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so

1 
µ   =   3 

j 

X j A j (5-54)

A typical composition for a cosmic gas is 

                 X = 0.70   ,   Y = 0.28   ,   Z = 0.02 .

The heavy element contribution to µ is small
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�� (5-55)

so
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1 
µ n 

  =   0 . 70  +   
0 . 28

4 
+   

0 . 02
16

µn = 1.30 (5-56)

If gas is a fully-ionized plasma,

1 
µ   =   3 

j 

  
X j � 1   +  Zj � 

A j 

1 
µ   =   1 . 40  + 0 . 21  +   

1 
2 

  0 . 02 (5-57)

since Zj = number of electrons = number of protons ~
1 
2  mass.

Then

µi = 0.62 . (5-58)

for a fully-ionized cosmic gas.  

5.4.1  Adiabatic index 

Consider now the internal energy of a gas. Thermal conductivity is the

transfer of kinetic energy (heat) from one particle to another as they collide. If

thermal conductivity is negligible and there is no inflow or outflow of heat, the

pressure of a gas element which is being compressed is said to increase

adiabatically.  For a perfect gas the internal energy is

E=
3 
2 

 NkT = 
3 
2 

 P V (5-59) 
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Generalize the relationship to 

E=PV/γ́        (5-60) 

The first law of thermodynamics (essentially the conservation of energy) asserts

that if you compress a volume from V to V- d V the internal energy is increased by

the work done. 

dE=-PdV   (5-61) 

From E = P V/γ ´, we have 

dE=
1 
γ N , (PdV + VdP)    (5-62) 

�   � 
� 
� � 1   +   

1 
γ N 

� 
� 
� � 

d V 
V 

  =   
1 
γ N   

dP
P 

 . (5-63) 

So 

P = constant × V- (γ́  + 1)    (5-64) 

Therefore for a fixed number of particles in the volume of gas 

P=K ρ(γ́  + 1)    (5-65) 

where K  is a constant.  This is the  polytropic  equation  of  state  (5-33).    Write

γ =γ́  + 1—γ  is called the adiabatic index.  Then

P = K ργ = K ρ1+1/n    (5.66) 

So 
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1 
n 

  =   γ − 1      (5-67) 

We can use the argument in reverse.  If P α  ργ
 , then 

PV = (γ-1) E.     (5-68) 

The adiabatic index can be related to the number of degrees of freedom and to the

specific heats at constant temperature and at constant pressure (see Ostlie and

Carroll pp.353-354). 

For perfect gas there are three degrees of freedom, 

E     =   
3 
2 

 NkT 

                  = 
3 
2 

 P V           (5-69) 

So γ = 
5 
3 

 ,  n = 
3 
2 

 . 

P  α   ρ 5/3  . (5-70) 

In the case of a thermal gas with T independent of ρ, P  α   ρ  and the polytropic

index is infinite. It corresponds to an infinite number of degrees of freedom over

which the work done is distributed. 

5.4.2  Convection

There are three ways of transporting energy or heat:  radiation—photons

moving in straight lines carry energy—the photons can be absorbed by atoms and

then emit isotropically so changing direction or they can be elastically
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scattered—the path followed by a photon before it finally escapes from the interior

through the visible surface can be long.  Most of the scattering occurs in the outer

layers of the stellar atmosphere—in the interior, the material is fully ionized and

scattering and absorption are minimized.

Conduction of heat occurs by collisional transfer of energy with the faster

particle giving energy to the slower.  In stellar interiors radiation transport by

conduction is not very important because the densities are not that high.

The third mechanism is convection.  It involves actual motion of the gas.

Bubbles of gas that are hotter than their surroundings rise into a region of lower

pressure where they expand and cool.  The bubbles may merge with the

surrounding gas or they may fall back down.  Mass is conserved so mass going up

is replaced by mass going down.  “Hot air rises and cool air sinks.”

  Convection is a complex, not fully understood process.  It is usually

turbulent and different fluid elements are readily mixed.  In gas in turbulent

convection, the gas behaves adiabatically (no heat flowing into or out of a volume

element) so for a perfect gas

P = constant × ρ5/3 (5-71)

and the constant is the same for all fluid elements. This creates a polytropic model

with n = 3/2.

The Sun is not fully convective.  Most of it is stably stratified with the

deeper, denser material having a lower adiabat (smaller constant in the P-ρ

relation).  For the Sun, n = 3 is a good approximation and
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P ~ρ4/3  and T ~ ρ1/3 . (5-72)

Sun is convective in the outer one sixth of its atmosphere, whereas low mass stars

M ≤ 0.3 Mu are fully convective throughout and stars of all masses pass through a

fully convective phase (called the Hayashi phase) as they evolve on to the main

sequence.

5.4.3  Equation of State for Degenerate Matter

Degenerate matter resists compression not by the pressure generated by

thermal motion but by the Pauli exclusion principle which asserts that two identical

fermions cannot occupy the same quantum state.  

The uncertainty principle of quantum mechanics asserts that ∆x ∆p ~ h or

∆x ∆p  ~ h 
3
.  If electrons are forced into a smaller volume ∆x, they must be

pushed into a larger momentum volume ∆p.  In the lowest energy state of an

electron gas, the electrons fill all the momentum states in a sphere out to some

radius pF, called the Fermi momentum. 

The volume occupied in momentum space is

4 π 
3 

p F 
3   =  ∆p . (5-73)

If V is the volume in position space,
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∆ x   =   V 

∆ x ∆ p   =   
4 π 
3 

 pF 
3   V  .

(5-74)

The product of momentum space and position space is called phase space.  In

quantum mechanics, the maximum phase space density is 2/h
3
 (h

3
 is the smallest

allowed volume and electrons have two spin states.

If N is the total number of electrons,

2 

h 3   =   
N 

∆ x ∆ p 
  =   

N 
� 

� 
� � 
4 π 
3 

p F 
3 � 
� 
� � V 

  .

  

  (5-75)

But  
N 
V 

 = electron density ne so

p F 
3 =   

3 
8 π h 

3 

n e . (5-76)

The energy per unit volume E/V  is given by the integral of the electron energy

p
2
/2me over momentum space.  The number of electrons with momentum p in

phase   space   is    
2 

h 3 V∆p    so   number  per unit volume  of  position  space  is

ne = 
2 

h 3  ∆p.  Hence
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(5-77)

The pressure

P   =   
2 
3 

  
E 
V 

(5-78)

which is proportional to ρ5/3
 (using PV= (γ  - 1)E). 

Explicitly 
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(5-79) 

This is for non-relativistic electrons.  If the gas is so compressed that pF

approaches mec  (i.e. v approaches c), then as for photons
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P =   
1 
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E 
V 

  6 γ N = 
1 
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  ,   γ   = 
4 
3 
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6  Pα   ρ 4 / 3   

(5-80)

For relativistic electrons, E = pc.  

E 
V 

  =   

p F 

I 
0 

pc 
2 

h 3   4 π  p2  dp

= 
2 π c 

h 3  pF 
4   . 

(5-81)

Then

P =   
1 
8 
� 
� 
� � 
3 
π 
� 
� 
� � 

1 / 3 

hcne 
4 / 3  . (5-82)

The crossover from non-relativistic to relativistic occurs when the two regimes are

about equal

1 
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� � 
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− 3 

   

(5-83)
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(h/mec is the Compton wavelength).  

To relate electron density ne to ρ, in the absence of hydrogen (which occurs

for white dwarfs—all the hydrogen and helium have been burnt to carbon and

oxygen)

ρ  = ne (me + mp + mn) ~ 2 nemp . (5-84)

Each electron is accompanied by one proton and one neutron.  

Or write ρ  = µempne where µe is the mean molecular weight per electron.  Then,

extending to include a possible contribution from hydrogen,

µ e   =   
2 

1   +  X (5-85)

where X is mass fraction of mass H.  

5.4.4  White Dwarf Stars

White dwarf stars are supported entirely by degeneracy pressure, so we

may write:
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non-relativistic

P =   
1 
20

� 
� 
� � 
3 
π 
� 
� 
� � 

2 / 3 h 2 

m e m H 
5 / 3 µ e 

5 / 3 ρ 5 / 3 (5-86)

relativistic

  P =   
1 
8 
� 
� 
� � 
3 
π 
� 
� 
� � 

1 / 3 hc

m H 
4 / 3 µ e 

4 / 3 ρ 4 / 3  . (5-87)

Recall the approximate expression (5-26)

P c   =   
2 
3 

π G ρ 2 R 2 (5-88)

and put it equal to the degeneracy pressure.  For a non-relativistic white dwarf

2 
3 

π G ρ 2 R 2   =   
1 
20

� 
� 
� � 
3 
π 
� 
� 
� � 

2 / 3 
S 2 

m e m h 
5 / 3 µ e 

5 / 3 ρ 5 / 3  . (5-89)

Substitute ρ = M/
4 
3 πR

3
, we obtain an estimate of the radius R and find that R is

proportional to M
-1/3

 .  Thus MR
3  

= constant.  So the more massive the white

dwarf, the smaller it is.

To support a more massive star through degeneracy pressure, the more

densely packed must be the electrons.

For a 1Mu white dwarf star of carbon and oxygen, R ~ 6 × 10
8
 cm.  (For

the Sun, Ru  = 7 × 10
5
 km = 7 × 10

10
 cm).

There is a maximum mass for white dwarfs because the electron velocities

must be less than c and we must use the relativistic pressure.  Then P is
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proportional to ρ4/3
.  A similar argument yields a mass independent of ρ with the

fixed value 1.457Mu—this is the Chandrasekhar limit.  No white dwarf has been

discovered with a mass exceeding the Chandrasekhar limit.  

  Fig. 5-5 reproduces observational data showing mass M as a function of

radius R (The theory works well!)

(In terms of fundamental constants, the Chandrasekhar mass is

M ch  =   3 . 10 � 
� 
� � 
S c 
G 

� 
� 
� � 

3 / 2 1 

m H 
2   µ e 

2  . (5-90)

� 

� 
� � � 
S c 

G 

�

�
���
1/2

 is the Planck mass = 0.22 µg .)

5.4.5  Neutron stars

Beyond the Chandrasekhar mass, the electrons are forced to combine with

protons to form neutrons and the star becomes a degenerate neutron star which can

be analyzed in the same way as white dwarfs with the neutron molecular weight

replacing the µe.  However general relativity plays a role and the physics is still

uncertain.  

Pulsars are spinning neutron stars, detected by the regular arrival of radio

pulses thought to be due to electrons trapped in the magnetic field of the star.  The

magnetic fields are of the order of 10
12

 Gauss.  Limiting mass is about 6 Mu.

Masses beyond 6 Mu collapse to form black holes.  
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5.4.6  Black holes

If M > ~6Mu, matter collapses to a black hole when the escape veolocity

equals the velocity of light.  The star vanishes inside the Schwarzchild radius given

by 

c2 = 2GM/rs . (5-91)

Numerically 

rs ~ 3(M/Mu) km . (5-92)

5.4.7  Stellar structure virial theorem

We can use the virial theorem to show that stars are unstable if the adiabatic

index is less than 4/3.

Hydrostatic equilibrium

dP
dr

  =   −   
GM � r � 

r 2   ρ � r �   . (5-93)

Let V(r) be the volume inside a radius r

V(r) = 
4 
3 

π r 3 (5-94)

dV(r) is the volume of the shell between r and r + dr containing a mass dM(r)
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dM(r) = ρ(r)4πr2dr (5-95)

Multiply pressure equation by V(r) dr:

V ( r ) 
dP
dr

dr =   −   
GM � r � ρ � r � 

r 2   V ( r ) dr   . (5-96)

which we can write

V ( r ) dP =   −   GM � r  � ρ � r � 
4 
3 

π r 3 dr
1 

r 2 

= 
1 
3 

GM � r � dM � r � 
1 
r 

  .

(5-97)

Integrate over the star of radius R

R 

I 
0 

V ( r ) dP =   −   
1 
3 

R 

I 
0 

GM � r � dM � r � 
r 

=   
1 
3 

U  

(5-98)

where U is the total gravitational potential energy.  Integrate by parts to get
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1 
3 

U =   P V 
R 

0   −   
R 

I 
r = 0 

P ( r ) d V   . (5-99)

At r = 0, V = 0.  At r=R, P = 0.

Hence

U +   3   

R 

I 
0 

PdV   =   0   . (5-100)

This is the stellar structure virial theorem.  For a polytropic gas, energy per unit

volume is

u =   
P 

γ − 1 
 . (5-101)

Thus

∫ PdV = (γ  - 1)∫ udV

      = (γ  - 1)E (5-102)

where E is the total internal energy of the star.

So

U + 3 (γ  - 1)E = 0  . (5-103)
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(For  a perfect monatomic gas, only translation is possible, γ = 5/3 and E = T.

Then U + 3(γ  - 1)E = 0 asserts that U + 2T = 0 which we proved earlier for a

system of particles moving under their gravitational attraction.)

The total energy of a star is

E tot =  E +  U

       =   E − 3 � γ   −   1 �   E   =   −   � 3 γ   −   4 � E 

      =   
3 γ   −   4 

3 � γ   −   1 � 
  U 

(5-104)

If γ > 
4 
3  , Etot < 0  —  star is bound

   γ < 
4 
3  , Etot > 0 — star is unbound

— it is unstable to the conversion of the internal energy into expansion velocity and

it blows itself apart.


