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4. Classical Dynamics

4.1  Newtonian Gravity

Two point masses M1 and M2 positioned at r1 and r2 attract one another.

M1 feels a force from M2.

F 1 2 =   
- GM1 M 2 

r 3 
1 2

r 1 2

where r12 = r1 - r2 is the vector from point 2 to point 1 and r12 = |r12|.  M2  feels a

force from M1

  F 2 1 =   
- GM1 M 2 

r 3 
1 2

r 2 1 =   
GM1 M 2 

r 3 
1 2

r 1 2  =   -     F 1 2

r
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M
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F
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Fig . 4-1

Gravitational forces are equal and opposite in accord with NewtonÕs third law.
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4.1.1 NewtonÕs laws

1.  A body remains at rest  or in uniform motion unless acted on by a force

2.  Force is equal to the time rate of change of momentum.

3.  Action and reaction are equal in magnitudes and directly opposite in direction.

4.1.2  Gravitational potential

Gravitational forces can be represented by the gradient of a potential.

If F12 is the force on particle M1 at r1 due to M2 at r2 

F12 = -M1 Ñ1 V (r1 )

where

V � r 1 �   =   
- GM2 

r 1 -   r 2 

is the gravitational potential at r1  due to the presence of M2 at r2 and

L 1   =   
� 

� 
� � 
M 
M x 1 

  ,   
M 
M y 1 

  ,   
M 
M z 1 

� 

� 
� �   .
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If there are several masses Mi  at  points ri , the potential at any point r  is 

V � r �   =   - 
N 

3 
i = 1 

GMi 

r -   r i 

where the sum excludes any mass at r.

 4.1.3  Gravitational attraction of a spherical shell

z

r
P

x

a

dx

O

Consider a thin spherical shell of mass M and radius  a .  P is a particle of

mass m at a distance r from the center O of the shell and outside it.  Divide the shell

into rings x, x + dx by planes perpendicular to OP.

Area of ring is 2pa  sin q ´ adq =  2pa d x

where x = a cos q , d x =a sin q dq



4-4

Surface area of the shell is 4pa
2
.  

So mass of ring is

2 p a d x 
M 

4 p a 2   =   
M d x 

2 a 

Every point of the ring is equidistant by z from P so gravitational potential at P due

to the ring is

- G 
z 

    
M d x 

2 a 
  .

Total for the shell is 

V   =   - 
a 

I 
- a 

GM
2 az

d x .

Now z
2
 = a

2
 + r

2 
 - 2rx

         2zdz = - 2rdx

      

  V   =   
r - a 

I 
r + a 

GM
2 ar

d z 

=   
GM
2 ar � r - a � -   � r + a � 

=   - 
GM

r 
  .
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Force on the particle is the same as that exerted by a particle of mass equal to that of

the spherical shell placed at the center of the shell.

If P is inside the shell,

  V   =   
a - r 

I 
a + r 

GM
2 ar

d z 

=   - 
GM

a 

which is a constant.  So the force 
- dV
dr  vanishesÑthe shell exerts no force on

particles inside it.  

Ostlie and Carroll (pp. 36-38) give a similar discussion but use the force

rather than the potential.  

4.1.4  Solid sphere

Suppose sphere is a solid with a mass distribution that is a function of r (or

a constant).  Add up the potentials of all the spherical shellsÑresult is the

sameÑgravitational potential on a particle outside a solid sphere is the same as that

exerted by a particle of the mass of the sphere situated at its center.

Suppose particle is inside the solid sphere of mass M and radius R at a

radius r.  Shells with radii greater than r exert no force.  Inside we have a solid

sphere of mass Mr
3
/R

3
 so gravitational force on the particle is 
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G 

  

m 

r 2   
M r 3 

R 3   =   
GmMr

R 3   .

4.1.5  Two solid spherical bodies

Force on each particle of sphere A is the same as produced by a particle of

mass mB at the center of B.  Add for all the particles.  Gravitational force of A or B

is the same as if the masses were particles at the centers of the two spheres.

4.2  The Two-body Problem

Equations of motion of two bodies at r1« and r2« with constant masses

M 1 

..

r 1 N   =   
- GM 1 M 2 

r 1 N -   r 2 N 
  3 � r 1 N -   r 2 N � 

M 2 

..

r 2 N   =   
- GM1  M 2 

r 1 N -   r 2 N 
  3 � r 2 N -   r 1 N �   .

Add the two equations 

M 1 

..

r 1 N   +   M 2 

..

r 2 N   =   0

(linear momentum is conserved).

The center of mass is at the position R where
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R   =   
M 1 r 1 N   + M 2 r 2 N     

� M 1 + M 2 �   

Then 
..

R  = 0, 
. 

R  = constant = vcm  (there is no external force) Ñ in the absence of an

external force, center of mass moves with uniform velocity.

Introduce coordinates r1 = r1«  - R

r2 = r2«  - R

R = R0  + vcmt      (t  is the time)  

relative to the center of mass

M 1

M 2

r1

2CM

r 1 r
2

R

0

r

«
«

Fig. 4-2

Then
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M 1 

..

r 1   =   
- GM 1 M 2 

r 1    -   r 2 
  3 � r 1 - r 2 �

M 2 

..

r 2     =   
- GM1  M 2 

r 1   -   r 2 
  3 � r 2   -   r 1 �   .

This independence of origin and velocity is called Galilean invariance.  So choose

origin as the position of the center of massÑi.e. take R = 0. (Then r1=r1«  and

r2=r2«.)  Now calculate the total angular momentum about origin.

L   =  M1 r 1 x r ú 1   +     M 2 r 2 x r ú 2   .

For any central force

M 1 r ¬ 1 =   - l  � r 1   - r 2 �

 M2 r ¬ 2 = - l  � r 2   - r 1 �

where for gravitation l   =   
GM1 M 2 

r 1 - r 2 
3     .

Then
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d L 
dt

  =   M 1 � r ú 1  x r ú 1 +   r 1  x  r ¬ 1 �   +   M 2 � r ú 2  x r ú 2 +   r 2   x   r ¬ 2 � 

=   � r ú 1  x M 1 r ¬ 1 �   +   � r 2  x M 2 r ¬ 2 � 

=   - l r 1   x   � r 1 -   r 2 � + r 2   x � r 2 -   r 1 � 

=   - l r 1  x  r 2 + r 2   x  r1   =   0   .

L   =  constant vector,  perpendicular to the plane of the motion.

We can also prove that the total energy E  = T + V Êis constant where T is the

kinetic energy and V the potential energy.  Write the equations as

T =   
1 
2 

 M1     r ú 1 
2     +   

1 
2 

 M2     r ú 2 
2  

M 1 r ¬ 1 =   -   L 1 V ,   M 2 r ¬ 2 =   -   L 2 V ,  

and V as the potential 

V   =   
- GM1 M 2 

r 1 - r 2 

  .

Now

 
dV
dt

=   L 1 V A   r ú 1    +   L 2 V A   r ú 2  .

Multiply equations of motion by  r ú 1 to give 



4-10

M 1 

..

r 1 A  r
. 

1     =   - L 1 V A    r. 1 

and by r ú 2  to give

M 2 

..

r 2 A    r
. 

2   =   - L 2 V A    r. 2      .

Thus

d 
dt

  
1 
2 

M 1 r ú 2 
1   + 

1 
2 

M 2 r ú 2 
2   +  V    =   0  

i.e. E = T + V = constant.  

To describe a two-body system we need six functions of time r1(t) and r2(t)

and twelve constants (say initial positions and momenta) must appear in the

solutions.

We now have determined 3 for R, 3 for �Vcm, 3 for L and 1 for E (these

also apply to a many-body system).  The two remaining are valid for two-body

systems only.
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4.2.1  Two-body orbits

r1 CM

1 r
2

R

0

2r

«r «  

1 2

Fig. 4-3

R =   
M 1 r 1 N   +   M 2 r 2 N 

M 
  ,   M =   M 1 + M 2 

Introduce   r   =   � r 1 N   -   r 2 N � 

  Then  r1 =   
M 2 r 
M 

  ,     r 2   =   
- M 1 

M 
  r  ,   r 1   -   r 2   =  r

  

r 1 N =   r 1 +   R    ,   r 2 N =     r 2 +   R  . 

Equation of motion of 1 and 2 are
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M 1 

..

r 1 N =   -   
GM1 M 2   r 

r 3 

M 2 

..

r 2 N =   +   
GM1 M 2   r 

r 3    .

Now consider the relative motion of the two particles

..

r   =   
..

r 1 N -   
..

r 2 N 

=   -   
GM2   r 

r 3   -   
GM1   r 

r 3 

=   -   
GM  r 

r 3   .

This can be written as force = mass ´ acceleration

M 1 M 2   

M 

..

r   =   -   
GM1 M 2   r 

r 3   .

Define a reduced mass m.

m   =   
M 1 M 2   

M 1 +   M 2 

   ,    
1 

m 
  =   

1 
M 1 

  +     
1 

M 2 

  .

Then 
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m 
..

r   =   -   
G m M r 

r 3   .

The equation describes the motion of a fictitious particle of mass m under

the gravitational attraction of a particle of mass M = M1+ M2 separated by r.  The

force can be written as the gradient with respect to r of a potential

V � r �   =   -   
GM1 M 2   

r 
  =   

- G m M 

r 
  .

The total angular momentum of the system about the center of mass is 

L   =   r 1   H   M 1 r 
. 

1   +   r 2   H   M 2 r 
. 

2   .

With  

  r 1 =   
M 2 r 
M 

  ,   r 2   =   -   
M 1 r 
M 

L   =   
M 1 M 2 

M 
  r H � � 

. 

r 1   - 
. 

r 2 
�
�

=   m r   H   r 
. 

. 
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The center of mass moves in a straight line and makes no contribution to the

angular momentum (R ´ Vcm = 0).

The angular momentum of the two-body system is identical to that of a

single particle of mass m moving with the relative velocities of the two bodies.

The kinetic energy of the two bodies is

  

T   =   
1 
2 

  M 1 

. 

r 1 N 
2   +   

1 
2 

  M 2 

. 

r 2 N 
2 

= 
1 
2 

  M 1 
� 
� 

. 

r 1   +   
. 

R � � 
2 

+   
1 
2 

  M 2 
� 
� 

. 

r 2   +   
. 

R � � 
2 

= 
1 
2 

  M 1   
� 

� 
� � 
  M 2 

M 
� 

� 
� � 

2 . 

r 2 +   
1 
2 

  M 2   
� 

� 
� � 
  M 1 

M 
� 

� 
� � 

2 . 

r 2 

+   
. 

R 
� 

� 
� � � 
� �   M 1   M 2 

M 
  

. 

r   -   
  M 2   M 1 

M 
  

. 

r 
�

�
���
��

+   
1 
2 

  � M 1   +   M 2  � 
. 

R 2 

�  T =   
1 
2 

  
M 1 M 2 

M 
  

. 

r 2   +   
1 
2 

  M v cm
2 

= 
1 
2 

  m 
. 

r 2   +   
1 
2 

  M v cm
2  .
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The kinetic energy of the two-body system is the kinetic energy of relative motion

of a particle of mass m plus the kinetic energy of the total mass M moving with the

velocity of the center of mass.  The potential energy is 

V   =   -   
GM1 M 2    

r 
  =   

- G m M 

r 
  .

so the total energy of the system is the total energy of the particle of mass m moving

in the field of a particle of mass M plus the kinetic energy of mass M moving with

the center of mass

E =   
1 
2 

m 
. 

r 
2 

  +   
1 
2 

M v cm
2   -   

G mM
r 

 . 

In Cartesian coordinates

L   =   ( 0 ,   0 , L )   ,   r   =   ( x , y , 0 ) ,   r ú   =   ( x ú , y ú , 0 )

angular momentum equation

L   =   m ( x y ú   -   y x ú )

energy equation

E   =   
1 
2 

m   � x ú 2   +   y ú 2  �   -   
G m M 

� x 2   +   y 2 � 
1 

2 

    

   .
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Better in polar coordinates

d q d r

rd q 

trajectory

Fig. 4-4

or cylindrical coordinates (r, q, z) with z perpendicular to the plane.

In time t, 

r(t) ® � r(t + dt)

r ú   =   
r � t + d t �   -   r ( t ) 

d t 

=   
� 

� 
� � 
d r 
d t 

  ,    
r d q 
d t 

  ,   0 
�

�
��

So components of the vector 
. 

r =   � � 
. 

r   ,   r   
. 

q ,   0 ��

Then

r x   
. 

r     = � �   0 ,   0 ,   r 2 q ú ��
. 

r A   
. 

r   = 
.  

r  2 +   r 2   q ú 2 
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So L = mr
2
  q ú  where   q ú  = angular velocity

E =   
1 
2 

m 
� 
� 
� � . 
r 

2 

  +   r 
2 

  q ú 2 
� 
� 
� � 
  -   

G m M 
r 

  .

Angular momentum equation can be interpreted geometrically.

    

d q
r(t 

+ dt)

r(t)

t + dt

t

dA
    
  

Fig. 4-5

In the interval t, t + dt, the orbit sweeps out an area dA and 

dA = 
1 
2 

r x rdq

so
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dA 
d t 

=   
1 
2 

r   x 
rdq 
d t 

  =   
1 
2 

r 2 q ú 

              �   
dA 
dt

  =   
L 
2 m 

  =  constant .

 

This is KeplerÕs second law.  The radius vector to a planet sweeps out equal areas

in equal intervals of time.

We can proceed further to obtain an equation in a single variable r.  We

have

d q 
dt

  =   
L 

m r 2 

� 
� 
� � 
d r 
dt

� 
� 
� � 

2 

=   
2 E 
m   +   

2 GM
r 

  -   
� 
� 
� � 
1 
m 
� 
� 
� � 

2 L 2 

r 2   .

The last term is the centrifugal repulsion.  It is an inertial force that arises to take

account of the angular motion.  We are in effect using a rotating frame with respect

to which the particle has no angular motion and we need consider only radial

motion.  Consider a particle moving with constant angular velocity w in a circle and

ask  what  is the effective force.   The    velocity  is w ´r  and  the  acceleration  is

|w ´ ( w ´ r)| = r   q ú 2.  So the force is m r    qú 2 which is the centrifugal repulsion.

The corresponding potential is 
- 1   

    2     
 m  r 

2 
  q ú 

2
 = -   

m 
2 
� 
� 
� � 
L 
m 
� 
� 
� � 

2 1 

r 2  .
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4.2.2  Runge-Lenz Vector

For a central force proportional to 1/r
2
 , there is an additional conserved

vector called the Runge-Lenz vector (though it was written down in 1799 by

Laplace).  The Runge-Lenz vector is 

A= p x L - m
2
GM  

r 
r 

Then

d 
dt � 

p  x L � =   p 
. 

  x   L =   m r ¬   x   L   =   - 
m GM

r 3   r   x   L

= - 
m 2 GM

r 3   r   x     (   r   x   r 
. 

) . 

Use vector identity

a   H   � b   H   c �   =   b � a   A   c �   -  c � a   A   b �

r   H (   r H   r 
. 

)   =   r ( r A   r 
. 

)   -   r 
. 

  r 2 

=     r 3 

: 

; 

< 

= = = = 

= = = = r   
r   A  r

. 
  r 3   -   

 r
. 

  r 

B 

C 

D 

E E E E 

E E E E   . 

  

But r   A   r 
. 

  = 
1 
2 

  
d 
dt � 

 r  A   r �   =   
1 
2 

  
d 
dt

  �   r 2 �   =   r r 
. 
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and

r H (   r H   r 
. 
  ) =   r 3 

: 
; 

< 

= = = 

= = = = 
1 

r 2   r 
. 
  r   -   

r 
. 

r 
  

B
C

D

EEE

EEEE .

Now 
d 
dt  (unit vector) = 

d 
dt

  � 
� 
� � 
r 
r 
�
�
��  =   -   

1 

r 2   r 
. 
  r +  r

. 
/ r .

So
 

r H   ( r   H   
¥ 

r )   =   - r 3 d 
dt

r ö   ,         r ö   =   r / r . 

d 
dt � 

p   H   L �   =   
+ m 2 GM

r 3   r 3   
d r ö 
dt

  =     m 2 GM
d 
dt

p   H   L   -   
m 2 GMr 

r 
  =   constant =   A ,  say

� 
� 
� � 
r 
r 
�
�
��

Then A á L = 0.

A is a fixed vector in the plane of the orbit.  

4.2.3  Orbits

To find the trajectory as a function of time, we have to integrate the pair of

equations with respect to time.
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d q 
dt 

  =   
L 

m r 2 

� 
� 
� � 

d r 
dt 

� 
� 
� � 

2 

=   
2 E 
m   +   

2 GM
r 

  -    
� 
� 
� � 
1 
m 
� 
� 
� � 

2 

  
L 2 

r 2   .

But we can find the shape of the orbit (which is r as a function of q)

d r 
d q   

  = 
d r 
dt 

/   
d q 
dt 

=   
m 
L 

r 2 2 E 
m   +   

2 GM
r 

  -   � 
� 
� � 
L 
m 
� 
� 
� � 

2 

  
1 

r 2 

1 / 2 

or

d q   =   
� L / m � dr

r 2 2 E 
m   +   

2 GM
r 

  -   
� 
� 
� � 
L 
m 
� 
� 
� � 

2 

  
1 

r 2 

1 / 2   
 .

Integrate

q 

I 
q 0 

d q   =   q - q 0   =   

r 

I   � L / m � dr

r 2 2 E 
m   +   

2 GM
r 

  -   
� 
� 
� � 
L 
m 
� 
� 
� � 

2 

  
1 

r 2 

1 / 2   

where q0 is a constant of integration.

Define a scale length by
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r o   =   
� L / m � 

2 

GM
  =   

L 2 

GMm 2  

and a second constant e by 

e 2   =   1   +   
2 � E / m � � L / m � 

2 

� GM � 
2 

=   1   +   2 EL2 / � GM � 
2 m 3   .

For a bound orbit, e < 1 and E is negative. Then the integral can be written

r 

I r o dr

r 2 7 e 2   -   � 1   -   r o / r � 
2 ? 

1 / 2   =   q   -   q o  .

Introduce a new variable u by

(1-ro/r )2 = e2 cos2 u

or

e cos u =±(1 - ro/r ) .

We obtain
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u 

I 
o 

 du =   q   -   q o 

  

  

i.e.  u = q - qo   ,   cos u = cos (q - qo )

Hence 

e  cos ( q - q o )   =   1 - r / r o 

or

1 
r 

  =   
1 
r o 

1 "   e  cos � q   -   q o �   .

We can choose ±, we choose +

1 
r 

  =   
1 
r o 
7 1 +   e  cos � q   -   q o � ?     

is the orbit equation.  It is the equation of a conic section.  e is called the

eccentricity.  There are three possibilities.

e < 1   If e < 1, r is always finiteÑthe particles remain bound with 

r p =   
r o 

1   +   e 
  # r # 

r o 

1   -   e 
  =   r a     
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where rp and ra are the nearest and furthest parts of the trajectory from a focus,

called respectively the perihelion and the aphelion.  Then

e   =   
r a   -   r p   

r a   +   r p 

  .

If eÊ= 0, the motion is a circle and the two foci coalesce at the center and ro = a is

the radius.  

Let us express the orbit in Cartesian coordinates.

x = r cos (q-q0)

y = r sin (q-q0) .

Then the orbit equation is 

1 

� x 2 +  y 2 � 
1 / 2   =   

1 
r o 

  
: 
; 
< 

= = 

= = 
1   +   

e x 

� x 2 +  y 2 � 
1 / 2 

B
C
D

EE

EE

which is 

� 
� 
� � 
x + e a 

a 
� 

� 
� � 

2 

+  
y 2 

b 2   =   1

where a =   
r o 

1 - e 2   ,  b =   
r o 

� 1 - e 2 � 
1 / 2   .
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a is the semi-major axis, b is the semi-minor axis, ro is the semi-latus rectum.  

The axial ratio is 
b 
a  = (1-e

2
)
1/2

b

a

y

r o

x

x = a(1- e), y = 0, q  = q 

x = -a(1 +e)

r=       / (1- e)r o

y = 0

q  = q 
o + p

r=        /(1+e)r

o

o

aphelion

perihelion

ae aeO« O

a

Fig. 4-6
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The origin O of coordinates is the focus at the center of mass (close to the Sun).  If

the origin is taken at the center (the midpoint of the two foci) equation is

x 2 

a 2   +   
y 2 

b 2   = 1

The standard definition (and how you can draw it) is the locus of the point

P such that r + r«= constant where r and r« are the distances from points O and O«.

P

r«  

O « O
2ae 

r

q

fig. 4-7

r«
2
= r

2
 + (2ae)

2
 + 4aer cos q
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Orbit equation: 

r = a(1-e)
2
/(1 + e cos q)

\ er cos q = (1-e)
2
- r

r«
2
= r

2
 + 4a

2
e

2 
+ 4a

2
(1-e

2
)-4ar

= (r-2a)
2

\ r + r«= 2a.  

e < 1 implies E < 0, the total energy of a bound system is negative.  

The orbit is periodic and closed.

The period is obtained from dt/dq = ( dq/ dt)
-1

, 

d q 
dt

  =   
� L / m � 

r 2 

using 
1 
r 

  =   
1 
r o 

  1   +   e  cos � q - q o �  .

Hence 
t 

I d t =   
r 2 

o 

� L / m � 
  I d q 

1   +   e   cos � q - q o � 
2  .

In going around the orbit, q ® �q + 2p

                                         t  ® �t +t
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where t  is the period so 

  
r 2 

o 

� L / m � 
  

2 p 

I 
0 

d q 

1   +   e  cos q 
2   =   t . 

Use the substitution t = tan (q/2)

d q   =   
2 dt

1   +  t2   ,  cos q   =   
1   -  t2 

1   +  t2    .

Then

t =   
r 2 

o 

� L / m � 
  A   

2 p 

� 1   -   e 2 � 
3 / 2 

or    t = 
2 p a 3 / 2 

� GM � 
1 / 2   .

The points at which the velocities are at right angles to the radius vector are called

apses.  The apse nearer to the Sun is the perihelion and the point further away is the

aphelion (Fig. 4-6). 

An alternative proof:  integrate 
dA
dT  over the period P-A is the area of the

orbit.  KeplerÕs second law is
dA
dT

  =   
L 
2 u 

    ( cf. 4 - 18)

So A =   
LP
2 m  is the area of the ellipse.

Thus A = pab.  

Use 
b 2 

a 
  =  ro =  L2   /  GMm 2  .
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Then   P2   =   
4 m 2 A 2 

L 2   =   
4 m 2 

L 2 p 2  a2  a 
L 2 

GMm 2 

=   
4 p 2 

GM
   a3 . 

At perihelion rp and aphelion ra,

L = mVr = mVp  a (1-e) = mVa a (1+e)

                               
V p 

V a 

  =   
� 1 + e � 
� 1 - e � 

                                  E   =   
m V p 

2 

2 
  -   

GMm 
r p 

  =   
m V a 

2 

2 
    -   

GMm 
r a 

  .

Replace Vp by Va  (1+e)/(1-e) to get

                                            V a   = 
GM � 1 - e � 

a � 1 + e � 

                                             

E =   
m GM � 1 - e � 

2 a � 1 + e � 
  -   

m GM
a � 1 + e � 

= -   
GMm 

2 a 
   .   

So a = -   
GM 1 M 2 

2 E 
 depends only on energy.

e depends on energy and angular momentum. 
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KeplerÕs Laws:   for bound orbits,

1.  the planets move in ellipses with the center of mass (the Sun) at one focus.

2. A line from the Sun sweeps out equal areas in equal times
dA
dt

  =   
1 
2 

( L / m )   .

(A is the area here, not the magnitude of the Runge Lenz vector).  
dA
dt  does

not depend on e so the law applies also to unbound orbits with e ³ 1.  

3. The square of the period of revolution is proportional to the cube of the semi-

major axis

t 2   =   
4 p 2 

GM
a 3   .

If we ignore the mass of the planet compared to the mass of the Sun, M = Mu .

Then, if t is measured in years, call it the period P, and a is measured in AU,

P2 = a3 .

More generally, for a total mass M measured in Mu 

P ( years) 2   =   
a � AU � 

3 

M � M u � 
  .

Mean angular velocity w = 2p/t so

w2 = GM/a3  .
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To determine velocity at r, use conservation of energy

E =   
1 
2 

  m r ú 2   -   
G m M 

r 
  =   

- G m M 
2 a 

    =   
1 
2 

m r ú 2   -   
G m M 

r 
  .

The relative motion is an ellipse.  The actual bodies move in ellipses of the

same shape but different sizes and all have the same angular velocity.  Thus

r 1   =     
M 2 

M 
  r ,   

. 
r 

1 
    =     

M 2 

M 
  
. 
r 

r 2   =   -   
M 1 r 
M 

  ,   
. 
r 

2 
    = -     

M 1 

. 
r 

M 
  .   

The Sun moves in a small orbit around the center of mass and the planet in a large

orbit around the center of mass, always positioned so that they are on opposite

sides of the center of mass.  

Suppose we ignore the other planets and consider only Jupiter.  The

average Jupiter-Sun distance is 5.2 AU.  The mass ratio of Jupiter to the Sun is

0.95 ´ 10
-3

.  The radius of the SunÕs orbit is
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�

M 1 a 

M 
  =   0 . 95  H   10- 3   H   5 . 2   H   1 . 5   H   108  km 

=   7 . 4   H   105  km . 

The radius of the Sun is comparable at Ru = 6.696 ´ 10
5
 km. 

e > 1   e = 1 + 2EL
2
/(GM)

2
 m

3          
E> 0  and orbit is unbound

- a  hyperbola.  

Put 
1 
r 

  =   
1 
r o 

1   +   e  cos ( q - q o )  into Cartesian coordinates

1 

 � x 2 + y 2 � 
1 / 2 

  
  =   

1 
r o 

� 

� 
� � � 1   +   

e x 

� x 2 + y 2 � 
1 / 2 

�

�
���

�     � 
x   - e a � 

2   

a 2   -   
y 2 

b 2   =   1 

where  a =   
r o 

e 2 - 1 
  ,  b = 

r o 

� e 2 - 1 � 
1 / 2 

b 
a 

  =   � e 2 - 1 � 
1 / 2 

 .

With origin O at the midpoint, equation is

x 2 

a 2   -   
y 2 

b 2   =   1   .
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e = 1    E = 0 , total energy is zero

Orbit is a parabola

                                                        y2 = ro
2 - 2rox

For a given distance r, E = 0 defines the escape velocity 1/2 mV
2
esc = 

GMm 
r 

 .  

If v > Vesc  , the particle escapes the gravitational field of M.  

y

x

ro

Parabola -  single pass orbit

0

/2ro

Fig. 4-9
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4.2.4  Mass of Sun

The sidereal period of a planet, t, (denoted earlier by P),  is related to the

semi-major axis  

t 2   =   
� 

� 
� � � 
4 p 2 

GM

� 

� 
� � � a 3 

where 

M = Mu + MPlanet
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Measurements of t

Planet t

(days)

a

(AU)
GM (10

26
 cm

3
 s

-1
) e

Mercury 87.969 0.387099 1.32714 0.206

Venus 224.701 0.723332 1.32713 0.007

Earth 365.256 1.000000 1.32713 0.017

Mars 686.980 1.523691 1.32712 0.093

Jupiter 4332.589 5.202803 1.32839 0.048

Saturn 10759.22 9.53884 1.32750 0.056

Uranus 30685.4 19.1819 1.32715 0.047

Neptune 60189 30.0578 1.32723 0.009

Pluto 90465 39.44 1.32727 0.249

Given t and a, we can obtain Mp + Mu .

From low mass planets

G Mu  = 1.32713 x 1026 cm3 s-2.

G itself is known only to 1 part in 10
4
.

G = 6.670 ± 0.004 10-8 cm3 s-2 g-1  .

Then Mu  = 1.989 ± 0.001 10
33

g.

We can also derive mass of Jupiter.
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G(Mu  + MJ) = 1.32839 1026 cm3 s-1

G(Mu  + ME) = 1.32713 1026 cm3 s-1

\  G(MJ  - ME) = 1.26 1023 cm3 s-1

M J -   M E 

M u 
  = 0.000949  .

MJ  ~ 0.000949 x Mu  

    = 1.89 x 1030  g

Better estimates can be made from the orbits of planetary satellites and spacecraft.  

4.2.5  Interplanetary travel

Spacecrafts travel in orbits around the Sun.  Suppose a spacecraft is

directed to Mercury.  We wish to place it in an orbit around the Sun that is tangent

to the Earth at aphelion and tangent to Mercury at perihelion.  
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Orbit of Earth

Orbit of Mercury

Least energy orbit         

                                              Fig. 4-10

That orbit has the smallest a and therefore takes the least energy.  Assume orbits of

Earth and Mercury are circular.  Major axis is the sum of the aphelion and

perihelion distances

2a =  0.387 + 1.000 = 1.387 AU

a = 0.694 AU = 1.04 ´ 1011 m.

The initial orbital speed at aphelion comes from the conservation of energy

V 2 
a =   GMu 

� 

� 
� � 

2 
r a 

  -   
1 
a 
�

�
��
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(We are ignoring the gravitational fields of the Earth and Mercury)  Then with r =

1.496´ 10
11

 m,

 

M u   =   1 . 989  H   103 0 kg

V a =   22 km s - 1  .

Each is orbiting the Sun at 30 km s
-1

 so we launch at 8 km s
-1

 in a direction

opposite to the direction of the EarthÕs motion.

4.2.6  Moment of intertia of a spinning sphere

The angular momentum of a particle of mass m orbiting about a center with

angular velocity w is 

L =  mr2 

. 
q   =  mr2 w   =  Iw

and its rotational kinetic energy is

T =   
1 
2 

mr2 

. 
q 2   = 

1 
2 

 Iw 2  .

The angular momentum of a spherical body rotating about an axis with

angular velocity w is similarly Iw and the kinetic energy is 
1 
2 

 Iw 2 
 where I is called

the moment of inertia.  For a uniform sphere of mass M and radius R , 
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I =   I I I   r r 2   � x 2   +  y 2 � drdW

=   
8 p 
15

r R 5 =    
2 
5 

 MR 2   .

4.3  Binary stars

More than half the stars are multiple stars, most of which are binary pairs.

For solar-type stars, the observed ratios of single: double: triple: quadrupole

systems is 45:46:8:1.  There are several classes of binaries:  

visual binaries:  both can be detected orbiting in ellipses about one another

(Sirius is a famous example - Sirius A is a main sequence star of spectral type A1,

Sirius B is a white dwarf of spectra type A5.  The period is 49.9 years.

Sirius was first discovered as an astrometric binary.

Astrometric binaries are binaries in which only one star is observed but its

motion is oscillatory, indicating the perturbing presence of a dim companion.

Spectroscopic binaries are visually unresolved but periodic oscillations occur

in their spectrum.  If only one stellar spectrum is observed, the binary is single-

lined; if both are observed, the binary is double-lined.

Eclipsing binaries occur when the two stars eclipse one another, producing

periodic changes in apparent brightness.

Periods of binary stars vary from a few hours to hundreds of years.  From

data on the periods we can use the law of gravitation to infer masses. Consider a
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double-lined spectroscopic binary. The spectra of the two stars are superimposed.

We can use Doppler shifts to measure the radial velocities of each star, though they

may be too close for their orbits to be distinguished.

                          

                                           Fig. 4-10

The line joining the stars is rotating with angular velocity W and K1 and

K2 are the inferred radial velocities.

The figure shows the individual radial velocities.  From it we obtain the

peak velocities of each star and the binary period t. If the shape is accurately

sinusoidal, the orbits are circular with e = 0.  The distances r1 and r2 from the
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center of mass are constant for circular orbits.  The center of mass is the center of

the orbits of both stars and of their relative motion.

cm

r
2

r
1

M 2

W r
2

M
1

W r
1

Fig. 4-11

r 1 =   
M 2 

M 1   +   M 2 

r      r 2 =   
M 1 

M 1   +   M 2 

  r   .

The distance of M1 from M2 is r1 + r2 .

The period and the separation are related by KeplerÕs Third Law

t 2   =       
4 p 2  r3 

G M 
  =   

4 p 2 
�  r1   +   r 2 � 

3 

G � M 1   +   M 2 � 
 

and the speeds of the stars are

v1 = Wr1 ,   v2 = Wr2
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where W is the angular velocity

W   =   
2 p 
t  .

So r = r1 + r2  = (v1 + v2)/W

M 1 

M 2 

  =   
r 2 

r 1 

=   
v 2 

v 1 

  ,  independent of i 

� M 1 +   M 2 �   =   
W 2 r 3 

G 
  .

The peak velocities equal v1 and v2 only if the orbital plane is parallel to the line of

sight.  If i is the inclination angle between the line of sight and the normal to the

orbital plane = the angle between the plane of the sky (defined as perpendicular to

the line of sight) and the plane of the orbit.

Fig. 4-12
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K1 = v1 sin i   = Wr1 sin iÊ=  
2 p 
t r1 sin i

K2 = v2 sin i  =  Wr2 sin i = 
2 p 
t  r2 sin i

If i = 0, we observe zero velocities (no information).  i = 90° is edge on 

K1 =v1,  K2 =v2.  The mass ratio is in any case independent of i.

M 1 

M 2 

  =   
K 2 

K 1 

  =   
V 2 

V 1 

 .

The separation r = r1 +r2  = 
t � K 1 + K 2 � 

2 p   sin i

The total mass from

M =   
W 2 r 3 

G 
  =   

4 p 2 

t 2   
r 3 

G 
 

M   =   M 1 +  M2   =   
t 

2 p G 
  
� K 1 + K 2 � 

3 

sin3    i
 .

Hence we may write
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M 1  sin3  i =   
t 

2 p G �  K 1 +  K 2 � 
2    K 2 

M 2  sin3  i =   
t 

2 p G �  K 1 +  K 2 � 
2    K 1 . 

In general we do not know i.

For eclipsing binaries, each star successively eclipses the other.  To see them, i

must be near 90°, assuming that the stellar radii are much less than the stellar

separation.  Masses are insensitive to i for i near 90° since sin i  ~ 1. 

           Fig. 4-13
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4.3.1  Supernovae in binary systems

Supernovae are exploding stars.  Before explosion many occur as binary

systems and are caused by mass flow from a companion star.  What happens to the

binary system when the explosion occurs and the mass of one star is reduced,

possibly to zero?

Before, there are two stars in circular orbit 

M

CM

v1

v2

1
r

2
r

2
1 M

Fig. 4-14

Assume center of mass is at rest, take it as origin

M1 r1 + M2 r2 Ê= 0

M1 v1 + M2 v2 Ê= 0

M1 > M2  explodes, leaving new mass M1« = M1 - DM.   Remaining binary

is not at rest.  In a spherical explosion, linear momentum carried away is zero. If vc

Êis in the new CM velocity, momentum conservation yields
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M1« v1 + M2 v2  = (M1« + M2 )vc  

(v1 and v2 are the same immediately before and after the explosion.)  Using

v1=M2 v2 /M1  and M1« =  M1 - DM,

(M1 - DM) 
� 

� 
� � � 
- M 2  

M 1 

  v 2 

�

�
��� + M2 v2  

= (M1 - DM +  M2 )ve  

giving

v c =   
D M M 2 

M 1 � M 1 +   M 2   -   D M � 
  v 2  .

If DM  = M1, vc = v2   (as it must).

Typical values are M1= 10 Mu  , M2  = 5 Mu , DM = 8.5 Mu  .  Then M1« =

1.5 Mu  (appropriate for a neutron star).

v c   =   
8 . 5  x 5 
10 x 5 . 5 

v 2  .

For close binaries,  v2 may be several hundred km s
-1

 so system really moves.  To

determine whether or not the binary remains bound, calculate the binding energy,
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that is, the internal energy without the center of mass energy.

The total internal energy of the system immediately after the explosion is

E N =   
� 
� 
� � 
1 
2 

M N 1   v 2 
1   +   

1 
2 

M 2   v 2 
2 
� 
� 
� �   - 

1 
2 � M N 1 +   M 2 � v 2 

c   -   
G M N 1 M 2 

r 

           8                       8              8 
            Total kinetic energy                       Energy of CM motion              Gravitational Energy

                                                           

                   

            

Now 
G ( M 1 + M 2 ) 

r 
  =   � v 1 - v 2 � 

2   for circular orbits.  

We obtain, writing everything in terms of v2

E N   =   
1 
2 � M 1 -   D M � 

� 

� 
� � � 

M 2 v 2 

M 1 

� 

� 
� � � 

2 

  +   
1 
2 

M 2 v 2 
2 

- 
1 
2 � M 1 + M 2 -   D M � 

: 
; 
< 

= = 

= = 
D M M 2 v 2 

M 1 � M 1 + M 2 -   D M � 

B 
C 
D 

E E 

E E 

2 

-   
� M 1 -   D M � M 2  

M 1 + M 2 

  
: 
; 
< 

= 
= = 1 + 

M 2 

M 1 

B 
C 
D 

E 
E E v 2   

2 

which (believe it or not!) simplifies
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E N   =   
1 
2 � M 2 v 2 

2 � 
� M 1 -   D M � � M 1 + M 2 � 
M 2 

1 �  M1 + M 2 -   D M � 
  �  M1 + M 2 -   2 D M �  .

All terms are positive except the last factor.

Thus for E to be positive (no binding) , mass ejected DM > 1/2 (M1 + M2).

In the numerical example on p 4.31.

8.5 > 1/2 (10 + 5)

and the neutron star departs at high velocity. 

Pulsars (rotating neutron stars) often have high velocity as they leave the

galactic plane.  

The result can be obtained more readily using the CM system in which the

total energy is

E = 1/2 M v
2
cm  + m (1/2 v

2
 -GM/r)

where v is the relative velocity.  Before the explosion for the initial circular orbit

v 2 =   
GM

r 
  ,   

1 
2 

v 2 =   
GM
2 r 

 

and 
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E 
m   =   

1 
2 

v 2 -   
GM

r 
  =   -   

1 
2 

  
GM
2 r 

 .   

After explosion, v is unchangedÑm , M  and E change as M  changes to M« .

Internal energy becomes 

So

E 
m   =   � 

� 
� � 
1 
2 

v 2 -   
GM N 

r 
� 
� 
� �   

=   � 
� 
� � 
1 
2 

v 2 -   
GM

r 
� 
� 
� �   +   � 

� 
� � 
GM

r 
  -   

GM N 
r 

�
�
��

=   -   
1 
2 

  
GM
2 r 

  +   � 
� 
� � 
GM

r 
  -   

GM N 
r 

� 
� 
� � 

= 
GM
2 r 

  -   
GM N 

r 
  . 

So internal energy > 0 if M« < M/2 and ejected mass D M > M/2.  

4.3.2  Tides

When two bodies are in orbit around each other, the otherwise spherically

symmetric gravitational field is distorted by the gravitational attraction of the other

body.
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4.3.3  Weak tides
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Fig. 4-15

For the Earth-Moon system, the Moon pulls the near surface most strongly, the

center of the Earth less strongly and the far surface least strongly. The differential

force gives rise to ocean tides.

The ocean surface adjusts to become an equipotential.  The potential is

formed by the gravitational attraction and by the centrifugal force that arises because

the Earth-Moon system is orbiting about the center of mass.

Assume masses are concentrated at the centers of the Earth and Moon.  The

gravitational potential at a point r is

v ( r )   =   
- GM1  

r -   r 1  

  -   
GM2 

r -   r 2 

to which must be added the centrifugal potential  arising because of the rotating

frame.  It is
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-   
1 
2 

  r 2 
. 

q 2   =   -   w 2 r 2 / 2

where w is the angular velocity

w 2   =   
G ( M 1 + M 2 ) 

R 3  

R being the Earth-Moon distance.

Moon

q

a

CM

R

r D

r
2

r1

M
2

M
1

Fig. 4-16

Moon, Earth are small compared to Earth-Moon distance R  so we write
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- GM2 

r - r 2 

  =   
- GM2 

D 
  =   

- GM2 

� R 2   +  a2 -   2 aR cos  q � 
1 / 2 

=   -   
GM2 

R 
  
� 

� 
� � � 1   +   

 a2 

R 2   -   
  2 a 
R 

  cos  q 
� 

� 
� � � 

- 1 / 2 
 .

                                    

=   -   
GM2 

R 
  
� 

� 
� � � 1   -   

1 
2 

  
 a2 

R 2   +   
  a 
R 

  cos   q   + 
  3 a 2 

2 R 2     cos  q 2   +  O
� 
� 
� � 
  a 
R 
� 
� 
� � 

3 

  
�

�
���

=   -   
GM2 

R 
  
: 
; 
< 

= 
= = 
1   +      a

R 
  P 

1 
  � cos   q �   +    a2 

R 2 
  P 

2 
  � cos  q � +  ...

B 
C 
D 

E 
E E 
 .

(Alternatively use expansion

1 
R   -   a 

  =   
1 
R 
3 
n 

� 
� 
� � 

a 
R 

� 
� 
� � 

n 

P n ( cos q )       R >  a

where Pn(cos q) are Legendre polynomials.) The term in the potential 
a 
R  cos q  is

linear in z, where z is the direction from M1 to M2 so its gradient describes a

constant forceÑGM2/R
2 

which must be canceled by the centrifugal potential..  The

centrifugal potential can be written, using r1 = 
M 2 

M 1   +   M 2 

  R  ,

-   
1 
2 

w 2 r 2   =   
1 
2 

w 2   r 1   -   a 2 

=   
1 
2 

w 2 � 

� 
� � � 

M 2 

M 1   +   M 2 

� 

� 
� � � R 2   +  a2   -   

2 M 2 

M 1   +   M 2 

  R a  cos  q  .
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So adding this we have for the total potential F(r)

F ( r )   =   -   
GM1 

a 
  -   

GM2 

R 
1   +   

a 
R 

 cos q   +   1 / 2   ( 3  cos2   q - 1 )   
a 2 

R 2 

   
1 
2 

  
G � M 1 + M 2 �   

R 3 

� 

� 
� � � 

M 2 

M 1 + M 2 

� 

� 
� � � 

2 

R 2    +   a 2   -   2 
� 

� 
� � � 

M 2 

M 1 + M 2 

� 

� 
� � � R a  cos q   

 .

The term in 
a 
R   cos q  is indeed canceled out by the centrifugal force that keeps the

body in a circular orbit. The gradient of terms that do not depend on a or q is zero,

so they may be omitted and we have for the local tidal potential

F ( r )   =   -   
GM1 

a 
  -   

1 
2 

Ga2 

R 3 � 3   M 2    cos2   q   + M 1   � .

Expand a in terms of its height above the mean sea level a = Rr  + h.  Then 

a 2   =  R r 
2 � 

� 
� � 1   +   

2 h 
 R r 

� 

� 
� �   , 

a - 1   =  R r 
� 

� 
� � 1   -   

h 
 R r 

� 

� 
� �   

and
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F ( h , q )   =   -   
GM1 

R r 

� 

� 
� � 1   -   

h 
R r 

� 

� 
� �   -   

1 
2 

G R u 
2 

R 3 
� 

� 
� � 1   +   2 

h 
R r 

� 

� 
� � � 3 M 2  cos2 q   + M 1   �

- 
GM1 

R r 
2   h - 

3 
2 
� 

� 
� � � 
M 2 

M 1 

� 

� 
� � � 
� 

� 
� � 
R r 
R 

� 

� 
� � 

3 

  R r cos2 q     

ignoring constant terms.  

GM1 

R r 
2   = g = acceleration due to gravity at the surface of the Earth.

The surface is an equipotential so

F   ( h , q )   =  constant

  h =   
3 
2 

   
� 

� 
� � � 
M 2 

M 1 

� 

� 
� � �   
� 

� 
� � 
R r 
R 

� 

� 
� � 

3 

R r   cos2   q   

+   constant  .

The height of the tides is the difference between high and low values of h.

Since cos
2
q varies between 1 and 0, we get for the height of the tides with 
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M 2 

M 1 

  =   
1 
81

  ,  R r   =   6000  km  =  radius of Earth

R =   380, 000  km  =   Earth - Moon distance

h =   54   cm .

 

The same calculation with the Sun in place of the Moon yields

h = 
3 
2 

 x (332000) x � 
� 
� � 

6400

1 . 5  x 108 
� 

� 
� � 

3 

 x 6400 km = 25 cm

(presumably by chance, they are of the same order).  The tidal effects combine

vectorially.  When the Moon is at conjunction or opposition, the two forces add to

cause the high spring tides.  

4.3.4  Tidal friction

The continents are pulled through the ocean bulges and the tidal bulge is

dragged ahead by the spinning Earth.  There is a loss of energy by friction and the

spin of the Earth is slowed.  The day is getting longer.  (There is evidence from

growth scales in fossil corals that there were 400 days  in a year about 100 million

years ago).   Angular momentum is conserved so the Moon increases its angular

momentum. It can do so because the non-symmetric bulge creates a gravitational
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torque back on  the Moon.  Increasing the angular momentum means the Moon

must move outward and so the month is getting longer  The lowest energy state of

the Moon-Earth system is one in which the Earth and Moon present the same

faceÑin which case the tidal distortion will have reached its equilibrium shape that

involves no relative motion of any material.  The Earth and Moon will be tidally

locked and there will be no drag.  The tidal bulge will point directly at the Moon

and the Earth and the Moon will corotate.

Because the Moon is not exactly spherical, partial locking has already

occurred, in that the Moon rotates with the Earth so that it shows the same face all

the time.  The Moon is in synchronous rotation such that the orbital period of the

Moon around the Earth equals the rotation or spin period of the Moon.  The

ultimate equilibrium caused by tidal friction is that in which the spin velocity of the

Earth equals the angular velocity of the Moon in orbit around the Earth (or the

angular velocity of the Earth about the moon) so that 1 month equals 1 day.  

To calculate when that equilibrium will be reached, use the conservation of

angular momentum.  The angular momentum of the Earth-Moon system is the sum

of the angular momentum of the spinning Earth and Moon and the angular

momentum of the MoonÕs orbit around the Earth.  

The angular momentum of the Earth may be written I1w1   where I1 is the

moment of inertia and  w1 is the spin angular velocity.  The angular momentum of a

sphere of uniform mass density r and radius R spinning about an axis w is given

by  
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L =   

R 

I 
o 

  

+ 1 

I 
- 1 

  

2 p 

I 
o 

r   r x � w   x r � r 2 dr d � cos q � d f 

= 2 p   r w 

R 

I 
o 

  

+ 1 

I 
- 1 

r 4 � 1 - cos2   q �  d � cos q � 

=   2 p   r R 5 w   =  I1   w 

where I1 = 2/5 MR
2
 and M = 4/3 pR

3
r is the mass.

Then total angular momentum is

I 1 w 1   +   I 2 w 2   +   
M 1 M 2 

M 
  w 2 R o 

2 

(note the Moon spin and orbital angular velocities are equal) and eventually is

I 1 w f   + I 2 w f   +   
M 1 M 2 

M 
  w f R f 

2 

where wf  = 2p/(ultimate day or month), Rf the ultimate Earth-Moon distance.
   

1
   

1  refers to the Earth and 
   

1
   

2  to the Moon and Ro = 380,000 km is the present

Earth-Moon distance.

KeplerÕs law gives Rf

R f 
R 

  =   
� 

� 
� � 

w 2 

w f 
� 

� 
� � 

2 / 3 

. 
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Now M1 ~ 81.3 M2 so 
M 1 M 2 

M 
  ~   M 2 

 .

Also I2w2 is small compared to I1w1    and as we can check once we have the

answer, both spins are negligible in the final state.  Then

2 
5 

 M1 R 1 
2 w 1 +   M 2  w 2 R o 

2 =   M 2 w f R f 
2 

=   M 2 w 2 R o  
2 � 

� 
� � 
w 2 

w f 
� 

� 
� � 

1 / 3 

yielding 

w 2 

w f 
  =   

: 

; 

< 

= = = = 
= 

= = = = 
= 

  
2 
5 

M 1 R 1 
2 w 1 +   M 2 w 2 R o 

2 

M 2 w 2  R o 
2 

B 

C 

D 

E E E E 
E 

E E E E 
E 

3 

=   
: 
; 
< 

= = 

= = 1   + 
2 
5 

  
� 

� 
� � � 
 M1 

 M2 

� 

� 
� � �   
� 

� 
� � � 
 R 1 

R o 

� 

� 
� � � 

2 

  
� 

� 
� � 
w 1 

w 2 

� 

� 
� � 
B 
C 
D 

E E 

E E 

3 

=   
: 
; 
< 

= 
= 1   +   

2 
5 

  H   81. 3   � 
� 
� � 

6400
380, 000

� 
� 
� � 

2 

  H   28
B 
C 
D 

E 
E 

3 

=   1 . 99  

(380,000 km is the present Earth-Moon distance).  The final length of the day and

month will be 28 x 1.99 = 54 days. 
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The current lengthening of the day is about 0.2 days in 10
9
 years so it will

take more than 10
10

 years to reach equilibrium. (We will have been engulfed by the

Sun in its evolution by then).

The same tidal forces bring binary stars into corotation, tidally locked to

each other.  

4.3.5  Roche stability limits for satellites

Objects can be torn apart by tidal forces.  Tidal potential is 

f ( r , q )   =   
- GM1 

r 
  -   

1 
2 

  
Gr2 

R 3   � 3 M 2 cos2 q   +   M 1 �

+  constant

Suppose M1 is the mass of a small satellite orbiting a large parent star or planet of

mass M2.  M1  << M2.

M 2B A
z

R

r

Fig. 4-17
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Gravitational acceleration at points A and B is along the z axis and is given by

g z   =   - L z F   =   - 
d 
dz

-   
GM1 

z 
  -   

1 
2 

  
Gz2 

R 3 � 3 M 2 � 

=   -   
GM1 

z 3 z +  z
3 GM2 

R 3 

=  Gz
� 

� 
� � � - 

M 1 

z 3   +   
3 M 2 

R 3 

� 

� 
� � �  .  

This is a restoring force if the coefficient of z is negative.  If it is positive, the force

is away from the center of the satellite and the satellite tends to be torn apart.

Putting |z| = r for a satellite of mean density r so M1 = 4/3 pr
3
r, the condition for

Roche stability is

r   >   
9 
4 p 

  
M 2 

R 3   

or no satellite of density r is stable inside the Roche radius.

R crit   =   
� 

� 
� � � 
9 M 2 

4 p r 
� 

� 
� � � 

1 / 2 

    .

If the parent (planet) and satellite have same density
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R crit =   3 1 / 3  R 2 =   1 . 44 R 2 

where R2 is radius of the parent.  (Roche calculated 2.44 R2 using a model of the self-

gravity of the satellite).  

This is essentially the physics of the rings of Saturn (and other planets).

Material within the Roche limit cannot form bodies such as moons because of the

disruptive effect of tidal forces.

4.3.6  Roche lobes

Consider a binary stellar system in a circular orbit.  The intersections of the

equipotential surfaces with the plane of the orbit are shown in the Figure.  
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      The Roche equipotential surfaces plotted in the equatorial
plane for two point mass with a mass ratio equal to 2/3.  The short
arrows indicate the direction of the effective gravitational field in the
frame of reference which corotates with the orbital motion.  The effective
gravity vanishes at the five Lagrangian points L1, L2, L3, L4, L5.  The
first three, L1, L2, L3, lie along the line joining the two mass points;
the last two, L4 , L5,  form equilateral triangles with the two mass
points, M1 and M2.  The sideways Òfigure 8Ó which passes through the
L1 point contains the two Roche lobes.

Fig. 4-18
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This figure is copied from Shu on p. 186.  There are five stationary points,

called Lagrangian points, where the force vanishes.  Close to each star, the

equipotentials are dominated by the gravitational attraction and the equipotentials are

circles centered at the stars (taken to be point sources).  Far from the stars, the

equipotentials are dominated by the outwardly directed centrifugal force.  There the

equipotentials intersect the equatorial plane in circles enclosing both stars.  The two

kinds of equipotentials are separated by Roche lobes  around each star indicated by

the figure of eight.  The Roche lobes intersect at a saddle point.

Roche lobes can be used to further classify close binaries.  If both stars are

smaller than their Roche lobes, the system is a detached binary.If one fills its Roche

lobe, the system is a semi-detached binary and matter will flow through the contact

point.  If both stars fill their Roche lobes they are contact binaries  and they have a

common envelope.

The Roche lobe is the maximum possible size of the star.  If a star becomes

larger than its Roche lobe, it overflows and dumps mass through the saddle-point

on to the companion star.

A common scenario is the case where M1 is initially much larger than M2

(possibly also losing mass to infinity in a stellar wind).  Mass flows from M1 to

M2.  Eventually  M1  becomes a white dwarf and cools.  M2 has gained mass and

so it evolves faster and overflows back on to M1.  This process manifests itself in

an X-ray source.  As the white dwarf accumulates mass, it may be forced into a

gravitational collapse to a neutron star in a supernova explosion.  
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4.3.7  Effect of mass transfer on binary orbits

Suppose M1 is filling its Roche lobe and dumping mass on to M2.  Mass

and angular momentum are conserved but not energy.  The mass is heated and

dissipates energy in radiation.

M2 is gaining mass so M ú 
2 =   - M ú 

1   >   0  .   The angular momentum for a

circular orbit

L =   m R 2   w   =   m R 2   � 

� 
� � 
GM

R 3   

� 

� 
� � 

1 / 2 

=   
M 1 M 2 

M 1 / 2   R 1 / 2   G 1 / 2   =   � M 1 M 2 R 1 / 2   � � G 1 / 2   M - 1 / 2 �

0   =   
dL
d t 

  =   � G 1 / 2   M - 1 / 2 � 
� 

� 
� � . M 1 M 2 R 1 / 2   +   M 1 

. 
M 2 R 1 / 2 

�

�
��

+   � G 1 / 2   M - 1 / 2 � 
1 
2 

M 1 M 2 R 
. 

R - 1 / 2   . 

Solving for R 
. 

and eliminating M 
. 

1 in favor of M 
. 

2 ,  we obtain

. 
R   =   2 R 

� 

� 
� � � 
M 2 - M 1 

M 1 M 2 

� 

� 
� � � 

. 
M 2  . 
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If the lighter star M1 is losing mass R   
ú 
 > 0 and stars draw apart.  Often this

terminates the mass flow since it puts M1 deeper into its Roche lobe.  Alternatively

the mass transfer proceeds slowly on the stellar evolutionary time scale that it takes

M1 to fill its increasingly large Roche lobe.  

If the heavier star is losing mass R   
ú 
  is negative.  The stars get nearer which

increases mass flow leading to a catastrophic instability.  In practice friction leads to

a merger of the two stars.  

4.4  The Virial Theorem

Here I prove a useful theorem, the virial theorem.

The kinetic energy of N  interacting particles of masses mi and velocities vi

is 

T =   
1 
2 

N 

3 
i =   1 

m i v i 
2 

The gravitational potential energy is 

V =   -   3 3 
j 

G m i m j 
r i - r j 
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NewtonÕs law

m i v ú 
i =   - L i V

Introduce

 I =   
1 
2 

N 

3 
i =   1 

m i r i 
2 

(similar to the moment of inertia but about a point).

Differentiate I with respect to time twice

   

. 

I   =   
N 

3 
i =   1 

m i v i A r i 

..

I =   
N 

3 
i =   1 

m i v ú 
i A r i +   

N 

3 
i =   1 

m i v ú 
i A v ú 

i 

=   -     3 
i 

r i   A   L i V   +   2 T .

This is the time-dependent virial theorem.  Suppose we scale all ri by l.  Then
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d 
d l 

  V � l r �   =   3 
i 

  r i   A L i V  .

For a gravitational potential

V � l r �   =   
1 
l V � r �

so

- 
1 

l 2 V � r �   =   3 
i 

r i L i V .

Put l = 1.  Then

..

I =   V   +   2 T .

If a gravitational system is in equilibrium, neither increasing or decreasing

in size, it must have the long time average values < V > and <T > such that

< V  + 2T> = 0       < V > =  -2 <T >  .
 

We can prove this by averaging over a long time G
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V   +   2 T   =   
1 
G 

G 

I 
0 
� V   +   2 T ) dt �

= 
1 
G   I   ú � T � - I   ú � 0 � 

If G is the orbital period, 
. 

I ( T ) = 
. 

I ( 0 ).  More generally, if all particles remain

bounded with bounded velocities for all time, I(t) remains bounded and the right-

hand side tends to zero. This relationship <2T> =  -< V> applies also to the

kinetic and potential energies of many electron atomic systems bound by the

Coulomb attraction between the nucleus and the electrons and can be established

using quantum mechanics.  

(For a harmonic oscillation, V ~ r
2
 ,

�V(lr) ~ �l2V(r)

d 
d l 

V(lr) = 2lV(r)

l = 1

..

I  = -2V + 2T

<T> = <V>  )
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4.5  Gravitational Collapse

Imagine cloud mass M, uniform density r, radius ro

M   =   
4 
3 

p r 3 
o r 

held at r =  ro  and released. In the absence of other forces, cloud will collapse.

Conservation of energy 

1 
2 

r 
. 2 

=   
GM

r 
-   

GM
r o 

�  t ff   =   

t f f

I 
0 

dt =   - 

r o 

I 
0 

� 
� 
� � 
dt
dr

� 
� 
� � dr

=   

r o 

I 
0 

  
2 GM

r 
-   

2 GM
r o 

- 1 / 2 

dr .

Substitute x = r/ro
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 t ff   =   
� 

� 
� � � 

r 
3 
o 

2 GM

� 

� 
� � � 

1 / 2 1 

I 
0 

  
� 

� 
� � 

x 

1 - x 
� 

� 
� � 

1 / 2 

dx .

Put x = sin
2
q; integral is p/2.

t ff =   
� 

� 
� � 

3 p 
32G r 

� 

� 
� � 

1 / 2 

,   depending only on r  .

Collapse time is independent of initial size.

For Sun, r=1.4 gm cm
-3

                       
tff = 1.8 x 10

3
 sec = 30 minutes.

Put x = sin
2
q; integral is p/2.

t ff =   
� 

� 
� � 

3 p 
32G r 

� 

� 
� � 

1 / 2 

,   depending only on r  .

Collapse time is independent of initial size.

For Sun, r=1.4 gm cm
-3

                       
tff = 1.8 x 10

3
 sec = 30 minutes.


