Astronomy 45

Introduction to Astrophysics

Problem Set 10 - Due Friday April 27, 2001

1. A star has a constant core density ρ_{0} out to a radius R_{0}. Beyond R_{0} out to the stellar radius R, the density varies with radius r as $\rho_{0}\left(R_{0}{ }^{2} / r^{2}\right)$. Calculate the mass interior to r and obtain the stellar mass in terms of ρ_{0}, R_{0} and R. Write down the equation of hydrostatic equilibrium and calculate the pressure $P(r)$ as a function of the radius r. (The pressure is zero at R and everywhere continuous.)
2. Assume the solar luminosity is produced by the conversion of hydrogen to helium. Given that $L_{\odot}=3.83 \times 10^{33} \mathrm{ergs} \mathrm{s}^{-1}$, how much mass of hydrogen is converted to helium each second?
3. Consider two non-relativistic white dwarfs with the same central density, one of which is made of carbon with $\mu_{e}=2.00$ and the other of iron with μ_{e} $=2.15$. Which star has the smaller radius and which the smaller mass? Also calculate the ratio of the Chandrasekhar masses of the two stars.
