can be elastically

scatteredÑthe path followed by a photon before it finally escapes from the interior

through the visible surface can be long.  Most of the scattering occurs in the outer

layers of the stellar atmosphereÑin the interior, the material is fully ionized and

scattering and absorption are minimized.

Conduction of heat occurs by collisional transfer of energy with the faster

particle giving energy to the slower.  In stellar interiors radiation transport by

conduction is not very important because the densities are not that high.
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The third mechanism is convection.  It involves actual motion of the gas.

Bubbles of gas that are hotter than their surroundings rise into a region of lower

pressure where they expand and cool.  The bubbles may merge with the

surrounding gas or they may fall back down.  Mass is conserved so mass going up

is replaced by mass going down.  ÒHot air rises and cool air sinks.Ó

  Convection is a complex, not fully understood process.  It is usually

turbulent and different fluid elements are readily mixed.  In gas in turbulent

convection, the gas behaves adiabatically (no heat flowing into or out of a volume

element) so for b=3

P = constant ´ �r5/3

and the constant is the same for all fluid elements. This creates a polytropic model

with n = 3/2.

The Sun is not fully convective.  Most of it is stably stratified with the

deeper, denser material having a lower adiabat (smaller constant in the P-r

relation).  For the Sun, n = 3 is a good approximation and

P ~r4/3  and T ~ r1/3 .

Sun is convective in the outer one sixth of its atmosphere, whereas low mass stars

M £ 0.3 Mu are fully convective throughout and stars of all masses pass through a

fully convective phase (called the Hayashi phase) as they evolve on to the main

sequence.



5-30

5.3.3  Equation of State for Degenerate Matter

Degenerate matter resists compression not by the pressure generated by

thermal motion but by the Pauli exclusion principle which asserts that two identical

fermions cannot occupy the same quantum state.  

The uncertainty principle of quantum mechanics asserts that Dx Dp ~ h or

Dx  Dp  ~ h 
3
.  If electrons are forced into a smaller volume Dx, they must be

pushed into a larger momentum volume Dp.  In the lowest energy state of an

electron gas, the electrons fill all the momentum states in a sphere out to some

radius pF, called the Fermi momentum. 

The volume occupied in momentum space is

4 p 
3 

p F 
3   =  Dp .

If V is the volume in position space,

D x =   V 

D x D p   =   
4 p 
3 

 pF 
3   V  .

If N is the total number of electrons, with electron density ne = N/V, we have for

the phase space density 2/h
3
 (in quantum mechanics h

3
 is the smallest volume and

electrons have two spin statesÑmaximum density = 2/h
3
), 
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2 

h 3   =   
N 

� 

� 
� � 
4 p 
3 

p F 
3  � 
� 
� � V 

  =   
n e 

4 p 
3 

p F 
3 

  

so

p F 
3 =   

3 
8 p 

h 
3 
n e . 

The energy per unit volume E/V  is given by the integral of the electron energy

p
2
/2me over momentum space.  The number of electrons with momentum p in

phase   space   is    
2 

h 3 VDp    so   number  per unit volume  of  position  space  is

ne = 
2 

h 3  Dp.  Hence

E 
V 

=   

P F 

I 
0 

  
p 2 

2 m e 

  
2 

h 3   4 p   p2 dp

= 
4 p 
5 

p F 
5 / h 3 m e . 

The pressure
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P   =   
2 
3 

  
E 
V 

which is proportional to r
5/3

 (using PV= (g  - 1)E). 

Explicitly 

P   =   
2 
3 

� 

� 
� � � 
4 p p F 

5 

5 

� 

� 
� � � 

1 

h 3 m e 

=   
2 
3 
� 
� 
� � 
4 p 
5 

� 
� 
� � � 
� 
� � 

3 
8 p 

 h3 n e   
� 

� 
� � 

5 / 3 1 

h 3 m e 

=   
1 
20

  
� 
� 
� � 
3 
p 
� 
� 
� � 

2 / 3 

  
 h2 

m e 

  n e 
5 / 3   .

 

This is for non-relativistic electrons.  If the gas is so compressed that pF

approaches mec  (i.e. v approaches c), then as for photons

P =   
1 
3 

  
E 
V 

  6 g N = 
1 
3 

  ,   g   = 
4 
3 

  ,   

6  Pa   r 4 / 3   

For relativistic electrons, E = pc.  
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E 
V 

  =   

p F 

I 
0 

pc 
2 

h 3   4 p  p2  dp

= 
2 p c 

h 3  pF 
4   . 

Then

P =   
1 
8 
� 
� 
� � 
3 
p 
� 
� 
� � 

1 / 3 

hcne 
4 / 3  .

The crossover from non-relativistic to relativistic occurs when the two regimes are

about equal

1 
8 
� 
� 
� � 
3 
p 
� 
� 
� � 

1 / 3 

hcne 
4 / 3   ~   

1 
20

� 
� 
� � 
3 
p 
� 
� 
� � 

2 / 3 h 2 

m e 

  n e 
5 / 3 

i.e.     n e   ~   
4 
3 
� 

� 
� � 
2 
5 

  
h 

m e c 
� 

� 
� � 

- 3 

   

(h/mec is the Compton wavelength).  

To relate electron density ne to r, in the absence of hydrogen (which occurs

for white dwarfsÑall the hydrogen and helium have been burnt to carbon and
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oxygen)

r  = ne (me + mp + mn) ~ 2 nemp .

Each electron is accompanied by one proton and one neutron.  

Or write r Ê= mempne where me is the mean molecular weight per electron.  Then,

extending to include a possible contribution from hydrogen,

m e   =   
2 

1   +  X

where X is mass fraction of mass H.  

5.3.4  White Dwarf Stars

White dwarf stars are supported entirely by degeneracy pressure, so we

may write 

non-relativistic

P =   
1 
20

� 
� 
� � 
3 
p 
� 
� 
� � 

2 / 3 h 2 

m e m H 
5 / 3 m e 

5 / 3 r 5 / 3 
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relativistic

  P =   
1 
8 
� 
� 
� � 
3 
p 
� 
� 
� � 

1 / 3 hc

m H 
4 / 3 m e 

4 / 3 r 4 / 3   .

Recall the approximate expression

P c   =   
2 
3 

p G r 2 R 2 

and put it equal to the degeneracy pressure.  For a non-relativistic white dwarf

2 
3 

p G r 2 R 2   =   
1 
20

� 
� 
� � 
3 
p 
� 
� 
� � 

2 / 3 
S 2 

m e m h 
5 / 3 m e 

5 / 3 r 5 / 3    .

Substitute r = M/
4 
3 pR

3
, we obtain an estimate of the radius R and find that R is

proportional to M
-1/3

 .  Thus MR
3  

= constant.  So the more massive the white

dwarf, the smaller it is.

To support a more massive star through degeneracy pressure, the more

densely packed must be the electrons.

For a 1Mu white dwarf star of carbon and oxygen, R ~ 6 ´ 10
8
 cm.  (For

the Sun, Ru  = 7 ´ 10
5
 km = 7 ´ 10

10
 cm).

There is a maximum mass for white dwarfs because the electron velocities

must be less than c and we must use the relativistic pressure.  Then P  is

proportional to r
4/3

.  A similar argument yields a mass independent of r with the

fixed value 1.457MuÑthis is the Chandrasekhar limit.  No white dwarf has been

discovered with a mass exceeding the Chandrasekhar limit.  

  Fig. 5-5 reproduces observational data showing mass M as a function of
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radius R (The theory works well!)

(In terms of fundamental constants, the Chandrasekhar mass is

M ch  =   3 . 10 � 
� 
� � 
S c 
G 

� 
� 
� � 

3 / 2 1 

m H 
2   m e 

2  .

� 

� 
� � � 
S c 

G 

�

�
���
1/2

 is the Planck mass = 0.22 mg .)

5.3.5  Neutron stars

Beyond the Chandrasekhar mass, the electrons are forced to combine with

protons to form neutrons and the star becomes a degenerate neutron star which can

be analyzed in the same way as white dwarfs with the neutron molecular weight

replacing the me.  However general relativity plays a role and the physics is still

uncertain.  

Pulsars are spinning neutron stars, detected by the regular arrival of radio

pulses thought to be due to electrons trapped in the magnetic field of the star.  The

magnetic fields are of the order of 10
12

 Gauss.  Limiting mass is about 6 Mu.

Masses beyond 6 Mu collapse to form black holes.  
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5.3.6  Black holes

If M > ~6Mu, matter collapses to a black hole when the escape veolocity

equals the velocity of light.  The star vanishes inside the Schwarzchild radius given

by 

c2 = 2GM/rs .

Numerically 

rs ~ 3(M/Mu) km .

5.3.7  Stellar structure virial theorem

We can use the virial theorem to show that stars are unstable if the adiabatic

index is less than 4/3.

Hydrostatic equilibrium

dP
dr

  =   -   
GM � r � 

r 2   r � r �   . 

Let V(r) be the volume inside a radius r

V(r) = 
4 
3 

p r 3 

dV(r) is the volume of the shell between r and r + dr containing a mass dM(r)
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dM(r) = r(r)4pr2dr

Multiply pressure equation by V(r) dr:

V ( r ) 
dP
dr

dr =   -   
GM � r � r � r � 

r 2   V ( r ) dr   . 

which we can write

V ( r ) dP =   -   GM � r � r � r � 
4 
3 

p r 3 dr
1 

r 2 

= 
1 
3 

GM � r � dM � r � 
1 
r 

  .

Integrate over the star of radius R

R 

I 
0 

V ( r ) dP =   -   
1 
3 

R 

I 
0 

GM � r � dM � r � 
r 

=   
1 
3 

U  

where U is the total gravitational potential energy.  Integrate by parts to get

1 
3 

U =   P V 
R 

0   -   

R 

I 
r = 0 

P ( r ) d V   .
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At r = 0, V = 0.  At r=R, P = 0.

Hence

U +   3   

R 

I 
0 

PdV   =   0  .

This is the stellar structure virial theorem.  For a polytropic gas, energy per unit

volume is

u =   
P 

g - 1 
 .

Thus

ò PdV = (g  - 1)ò udV

    = (g  - 1)E 

where E is the total internal energy of the star.

So

U + 3 (g  - 1)E = 0  .

(For  a perfect monatomic gas, only translation is possible, g = 5/3 and E = T . 
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Then U + 3(g  - 1)E = 0 asserts that U + 2T = 0 which we proved earlier for a

system of particles moving under their gravitational attraction.)

The total energy of a star is

E tot =  E +  U

       =   E - 3 � g   -   1 �   E   =   -   � 3 g   -   4 � E 

      =   
3 g   -   4 

3 � g   -   1 � 
  U 

If g > 
4 
3  , Etot < 0  Ñ  star is bound

   g < 
4 
3  , Etot > 0 Ñ star is unbound

Ñ it is unstable to the conversion of the internal energy into expansion velocity and

it blows itself apart.


