Astronomy 45

Introduction to Astrophysics

Problem Set 6 - Due Friday April 7.

- 1. What is the height of the tides on the Moon induced by the Earth? The lunar radius is 1738 km.
- 2. In a visual binary, the stars are 1^{$\prime\prime$} and 2^{$\prime\prime$} from the center of mass. The distance is 10 pc and the orbital period is 10 years. The angle *i* = 90°. What are the masses of the stars?
- 3. a) Two small bodies, each of mass *m*, lie on a line with a large body of mass M_x . *M* lies at a distance *R* from one of the small bodies and a distance R + d from the second. What is *d* if the gravitational attraction of the small bodies just equals the differential gravitational force caused by their attraction to *M*? You may assume that R >> d.

b) A small body of mass m and radius r is falling radially towards M. Treat the small body as consisting of two equal particles separated by a distance d. Within what distance between m and M will the smaller mass be torn apart?

4. A particle starts from rest at an infinite distance from a star of mass *M* and radius *R*. The kinetic energy of the particle will be converted to heat and light when it impacts the surface. If the star is a white dwarf with $M = 1 M_{\odot}$ and $R = 7 \times 10^8$ cm, what is the energy released by 1 g of infalling matter? What fraction is it of the rest mass (mc^2) ? If the star were a neutron star with M = 1.4 M_{\odot} and R = 10 km, what would be the energy released? There are sources which emit *X*-rays with a luminosity of 10^{37} ergs s⁻¹. If this is produced by material pulled from a companion star onto the surface of a neutron star, how much mass must be transferred per second, measured in solar masses? (For m = 1g, $mc^2 = 9 \times 10^{20}$ ergs.)